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CARTESIAN MULTIPOLE EXPANSIONS AND TENSO-
RIAL IDENTITIES

E. Radescu, Jr. and G. Vaman*
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Abstract—We establish the exact formulas of multipole expansion in
Cartesian coordinates for the most general distribution of charges and
currents (including toroidal sources).

1. INTRODUCTION

The subject of multipole expansion of the electromagnetic field is
treated in many textbooks on classical electrodynamics. Nevertheless,
the correct relation between the radiation source and the radiation field
was explained only together with the introduction of the class of toroid
moments and distributions [1] besides the usual electric and magnetic
ones.

In [1], it was shown that the class of toroid multipoles is
indispensable for the complete parametrization of an arbitrary
distribution of charges and currents, both in classical and quantum
electrodynamics. It was shown also the necessity of introducing one
more class of local electromagnetic characteristics (in addition to the
moments), which is usually omitted — the mean square radii. The
review paper [2] contains in addition particular applications of toroid
moments in condensed matter physics and many clarifications about
the mathematical machinery needed for a correct multipole analysis.

Recently, multipole expansion technique was applied in modern
fields such as nanostructures, near-field diffraction, highly directional
antennas. The special properties of toroid moments make them
very interesting in constructing metamaterials with particular
characteristics. Controlling the trajectory and polarization of light in
media containing toroidal metamolecules is also an attractive subject
(see [3–5] and references therein). Such advanced researches which
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mainly exploit the special symmetry properties of the toroid multipole
family require a correct knowledge of all the same order multipolar
contributions.

The multipole expansions from [1, 2] are written in spherical
coordinates, and this formalism have the advantage of displaying
directly the multipoles in the form of irreducible spherical tensors.
On the other hand, it requires the knowledge of the special function
properties. The multipole expansions in Cartesian coordinates are easy
to handle for the first multipoles, but for higher order multipoles one
has to decompose the tensors into irreducible representations of the
rotation group SO(3) [6]. This mechanism of reduction is illustrated
in [2], Eq. (2.8) up to the order 3, and it is shown how the toroid dipole
appears together with the charge octupole moment, the magnetic
quadrupole moment, and the first mean square radius of the electric
dipole.

Our aim here is to establish the exact formulas for the multipole
expansion of a source in Cartesian coordinates, which, as far as we
know, were not written anywhere. This paper is organized as follows:
in the next section we write the expansion of an arbitrary distribution
of charges and currents in irreducible Cartesian multipoles. We prove
these formulas starting from the the parametrization of the charge
and current densities in terms of spherical differential operators and
distributions from [2]. Section 3 contains another derivation of the
Cartesian expansions, based on some combinatorics formulas and on
properties of the hypergeometric functions. The end section is devoted
to conclusions and the Appendix contains some useful mathematical
formulas.

2. THE CARTESIAN MULTIPOLE EXPANSION OF AN
ARBITRARY DISTRIBUTION OF CHARGES AND
CURRENTS

We prove in this section the following formulas for the exact multipole
expansion in Cartesian coordinates of the most general source of
charges and currents (which satisfy the continuity equation):

ρ(~r, t) =
∞∑

l=0

∞∑

n=0

(−1)l(2l + 1)!!
2nn!l!(2l + 2n + 1)!!

r2n
i1 ...il

(t)∆n∂i1 . . . ∂ilδ(~r), (1)

~j(~r, t) = c

∞∑

l=0

∞∑

n=0

(−1)l(2l + 1)!!
l2nn!l!(2l + 2n + 1)!!

·
{

1
(2l − 1)!!

ρ2n
i1 ...il

(t)(~r ×∇)∆n∂i1 . . . ∂ilδ(~r)
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+
[

˙
r0
i1 ...il

(t)δn,0∆−1 − 1
(2l − 1)!!

R2n
i1 ...il

(t)
]
∇× (~r ×∇)

·∆n∂i1 . . . ∂ilδ(~r)− l
˙

r2n
i1 ...il

(t)∇∆n−1∂i1 . . . ∂ilδ(~r)
}

, (2)

where †: ρ(~r, t) is the charge density, ~j(~r, t) is the current density and

r2n
i1 ...il

(t) =
(−1)l

(2l − 1)!!

∫
d3ξ ξ2l+2n+1ρ

(
~ξ, t

)
∂i1 . . . ∂il

1
ξ

(3)

ρ2n
i1 ...il

(t) =
(−1)l

c(l + 1)

∫
d3ξ ξ2l+2n+1~j

(
~ξ, t

)(
~ξ ×∇

)
∂i1 . . . ∂il

1
ξ

(4)

R2n
i1 ...il

(t) =
(−1)l+1

2c(l + 1)(n + 1)(2l + 2n + 3)

∫
d3ξξl+2n+1~j

(
~ξ, t

)

·
[
l(l + 1)

~ξ

ξ
+ (l + 2n + 3)ξ∇

]
ξl+1∂i1 . . . ∂il

1
ξ

(5)

are the Cartesian components of the electric, magnetic and toroid mean
square radii of order n and multipolarity l, respectively, ξ = |~ξ|.

We start from the following formulas from Appendix E of [2],
which represent the complete parametrization of the charge and current
densities in terms of spherical differential operators and distributions
‡:

ρ(~r, t) =
∑

l,m,n

(2l + 1)!!
2nn!(2l + 2n + 1)!!

√
4π

2l + 1
r2n
lm(t)∆nδlm(~r), (6)

~j(~r, t) = c
∑

l,m,n

(2l + 1)!!
2nn!(2l + 2n + 1)!!

√
4π

2l + 1

{
1
l
ρ2n

lm(t)(~r ×∇)

·∆nδlm(~r) +
1
l

[
˙

r0
lm(t)δn,0∆−1 −R2n

lm(t)
]
∇× (~r ×∇)

·∆nδlm(~r)− ˙
r2n
lm(t)∇∆n−1δlm(~r)

}
, (7)

where ρ(~r, t) is the charge density, ~j(~r, t) is the current density, r2n
lm(t),

ρ2n
lm(t) and R2n

lm(t) are the electric, magnetic and toroid mean square
† The operator ∆−1 (inverse Laplacian) means: ∆−1δ(~r) = − 1

4π
1
r
. Because formally

(~r ×∇)δ(~r) ≡ 0, the summations for the terms containing ρ2n
i1 ...il

and R2n
i1 ...il

begin from

l = 1. Eqs. (3), (4), (5) represent the components of three totally symmetric traceless
tensors of order l. Each of them has 2l + 1 independent components.
‡ There exist some differences in the notations from [1, 2]. The quantities Q

(2n)
lm , M

(2n)
lm

R
(2n)
lm from Appendix E of [2] are ours r2n

lm, ρ2n
lm, R2n

lm from Eqs. (8)–(10).
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radii of order n and multipolarity l respectively [7]:

r2n
lm(t) =

√
4π

2l + 1

∫
rl+2nY ∗

lm(~n)ρ(~r, t)d3r, (8)

ρ2n
lm(t) = − i

c

√
4πl

(l + 1)(2l + 1)

∫
r2n+l~Y ∗

llm(~n) ·~j(~r, t)d3r, (9)

R2n
lm(t) =

−1
c(2l + 1)

√
4πl

l + 1

∫
rl+2n+1

[ √
l

2l + 2n + 3
~Y ∗

ll+1m(~n)

+
√

l + 1
2(n + 1)

~Y ∗
ll−1m(~n)

]
·~j(~r, t)d3r, (10)

r = |~r|, ~n = ~r
r , δlm(~r) are the spherical delta functions (see [2, 8, 9])

and ~Yll′m are the vector spherical harmonics ([10]). Let us first prove
Eq. (1). Using the properties of the spherical gradient operator ([8, 9]),
it is easy to show the following addition theorem:

∑
m

Y ∗
lm(~n)Ylm(−∇) =

2l + 1
4π

Pl (−~n · ∇) , (11)

where Pl are the Legendre polynomials. Next, using this addition
theorem and the definition of the spherical delta functions:

δlm(~r) =
1

(2l − 1)!!
Ylm(−∇)δ(~r),

we can make the summation over the index m in Eq. (6) as follows:∑
m

r2n
lm∆nδlm(~r)

=
1

(2l−1)!!

√
2l+1
4π

∫
d3r′r′l+2nρ

(
~r′, t

)
Pl

(
−~n′ · ∇

)
∆nδ(~r),(12)

where ~n′ = ~r′
r . From [11] we have §:

Pl

(
~̂r · ~̂s

)
=

1
l!
Tl ~̂rl • l • ~̂sl, (13)

where Tl is the detracer operator and •l• means l-fold contraction.
The detracer operator Tl which is defined in [11] transforms any totally
symmetric l-th rank tensor to a totally traceless form. We have further:

Tl
~n′

l
= (−1)lr′l+1∇′l 1

r′
, (14)

§ Between our spherical harmonics and the spherical harmonics from [11] there exists the

relation: Y
(Ref. [8])
lm (θ, φ) = (−1)m

√
4π(l+m)!

(2l+1)(l−m)!
Y

(this paper)
lm (θ, φ). The definitions of

the Legendre polynomials are identical.
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so it follows that:

Pl

(
−~n′ · ∇

)
=

1
l!

r′l+1∇′l 1
r′
• l • ~∇l. (15)

From Eqs. (3), (12), (15) it follows that:
∑
m

r2n
lm∆nδlm(~r) =

√
2l + 1

4π

(−1)l

l!
r2n
i1 ...il

(t)∆n∂i1 . . . ∂ilδ(~r) (16)

and from (16), (6) we easily obtain Eq. (1).
We prove now Eq. (2). We start from Eq. (7) where the part which

contains the electric mean square radii is transformed using the same
method described previously. We obtain:

∑
m

r2n
lm∇∆n−1δlm(~r) =

√
2l+1
4π

(−1)l

l!
r2n
i1 ...il

(t)∇∆n−1∂i1 . . . ∂ilδ(~r)

(17)
and

∑
m

r0
lm∆−1∇× (~r ×∇)∆nδlm(~r) =

√
2l + 1

4π

(−1)l

l!
r0
i1 ...il

(t)∆−1∇

×(~r ×∇)∆n∂i1 . . . ∂ilδ(~r). (18)
In order to transform the parts which contain the magnetic and toroid
mean square radii, we need to evaluate the sums:

∑
m ρ2n

lm(t)(~r ×
∇)∆nδlm(~r) and

∑
m R2n

lm(t)∇× (~r ×∇)∆nδlm(~r). For this, we make
in Eqs. (9), (10) the replacements (see for example [7]):

~Y ∗
llm(~n) =

i(~r ×∇)√
l(l + 1)

Y ∗
lm(~n)

~Y ∗
ll−1m(~n) =

1√
2l + 1

(√
l
~r

r
+

r√
l
∇

)
Y ∗

lm(~n) (19)

~Y ∗
ll+1m(~n) =

1√
2l + 1

(
−
√

l + 1
~r

r
+

r√
l + 1

∇
)

Y ∗
lm(~n), ~n =

~r

r

and then we use again Eq. (11). One obtains:
∑
m

ρ2n
lm(t)(~r ×∇)∆nδlm(~r) =

(−1)l

(2l − 1)!!l!

√
2l + 1

4π
ρ2n

i1 ...il
(t)(~r ×∇)

·∆n∂i1 . . . ∂i1δ(~r), (20)

∑
m

R2n
lm(t)∇× (~r ×∇)∆nδlm(~r) =

(−1)l

(2l − 1)!!l!

√
2l + 1

4π
R2n

i1 ...il
(t)

·∇ × (~r ×∇)∆n∂i1 . . . ∂i1δ(~r). (21)
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Introducing Eqs. (17), (18), (20), (21) into Eq. (7) one obtains Eq. (2).
We end this section with some observations about Eqs. (3)–

(5). If we explicitly write Eq. (3) for (l = 1, n = 0) and for
(l = 1, n = 1), we obtain the well known expressions of the electric
dipole and of the first mean square radius of the electric dipole,
respectively: r0

i (t) =
∫

d3ξξiρ(~ξ, t), r2
i (t) =

∫
d3ξξ2ξiρ(~ξ, t). If we put

in Eq. (5) (l = 1, n = 0) we obtain the expression of the toroid dipole:
R

0
i ≡ ti = 1

10c

∫
d3r[ri(~r · ~j) − 2r2ji]. In the case of the magnetic

dipole and of the higher order electric, magnetic and toroid mean
square radii, some sign differences or even some different normalization
constants appear as compared to the definitions which exist in the
literature (e.g., [7, 12, 13]). These differences are physically irrelevant,
but we have to pay attention to the conventions we are using during the
calculation. The advantage of using the definitions (3)–(5) consists in
the compact writing of the Cartesian components of the multipoles and
of their relation with the spherical components for any multipolarity
and order. The relation betwen the Cartesian components of any type
of mean square radius (electric, magnetic or toroid), generically noted
by <2n

i1 ...il
(t) and its spherical components <2n

lm(t) is:

<2n
lm(t) =

(−1)m

√
(l + m)!(l −m)!

m∑

k=0

(−i)k

(
m
k

)
<2n

1 . . . 1︸ ︷︷ ︸
m−k

2 . . . 2︸ ︷︷ ︸
k

3 . . . 3︸ ︷︷ ︸
l−m

(t),

(22)

where
(

m
k

)
= m!

k!(m−k)! . It can be obtained from the Cartesian

expression of the spherical harmonics [14]:

1
rl+1

Ylm(θ, φ) = (−1)l+m

√
2l + 1

4π

1
(l + m)!(l −m)!

m∑

k=0

ik
(

m
k

)

· ∂m−k
1 ∂k

2∂l−m
3

1
r
. (23)

We have written in this section the Cartesian multipole expansions
for an arbitrary source of charges and currents ρ(~r, t), ~j(~r, t) which
satisfy the continuity equation. The multipole expansion of the field
produced by this source can be obtained by using the equations:

φ(~r, t) =
∫

d3~r′
ρ

(
~r′, t− |~r−~r′|

c

)

|~r − ~r′|
,

~A(~r, t) =
1
c

∫
d3~r′

~j
(
~r′, t− |~r−~r′|

c

)

|~r − ~r′|
,

(24)
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~E(~r, t) = −1
c

∂ ~A

∂t
−∇φ(~r, t), ~B(~r, t) = ∇× ~A(~r, t).

3. ANOTHER PROOF OF EQS. (1), (2)

We present in this section another method for proving Eqs. (1),
(2). Having in mind the interesting tensorial decomposition Eq. (2.8)
from [2], which illustrates for pedagogical purposes the correct
reduction method of the Cartesian multipoles up to the order 3, we
prove our Eqs. (1), (2) by transforming them into tensorial identities.

For this, we start from Eqs. (1), (2) (which are to be
proved) and write them in the form of Cartesian tensorial identities.
Next, we further transform these tensorial identities by using some
combinatorics and the properties of the hypergeometric functions, till
we get some obvious algebraic identities; then we can conclude that
Eqs. (1), (2) from which we have started are correct. The calculation
is quite long and it will be presented in short.

We start with the proof of the longer Eq. (2). We write the obvious
identity:

jα(~r, t) =
∫

d3ξjα

(
~ξ, t

)
δ
(
~r − ~ξ

)
(25)

and then we use the formal Taylor expansion of the function δ(~r − ~ξ):

δ
(
~r − ~ξ

)
=

∞∑

L=0

(−1)L

L!
ξi1 . . . ξiL∂i1 . . . ∂iLδ(~r). (26)

Introducing Eq. (26) into Eq. (25), one obtains:

jα(~r, t) =
∞∑

L=0

(−1)L

L!

(∫
d3ξjα

(
~ξ, t

)
ξi1 . . . ξiL

)
∂i1 . . . ∂iLδ(~r). (27)

If we introduce Eqs. (3)–(5), (27) into Eq. (2), after some simple
algebric manipulations, the identity we have to prove becomes ‖:

∞∑

L=0

(−1)L

L!

(∫
d3ξjα

(
~ξ, t

)
ξi1 . . . ξiL

)
∂i1 . . . ∂iLδ(~r)

=
∞∑

l=1

∞∑

n=0

−(2l + 1)
2nn!(2l + 2n + 1)!!l(l + 1)!

‖ For abbreviation, we have used the notation ∂i1...il
instead of ∂i1 . . . ∂il

and we have

omitted the argument of ~j(~ξ, t) in the right-hand side. The notation ∂
(ik,ir)
i1...il

means that

the indices ik, ir are missing from the set of the indices (i1 . . . il).
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·
∫

d3ξξ2l+2n+1

[
− l2jα∂i1...il

1
ξ

+ l

l∑

k=1

jik∂α∂
(ik)
i1...il

1
ξ

+(l−1)
l∑

k=1

(
~j·∇

)
δαik∂

(ik)
i1...il

1
ξ
−

l∑

k,r=1

k 6=r

δikir(~j·∇)∂α∂
(ik,ir)
i1...il

1
ξ

]
∂i1...il∆

nδ(~r)

+
∞∑

l=1

∞∑

n=0

−(2l + 1)
2n+1(n + 1)!(2l + 2n + 3)!!(l + 1)!

·
∫

d3ξ ξ2l+2n+1

[
(2l + 2n + 3)(l + 1)

(
~j·~ξ

)
+ (l + 2n + 3)ξ2

(
~j·∇

)]

·∂i1...il−1
∂α

1
ξ
∂i1...il−1

∆n+1δ(~r)

+
∞∑

l=1

∞∑

n=0

(2l + 1)
2n+1(n + 1)!(2l + 2n + 3)!!(l + 1)!(l + 1)

·
∫

d3ξ ξ2l+2n+1

[
(2l + 2n + 3)(l + 1)

(
~j·~ξ

)
+ (l + 2n + 3)ξ2

(
~j·∇

)]

·
l+1∑

k=1

δαik∂
(ik)
i1...il+1

1
ξ
∂i1...il+1

∆nδ(~r)

+
∞∑

l=1

−(2l + 1)
l!(2l − 1)!!

∫
d3ξ ξ2l−1

(
~j·~ξ

)
∂α∂i1...il−1

1
ξ
∂i1...il−1

δ(~r)

+
∞∑

l=1

−1
l!(2l − 1)!!

∫
d3ξ ξ2l+1

(
~j·∇

)
∂α∂i1...il−1

1
ξ
∂i1...il−1

δ(~r)

+
∞∑

l=0

∞∑

n=1

[ −(2l + 1)
2nn!(2l + 2n− 1)!!(l + 1)!

∫
d3ξ ξ2l+2n−1

(
~j·~ξ

)

·
l+1∑

k=1

δαik∂
(ik)
i1...il+1

1
ξ
− (2l + 1)

2nn!(2l + 2n + 1)!!(l + 1)!

·
∫

d3ξξ2l+2n+1
(
~j·∇

) l+1∑

k=1

δαik∂
(ik)
i1...il+1

1
ξ

]
∆n−1∂i1...il+1

δ(~r). (28)

Next, we make some changes of the summation indices in the right
hand side (r.h.s.) of the above equation, so that we have L derivatives
of δ(~r) in all the terms. So, in the first term of the r.h.s. we make
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the replacement: (l, n) → (L, n): l + 2n = L, in the second and in
the third: (l, n) → (L, n): l + 2n + 1 = L, in the fourth and in the
fifth: l → L: l − 1 = L. In the last term we make the replacement
(l, n) → (L, n): l+2n−1 = L, and after that n → N : n = N+1. Then,
we introduce Eq. (A1) in Eq. (28). It follows then the symmetrization
in the derivative indices of δ(~r), using Eq. (A2) from the Appendix.
We emphasize that all these symmetrizations do not imply the change
of the r.h.s. (by additions or subtractions), but simply the renotation
of some summation indices.

We give an example: let us consider the quantity ¶ :
T ≡ P(δκ+1

iaib
ξL−2n−2κ−2
ic

)i1...iL−2n∂i1...iL−2n∆nδ(~r), which can be written
in the form:
T = P(δκ+1

iaib
ξL−2n−2κ−2
ic

)i1...iL−2nδiL−2n+1iL−2n+2 . . . δiL−1iL∂i1...iLδ(~r).
According to the formula (A2) from Appendix, it contains

(L−2n)!
2κ+1(L−2n−2κ−2)!(κ+1)!

terms. On the other hand, the quantity:

T sym = P(δκ+n+1
iaib

ξL−2n−2κ−2
ic

)i1...iL∂i1...iLδ(~r).

contains (L)!
2κ+n+1(L−2n−2κ−2)!(κ+n+1)!

terms. Therefore, we perform the
symmetrization of all the derivative indices of the function δ(~r) by
putting:

P(δκ+1
iaib

ξL−2n−2κ−2
ic

)i1...iL−2nδiL−2n+1iL−2n+2 . . . δiL−1iL∂i1...iLδ(~r)

=
2n(L− 2n)!(κ + n + 1)!

L!(κ + 1)!)
P(δκ+n+1

iaib
ξL−2n−2κ−2
ic

)i1...iL∂i1...iLδ(~r) .

After the symmetrization of all the terms from the r.h.s. of the
Eq. (28) and after some simplifications, we see that the proof of the
Eq. (2) is equivalent with the proof of the following tensorial identity:

jαξi1 . . . ξiL = T1 + T2 + T3 + T4 + T5, (29)

where:

T1 = (−1)
(L+1)(2L+1)!!

[
ξα(~j·~ξ)

ξ2

[L−2
2 ]∑

κ=0
(−1)κ(2κ + 2) (2L− 2κ− 1)!!ξ2κ+2

· P
(
δκ+1
iaib

ξL−2κ−2
ic

)
i1...iL

¶ We use the notation: P(δk
iaib

ξL−2k
ic

)i1...iL
≡ P(δi1i2 . . . δi2k−1i2k

ξi2k+1 . . . ξiL
)i1...iL

which means all the distinct terms obtained by all the permutations of the indices i1 . . . iL,
which contain k Kronecker symbols and L − k coordinates ξ. Obviously, the notation
P(δκ

iaib
δαicjid

ξL−2κ−2
ie

)i1...iL
≡ P(δi1i2 . . . δi2κ−1i2κδαi2κ+1ji2κ+2ξi2κ+3 . . . ξiL

)i1...iL

means all the distinct terms obtained by all the permutations of the indices i1 . . . iL, which
contain κ Kronecker symbols of the type δikij , one Kronecker symbol of the type δαip , one
component of the current jip and L− 2κ− 2 coordinates ξi.



98 Radescu, Jr. and Vaman

+
(
~j·~ξ

) [L−1
2 ]∑

κ=0
(−1)κ(2κ+2)(2L−2κ−1)!!ξ2κP

(
δκ
iaib

δαicξ
L−2κ−1
id

)
i1...iL

−jα

[L
2 ]∑

κ=0
(−1)κ(2L− 2κ + 1)!!ξ2κP

(
δκ
iaib

ξL−2κ
ic

)
i1...iL

−ξα

[L−1
2 ]∑

κ=0
(−1)κ(2L− 2κ + 1)!!ξ2κP

(
δκ
iaib

jicξ
L−2κ−1
id

)
i1...iL

+ξ2
[L−2

2 ]∑
κ=0

(−1)κ(2L− 2κ− 1)!!ξ2κP
(
δκ
iaib

δαicjidξ
L−2κ−2
ie

)
i1...iL

]
,

T2 =
[L−2

2 ]∑
n=0

(2L−4n−1)
2(n+1)!(2L−2n+1)!!ξ

2n

[
(~j·~ξ)

[L−2n−1
2 ]∑

κ=0
(−1)κ(2n+2κ+1)(2L−4n

−2κ− 3)!!ξ2κ (κ+n)!
κ! P

(
δκ+n
iaib

δαicξ
L−2n−2κ−1
id

)
i1...iL

+ξ2
[L−2n−2

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n)!
κ!

·P
(
δκ+n
iaib

δαicjidξ
L−2n−2κ−2
ie

)
i1...iL

]
,

T3 =
[L−1

2 ]∑
n=0

−(2L−4n+1)
n!(2L−2n+1)!!(L−2n+1)(L−2n)ξ

2n

·
{
− jα (L−2n)2 (2L−4n−1)!!n!P

(
δn
iaib

ξL−2n
ic

)
i1...iL

+jαξ2
[L−2n−2

2 ]∑
κ=0

(−1)κ

[
(L−2n)2+2κ+2

]
(2L−4n−2κ−3)!!ξ2κ (κ+n+1)!

(κ+1)!

·P
(
δκ+n+1
iaib

ξL−2n−2κ−2
ic

)
i1...iL

+(L− 2n)ξα

[L−2n−1
2 ]∑

κ=0
(−1)κ(2L− 4n− 2κ− 1)!!ξ2κ (κ+n)!

κ!

·P
(
δκ+n
iaib

jicξ
L−2n−2κ−1
id

)
i1...iL

−(2L− 4n− 1)ξ2
[L−2n−2

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n)!
κ!

·P
(
δκ+n
iaib

δαicjidξ
L−2n−2κ−2
ie

)
i1...iL

+(L− 2n− 1)
(
~j·~ξ

) [L−2n−1
2 ]∑

κ=0
(−1)κ(2L− 4n− 2κ− 1)!!ξ2κ (κ+n)!

κ!

·P
(
δκ+n
iaib

δαic − ξL−2n−2κ−1
id

)
i1...iL
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−2
(
~j·~ξ

)
ξα

[L−2n−2
2 ]∑

κ=0
(−1)κ(2L− 4n− 2κ− 1)!!ξ2κ (κ+n+1)!

κ!

·P
(
δκ+n+1
iaib

ξL−2n−2κ−2
ic

)
i1...iL

+2ξαξ2
[L−2n−3

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n+1)!
κ!

·P
(
δκ+n+1
iaib

jicξ
L−2n−2κ−3
id

)
i1...iL

+2
(
~j·~ξ

)
ξ2

[L−2n−3
2 ]∑

κ=0
(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n+1)!

κ!

·P
(
δκ+n+1
iaib

δαicξ
L−2n−2κ−3
id

)
i1...iL

−2ξ4
[L−2n−4

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 5)!!ξ2κ (κ+n+1)!
κ!

·P
(
δκ+n+1
iaib

δαicjidξ
L−2n−2κ−4
ie

)
i1...iL

}
,

T4 =
[L−2

2 ]∑
n=0

−(2L−4n−1)
(n+1)!(2L−2n+1)!!(L−2n)(L−2n−1)ξ

2n

{
ξα(~j·~ξ)

[L−2n−2
2 ]∑

κ=0
(−1)κ

·(2L−4n−2κ−3)!!
[
−(2L−2n+1)(L−2n)+(L+2)(2L−4n−2κ−1)

]

·ξ2κ (κ+n+1)!
κ! P

(
δκ+n+1
iaib

ξL−2n−2κ−2
ic

)
i1...iL

+
(
~j·~ξ

)
ξ2

[L−2n−3
2 ]∑

κ=0
(−1)κ(2L− 4n− 2κ− 5)!!

[
(2L−2n+1)(L−2n)

−(L+2)(2L−4n−2κ−3)
]
ξ2κ (κ+n+1)!

κ! P
(
δκ+n+1
iaib

δαicξ
L−2n−2κ−3
id

)
i1...iL

−(L + 2)jαξ2
[L−2n−2

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n+1)!
κ!

·P
(
δκ+n+1
iaib

ξL−2n−2κ−2
ic

)
i1...iL

−(L + 2)ξαξ2
[L−2n−3

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n+1)!
κ!

·P
(
δκ+n+1
iaib

jicξ
L−2n−2κ−3
id

)
i1...iL

+(L + 2)ξ4
[L−2n−4

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 5)!!ξ2κ (κ+n+1)!
κ!

·P
(
δκ+n+1
iaib

δαicjidξ
L−2n−2κ−4
ie

)
i1...iL

}
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and

T5 =
[L−2

2 ]∑
n=0

(2L−4n−1)
2(n+1)!(2L−2n+1)!!(L−2n)ξ

2n

{
(~j·~ξ)

[L−2n−1
2 ]∑

κ=0
(−1)κ

·(2L− 4n− 2κ− 3)!!
[
− (2L− 2n + 1)(L− 2n) + (L + 2)

·(2L− 4n− 2κ− 1)
]
ξ2κ (κ+n)!

κ! P(δκ+n
iaib

δαicξ
L−2n−2κ−1
id

)i1...iL

−(L + 2)ξ2
[L−2n−2

2 ]∑
κ=0

(−1)κ(2L− 4n− 2κ− 3)!!ξ2κ (κ+n)!
κ!

·P(δκ+n
iaib

δαicjidξ
L−2n−2κ−2
ie

)i1...iL

}
.

If we put L = 2 in Eq. (29), we obtain the identity (2.8) from [2].
We now proceed to the proof of Eq. (29). First, we note that a

part of T1 and a part of T3 give exactly the left hand side:

(−1)
(L+1)(2L+1)!!


−jα

[L
2 ]∑

κ=0

(−1)κ(2L−2κ+1)!!ξ2κP
(
δκ
iaib

ξL−2κ
ic

)
i1...iL




κ=0

+
[L−1

2 ]∑

n=0

−(2L− 4n + 1)
n!(2L− 2n + 1)!!(L− 2n + 1)(L− 2n)

ξ2n

[
− jα(L− 2n)2

·(2L− 4n− 1)!!n!P(δn
iaib

ξL−2n
ic

)i1...iL

]

n=0

= jαξi1 . . . ξiL . (30)

Then we notice that in the r.h.s. of Eq. (29) there exist five categories
of terms: jα(. . . ), ξα(. . . ), ξ2(. . . ), (~j·~ξ)(. . . ), and ξα(~j·~ξ)(. . . ). We are
analysing them one by one. For example, let us analyse the coefficient
of ξα from the r.h.s.:

C(ξα)=
[L−1

2 ]∑

n=0

[L−2n−1
2 ]∑

κ=0

−(2L− 4n+1)
n!(2L−2n+1)!!(L−2n+1)

(−1)κ(2L−4n−2κ−1)!!

·ξ2n+2κ (κ + n)!
κ!

P
(
δκ+n
iaib

jicξ
L−2n−2κ−1
id

)
i1...iL

+
[L−3

2 ]∑

n=0

[L−2n−3
2 ]∑

κ=0

−2(2L−4n+1)
n!(2L−2n+1)!!(L−2n+1)(L−2n)

(−1)κ

·(2L−4n−2κ−3)!!ξ2n+2κ+2 (κ+n+1)!
κ!

P
(
δκ+n+1
iaib

jicξ
L−2n−2κ−3
id

)
i1...iL
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+
[L−3

2 ]∑

n=0

[L−2n−3
2 ]∑

κ=0

(2L− 4n− 1)(L + 2)
(n + 1)!(2L− 2n + 1)!!(L−2n−1)(L− 2n)

(−1)κ

·(2L−4n−2κ−3)!!ξ2n+2κ+2 (κ+n+1)!
κ!

P
(
δκ+n+1
iaib

jicξ
L−2n−2κ−3
id

)
i1...iL

+
1

(L+1)(2L+1)!!

[L−1
2 ]∑

κ=0

(−1)κ(2L−2κ+1)!!ξ2κP
(
δκ
iaib

jicξ
L−2κ−1
id

)
i1...iL

.

We shall prove that C(ξα) = 0. We group the terms now according to
the powers of δiaib . For that, we make some changes of the summation
indices. In the first term we put: (n, κ) → (K, n): κ + n = K, in the
second and the third: (n, κ) → (K, n): κ + n + 1 = K, and in the
last term we simply rename: κ → K. After some simplifications, one
obtains:

C(ξα) =

[ [L−1
2 ]∑

K=1

K∑

n=0

(−1)K+n+1(2L− 4n + 1)
n!(2L− 2n + 1)!!(L− 2n + 1)

· (2L− 2n− 2K − 1)!!
K!

(K − n)!

+
[L−1

2 ]∑

K=1

K−1∑

n=0

2(−1)K+n(2L− 4n + 1)
n!(2L− 2n + 1)!!(L− 2n + 1)(L− 2n)

· (2L− 2n− 2K − 1)!!
K!

(K − n− 1)!

+
[L−1

2 ]∑

K=1

K−1∑

n=0

(−1)K+n+1(2L− 4n− 1)(L + 2)
(n +1)!(2L− 2n +1)!!(L− 2n−1)(L− 2n)

· (2L− 2n− 2K − 1)
K!

(K − n− 1)!

+
[L−1

2 ]∑

K=1

(−1)K

(L+1)(2L+1)
(2L−2K+1)!!

]∫
d3ξ ξ2kP(δK

iaib
jicξ

L−2K−1
id

)i1...iL .

Now, let K be fixed in the interval 1,
[

L−1
2

]
. Decomposing in partial

fractions all the terms and rearranging them, one obtains:
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C(ξα; K = fixed) =

[
−2(−1)KK!

K∑

n=0

(−1)n

n!(K − n)!
(2L−2n−2K−1)!!

(2L−2n+1)!!

+
(−1)KK!
(L + 1)

K∑

n=0

(−1)n

n!(K − n)!
1

(1− 2
L+1n)

(2L− 2n− 2K − 1)!!
(2L− 2n + 1)!!

+
2(−1)KK!
(L + 1)

K−1∑

n=0

(−1)n

n!(K − n− 1)!
1

(1− 2
(L+1)n)

(2L− 2n− 2K − 1)!!
(2L− 2n + 1)!!

+
2(−1)KK!

L

K−1∑

n=0

(−1)n

n!(K − n− 1)!
1

(1− 2
Ln)

(2L− 2n− 2K − 1)!!
(2L− 2n + 1)!!

+ (−1)KK!
K∑

n=0

(−1)n

n!(K − n)!
1

(1− 2
L+2n)

(2L− 2n− 2K + 1)!!
(2L− 2n + 3)!!

+
(L + 2)(−1)KK!

(L + 1)

K∑

n=0

(−1)n

n!(K − n)!
1

(1− 2
L+1n)

(2L− 2n− 2K + 1)!!
(2L− 2n + 3)!!

]

∫
d3ξ ξ2KP(δK

iaib
jicξ

L−2K−1
id

)i1...iL .

We notice that, the calculation of C(ξα; K = fixed) reduces to three
sums, which can be easily evaluated by the means of the formulas
(A7)–(A15) from Appendix:

K∑

n=0

(−1)n

n!(K − n)!
1

1− cn

(2L− 2n− 2K − 1)!!
(2L− 2n + 1)!!

=





(−1)K

2K+1

Γ(L−2K+ 1
2
)

Γ(L+ 3
2
)

(
2K
K

)
, c = 0

1
K!2K+1

Γ(L−K+ 1
2
)

Γ(L+ 3
2
) 3F2




−K,−L− 1
2 ,−1

c
1

−L + K + 1
2 , 1− 1

c ,


, c 6= 0

(31)

K−1∑

n=0

(−1)n

n!(K − n− 1)!
1

1− cn

(2L− 2n− 2K − 1)!!
(2L− 2n + 1)!!

=





(−1)K−1

2K+1

Γ(L−2K+ 3
2)

Γ(L+ 3
2)

(
2K − 1
K − 1

)
, c = 0

1
(K−1)!2K+1

Γ(L−K+ 1
2)

Γ(L+ 3
2)

3F2



−K + 1,−L− 1

2 ,−1
c

1
−L + K + 1

2 , 1− 1
c


, c 6= 0

(32)
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K∑

n=0

(−1)n

n!(K − n)!
1

1− cn

(2L− 2n− 2K + 1)!!
(2L− 2n + 3)!!

=





(−1)K

2K+1

Γ(L−2K+ 3
2)

Γ(L+ 5
2)

(
2K
K

)
, c = 0

1
(K)!2K+1

Γ(L−K+ 3
2)

Γ(L+ 5
2)

3F2



−K,−L− 3

2 ,−1
c

1
−L + K − 1

2 , 1− 1
c


, c 6= 0

(33)

Using (31), (32), and (33) in the expression of C(ξα; K = fixed), one
obtains (leaving aside the common factors):

C(ξα; K = fixed) ∼ 2(−1)K+1Γ
(

L− 2K +
1
2

)
(2K)!
K!

+
1

L + 1
Γ

(
L−K +

1
2

)
3F2



−K,−L− 1

2 ,−L
2 − 1

2
1

−L + K + 1
2 ,−L

2 + 1
2




+
2K

L + 1
Γ

(
L−K +

1
2

)
3F2



−K + 1,−L− 1

2 ,−L
2 − 1

2
1

−L + K + 1
2 ,−L

2 + 1
2




+
2K

L
Γ

(
L−K +

1
2

)
3F2



−K + 1,−L− 1

2 ,−L
2

1
−L + K + 1

2 , 1− L
2




+
1

L + 3
2

Γ
(

L−K +
3
2

)
3F2



−K,−L− 3

2 ,−L
2 − 1

1
−L + K − 1

2 ,−L
2




+
L + 2

(L + 1)(l + 3
2)

Γ
(
L−K +

3
2

)
3F2



−K,−L− 3

2 ,−L
2 − 1

2
1

−L + K − 1
2 ,−L

2 + 1
2


. (34)

Now, using the formula (A3) from Appendix for the following two sets
of parameters:




a → −K + 1
b → −L− 1

2
c → −L

2
d → −L + K + 1

2
e → 1− L

2

and





a → −K
b → −L− 3

2
c → −L

2 − 1
d → −L + K − 1

2
e → −L

2
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one obtains:

C(ξα; K = fixed) ∼ 2(−1)K+1Γ
(

L− 2K +
1
2

)
(2K)!
K!

+
1

L + 1
Γ

(
L−K +

1
2

)
3F2



−K,−L− 1

2 ,−L
2 − 1

2
1

−L + K + 1
2 ,−L

2 + 1
2




+
2K

L + 1
Γ

(
L−K +

1
2

)
3F2



−K + 1,−L− 1

2 ,−L
2 − 1

2
1

−L + K + 1
2 ,−L

2 + 1
2




−2

(−L+K− 1
2

)

L + 1
Γ
(
L−K +

1
2

)
3F2



−K,−L− 1

2 ,−L
2 − 1

2
1

−L + K − 1
2 ,−L

2 + 1
2


 . (35)

Next, we use Eq. (A4) from Appendix, for the parameters:



p → 3 a1 → −L
2 − 1

2
q → 2 a2 → −K
ρ → −L

2 − 1
2 b1 → −L + K + 1

2
σ → −L + K − 1

2

and, thereafter, Eq. (A5) for 2F1



−K,−L− 1

2
1

−L + K + 1
2


 . One easily

obtains C(ξα) = 0.
In the same way, one analyse the coefficients for jα, ξ2, (~j·~ξ) and

ξα(~j·~ξ) excepting the terms from Eq. (30). One obtains that they are
all zero, and thus the identity (29) is proved.

The procedure for the multipole expansion of the charge is much
simpler than that for the current. If we use the obvious identity:
ρ(~r, t) =

∫
d3ξ ρ

(
~ξ, t

)
δ(~r − ~ξ) and the formal Taylor expansion of

the delta function Eq. (26) it follows:

ρ(~r, t) =
∞∑

L=0

(−1)L

L!

(∫
d3ξ ρ

(
~ξ, t

)
ξi1 . . . ξiL

)
∂i1 . . . ∂iLδ(~r) (36)

Introducing Eq. (36) in Eq. (1), one obtains:
∞∑

L=0

(−1)L

L!

(∫
d3ξ ρ(~ξ, t)ξi1 . . . ξiL

)
∂i1 . . . ∂iLδ(~r)

=
∑

l,n

(−1)l(2l + 1)!!
2nn!l!(2l + 2n + 1)!!

r2n
i1 ...il

(t)∆n∂i1 . . . ∂ilδ(~r), (37)
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which represents another form of the equation to be proved. We change
the summation indices (l, n) → (L, n): l + 2n = L. One obtains:
∞∑

L=0

(−1)L

L!

(∫
d3ξ ρ

(
~ξ, t

)
ξi1 . . . ξiL

)
∂i1 . . . ∂iLδ(~r)

=
∞∑

L=0

[L
2 ]∑

n=0

(−1)L(2L− 4n + 1)!!
2nn!(L−2n)!(2L−2n+1)!!

r2n
i1 ...iL−2n

(t)∆n∂i1 . . . ∂iL−2nδ(~r).(38)

In the r.h.s. of Eq. (38) we replace the charge mean square radius
r2n
i1 ...iL−2n

(t) according to the definition Eq. (3). We obtain:

∞∑

L=0

(−1)L

L!

(∫
d3ξ ρ

(
~ξ, t

)
ξi1 . . . ξiL

)
∂i1 . . . ∂iLδ(~r)

=
∞∑

L=0

[L
2 ]∑

n=0

(2L− 4n + 1)
2nn!(L− 2n)!(2L− 2n + 1)!!

·
(∫

d3ξ ξ2L−2n+1ρ(~ξ, t)∂i1 . . . ∂iL−2n

1
ξ

)
∆n∂i1 . . . ∂iL−2nδ(~r). (39)

Then we transform the r.h.s. of Eq. (39) by applying the formula (A1)
from Appendix. It follows:

r.h.s. =
∞∑

L=0

[L
2 ]∑

n=0

(2L− 4n + 1)(−1)L

2nn!(L− 2n)!(2L− 2n + 1)!!
ξ2n

·


∫

d3ξρ
(
~ξ, t

)[L−2n
2

]∑

k=0

(−1)k(2L−4n−2k−1)!!ξ2kP
(
δk
iaib

ξL−2n−2k
ic

)
i1...iL−2n




·∆n∂i1 . . . ∂iL−2nδ(~r). (40)

Now we are going to make some symmetrizations by using Eq. (A2)
from Appendix:

P
(
δk
iaib

ξL−2n−2k
ic

)
i1...iL−2n

δiL−2n+1iL−2n+2 . . . δiL−1iL∂i1 . . . ∂iLδ(~r)

=
2n(L− 2n)!(n + k)!

k!L!
P

(
δk+n
iaib

ξL−2n−2k
ic

)
i1...iL

∂i1 . . . ∂iLδ(~r) (41)

Coming back to the Eq. (39), the identity we have to prove becomes:
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ξi1 . . . ξiL=
[L
2 ]∑

n=0

[L−2n
2 ]∑

k=0

(−1)k(2L−4n+1)(n+k)!(2L−4n−2k−1)!!
n!k!(2L−2n+1)!!

ξ2n+2k

·P(δn+k
iaib

ξL−2n−2k
ic

)i1...iL . (42)

This is just another form of the decomposition Eq. (1). We change the
summation indices: (n, k) → (n,K) : n+k = K, K = 0,

[
L
2

]
, n = 0, K:

ξi1 . . . ξiL =
[L
2 ]∑

K=0

K∑

n=0

(−1)K−n (2L−4n+1)K!(2L−2n−2K − 1)!!
n!(K−n)!(2L−2n+1)!!

ξ2K

·P(δK
iaib

ξL−2K
ic

)i1...iL . (43)

We can easily notice that for K = 0 it follows n = 0, and the r.h.s. of
the above equation is equal to ξi1 . . . ξiL .

Now, let K > 0. We want to show that, in this case, the r.h.s. of
Eq. (43) is zero. After some simple manipulations, one obtains:

[L
2 ]∑

K=1

K∑

n=0

(−1)K−n(2L−4n+1)K!(2L−2n−2K−1)!!
n!(K − n)!(2L− 2n + 1)!!

ξ2KP
(
δK
iaib

ξL−2K
ic

)
i1...iL

=
[L
2 ]∑

K=1

ξ2KP(δK
iaib

ξL−2K
ic

)i1...iL

[
(2L + 1)

K∑

n=0

(−1)K−n

·K!(2L− 2n− 2K − 1)!!
n!(K−n)!(2L−2n+1)!!

− 4
K∑

n=0

(−1)K−n nK!(2L−2n−2K−1)!!
n!(K−n)!(2L−2n+1)!!

]
.

The two summations with respect to n can be easily performed using
the formula (A15) from Appendix. One finds:

(2L + 1)
K∑

n=0

(−1)K−n K!(2L− 2n− 2K − 1)!!
n!(K − n)!(2L− 2n + 1)!!

=4
K∑

n=0

(−1)K−n nK!(2L−2n−2K−1)!!
n!(K−n)!(2L−2n+1)!!

=
(2L+1)(2K)!Γ

(
L−2K+ 1

2

)

2K+1K!Γ
(
L + 3

2

) .

and now, the proof of the expansion (1) is finished.
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4. CONCLUSIONS

We have established the Cartesian multipole expansions of an arbitrary
distribution of charges and currents by using two methods. The first
method starts with the formulas from [2] and consists in the use of
the properties of the spherical gradient operator and of the detracer
operator. The second method is based on some combinatorics and on
the properties of the hypergeometric functions.

The exact and compact expansions Eqs. (1), (2) allow the correct
consideration of all the multipole contributions up to an arbitrary given
order. If we explicitly write these expansions up to the second order
derivative of the delta function, we obtain:

ρ(~r, t) = r0(t)δ(~r)− r0
i (t)∂iδ(~r) +

1
2
r0
i1i2

(t)∂i1∂i2δ(~r)

+
1
6
r2(t)∆δ(~r) +O(3), (44)

ji(~r, t) = ṙ0
i (t)δ(~r)− cεii1i2ρ

0
i2

(t)∂i1δ(~r)−
1
2

˙
r0
ii1

(t)∂i1δ(~r)

−1
6
ṙ2(t)∂iδ(~r) +

c

6
εii1i2ρ

0
i2 i3

(t)∂i1∂i3δ(~r)

+
1
6
ṙ0
i i1i2

(t)∂i1∂i2δ(~r) + cεii1i2εi2i3i4R
0
i4

(t)∂i1∂i3δ(~r)

+
1
10

˙
r2
i1

(t)∂i∂i1δ(~r) +O(3), (45)

where: r0(t) =
∫

d3ξρ(~ξ, t) is the total charge, r2(t) =
∫

d3ξξ2ρ(~ξ, t) is
the first mean square radius of the total charge, r0

i (t) =
∫

d3ξξiρ(~ξ, t)
is the charge dipole, r2

i (t) =
∫

d3ξξ2ξiρ(~ξ, t) is the first mean square
radius of the charge dipole, r0

i1i2
(t) =

∫
d3ξ(ξi1ξi2 − 1

3δi1i2ξ
2)ρ(~ξ, t)

is the charge quadrupole, r0
i1 i2i3

(t) =
∫

d3ξ[ξi1ξi2ξi3 − 1
5ξ2(ξi1δi2i3 +

ξi2δi1i3 + ξi3δi1i2)]ρ(~ξ, t) is the charge octupole, ρ0
i (t) = 1

2c

∫
d3ξ(~j× ~ξ)i

is the magnetic dipole, ρ0
i1i2

(t) = 1
c

∫
d3ξ[(~j × ~ξ)i1ξi2 + (~j × ~ξ)i2ξi1 ]

is the magnetic quadrupole, R0
i (t) = 1

10c

∫
d3ξ[ξi(~ξ · ~j) − 2ξ2ji] is the

toroid dipole, εijk is the Levi-Civita symbol and overdot means time
derivative. If we go further on with the current density expansion up
two the third order derivative of the delta function, we find that the
following multipoles appear on the same footing: first mean square
radius of the magnetic dipole, toroid quadrupole, magnetic octupole,
charge hexadecapole, first mean square radius of the charge quadrupole
and second mean square radius of the total charge.
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From Eqs. (44), (45) and (24) one can easily obtain the first
multipolar terms of the electromagnetic field. A detailed study
of the electromagnetic field thus obtained as compared with the
electromagnetic field given in the usual textbooks (e.g., [12, 13]) can be
found in [7], Section VII+. Here we only mention that, the toroid dipole
contribution to the radiation was found to be on the same footing with
other “usual” magnetic , electric or interference contributions.
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APPENDIX A. USEFUL FORMULAS

• The following formulas can be found in [11, 14]:

∂i1 . . . ∂il

1
r

=
(−1)l

r2l+1

[ l
2 ]∑

k=0

(−1)k(2l − 2k − 1)!!r2kP (
δi1i2 . . . δi2k−1i2k

ri2k+1
. . . ril

)

≡ (−1)l

r2l+1

[ l
2 ]∑

k=0

(−1)k(2l − 2k − 1)!!r2kP
(
δk
iaib

rl−2k
ic

)
i1...il

(A1)

where P means all the permutations of the indices i1 . . . il which
give distinct terms.

P (
δκ
iaib

rn−2κ
ic

)
i1...in

has
n!

2κ(n− 2κ)!κ!
terms. (A2)

This number represents the number of ways of selecting κ distinct
pair of objects from n distinct objects.

• We have used the following properties of the hypergeometric
functions [15]:

3F2

(
a, b, c

1
d, e

)
=

Γ(d)Γ(e)Γ(1− a)Γ(c− b)
Γ(d− b)Γ(e− b)Γ(1 + b− a)Γ(c)

· 3F2

(
b, 1 + b− d, 1 + b− e

1
1 + b− a, 1 + b− c

)

+ We remember that in [7], there exist some different conventions in the definition of the
first Cartesian multipoles, as we have noted at the end of Section 2.
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+
Γ(d)Γ(e)Γ(1− a)Γ(b− c)

Γ(d− c)Γ(e− c)Γ(1 + c− a)Γ(b)

· 3F2

(
c, 1 + c− d, 1 + c− e

1
1 + c− a, 1 + c− b

)
(A3)

σ pFq

( (ap−1), ρ
z

(bq−1), σ

)
− ρ pFq

( (ap−1), ρ + 1
z

(bq−1), σ + 1

)

= (σ − ρ) pFq

( (ap−1), ρ
z

(bq−1), σ + 1

)
(A4)

2F1

( −n, b
1

c,

)
=

(c− b)n

(c)n
(A5)

q∏

j=1

bj

[
pFq

( (ap−1), σ
z

(bq)

)
−p Fq

( (ap−1), σ + 1
z

(bq)

)]

+z

p−1∏

j=1

aj pFq

( (ap−1) + 1, σ + 1
z

(bq) + 1

)
= 0. (A6)

and the the following properties of the Pochhammer symbols [15]:

(a)k ≡ a(a + 1)(a + 2) . . . (a + k − 1) =
Γ(a + k)

Γ(a)
, (A7)

(
a
k

)
= (−1)k (−a)k

k!
(A8)

(a + m)k =
(a)k(a + k)m

(a)m
(A9)

(1)n = n! (A10)
(a)n+k = (a)n(a + n)k (A11)

(a)n−k =
(−1)k(a)n

(1− a− n)k
(A12)

(2n− 1)!! =
2n

√
π

Γ
(

n +
1
2

)
Γ(1− a− k) = (−1)k Γ(1− a)

(a)k
(A13)

Γ(a + k) = Γ(a)(a)k Γ(z)Γ(1− z) =
π

sin(πz)
(A14)
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• We have used in Section 3 the following summation formula:
∑

k

1
1− ck

(
a
k

)(
b

n− k

)

=





=
(

a + b
n

)
, c = 0 (V andermonde)

= (−1)n(−b)n

n! 3F2




−n,−a,−1
c

1
1 + b− n, 1− 1

c


 , c 6= 0

(A15)

The first part of Eq. (A15) is well known as Vandermonde’s
identity or Vandermonde’s convolution. We shall prove here the
second part (c 6= 0):

S ≡
∑

k

1
1− ck

(
a
k

)(
b

n− k

)
(A8)
=

= −1
c

∑

k

(−1)n

k − 1
c

(−a)k

k!
(−b)n−k

(n− k)!
(A9)
=

=
∑

k

(−1)n(−1
c )k

(1− 1
c )k

(−a)k

k!
(−b)n−k

(n− k)!
(A10), (A12)

=

=
(−1)n(−b)n

n!

∑

k

(−n)k(−a)k(−1
c )k

(1 + b− n)k(1− 1
c )kk!

=

=
(−1)n(−b)n

n! 3F2




−n,−a,−1
c

1
1 + b− n, 1− 1

c


 .
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