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Abstract—Recently, many numerical methods that are developed
for the solution of electromagnetic problems have greatly benefited
from the hardware accelerated scientific computing capability provided
by graphics processing units (GPUs) and orders of magnitude
speed-up factors have been reported. Among these methods, the
finite-difference frequency-domain (FDFD) method as well can be
accelerated substantially by utilizing an efficient algorithm customized
for GPU computing. In this contribution, an algorithm is presented
that treats iterative solution of the FDFD linear equation system
similar to solution of three-dimensional Finite-Difference Time-
Domain (FDTD) method, which inherently yields itself to high level
parallelization. The presented algorithm uses BICGSTAB iterative
solver. Integrated with BICGSTAB, an efficient method of performing
matrix-vector products for the linear system of FDFD equations is
adapted and implemented in Compute Unified Device Architecture
(CUDA). It is shown that FDFD can be solved with a speed-up factor
of more than 20 on a GPU compared with the solution on a central
processing unit (CPU), while memory usage as well can be reduced
substantially with the presented algorithm.

1. INTRODUCTION

Recently, it has been realized that graphics processing units (GPUs)
can be used not only for acceleration of graphics computations, but
acceleration of scientific computations as well. Though GPU processors
are built to perform simpler tasks compared with central processing
unit (CPU) processors, having a large number of GPU processors on
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a graphics card gives it a huge computation power. If an algorithm
involves data parallel computations, i.e., the same instructions are
applied to a large set of data, the algorithm can be implemented to
run faster on a GPU card. Graphics card vendors have been improving
their hardware architectures to further address the needs of scientific
computations, thus promoting GPU based computation cards as the
new-generation computation platforms.

Developments in GPU hardware have been accompanied by
introduction of software platforms to facilitate programming for GPU
cards. OpenGL, Brook, and High Level Shader Language (HLSL)
were the programming languages available previously to develop codes
to run on GPUs; however, they are outdated by the introduction
of new software development environments such as Compute Unified
Device Architecture (CUDA), Open Computing Language (OpenCL),
and DirectCompute. These new languages are developed to facilitate
the use of new-generation graphics cards and let the programmers focus
on the task of parallelization of their algorithms rather than spending
time on dealing with the intrinsics of underlying GPU hardware.

Recently, introduction of CUDA by Nvidia caused a major shift
toward use of GPU cards in scientific computing. CUDA can be run
only on CUDA enabled Nvidia cards, which is a major disadvantage,
however, extensive support from Nvidia and accumulated knowledge
within the programming community is expected to keep CUDA as one
of the main programming platforms in the near future besides the
other more general application programming interfaces (APIs) such as
OpenCL.

CUDA has been extensively used to develop GPU accelerated
electromagnetic simulation codes. Finite-difference time-domain
(FDTD) method is one of the methods that has benefited from GPU
computing the most since it is a data parallel algorithm. While
implementations of FDTD using CUDA have been reported in several
publications, [1–4] are among those that discuss details on development
of efficient FDTD codes and can be used as guidelines by developers.
Similarly, MoM and FEM also have been implemented to run on GPU
and several reports have been published to demonstrate effectiveness
of GPU computations of these methods. All these publications report
significant speed-up factors. For instance, [5] reports a speed-up factor
of about 20 in FEM, [6] reports a speed-up factor of 17 in MoM,
while [3] reports a factor of about 30 in FDTD, when GPU codes
are compared with CPU codes. It should also be noted that these
numbers of speed-up factors may not be directly comparable with each
other since several factors, such as types of problems involved, types of
GPU and CPU architectures, single or double precision computations,
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etc., will affect the speed-up factors. However, it can be claimed
that the FDTD method has been the method benefiting from GPU
computations the most since it inherently yields itself to parallelization,
unlike other frequency-domain methods which require solution of large-
scale matrix equations that require more elaborate work to solve using
parallel processing.

If transient results or wideband results are sought in the solution
of an electromagnetic problem, a time-domain method, such as
FDTD, can be used. Time domain methods may not be preferable
for some types of problems. For example, time-domain methods
are computationally expensive for modeling dispersive materials, or
computations take very long time for highly resonant structures. If
results at a single frequency or a small number of frequencies is sought,
a frequency domain method may be preferred depending on the type of
the problem geometry. For instance, finite-difference frequency-domain
(FDFD) might be preferred for a highly inhomogeneous, dispersive, or
highly resonant geometry.

FDFD has been receiving attention as an alternative electromag-
netic solution method for various types of problems. Besides being
used for solution of regular problems, for instance, FDFD has been
used as the solver in iterative multi region (IMR) for the solution of
large-scale problems in [7–9], while it has been used to model chiral
materials in [10, 11]. FDFD requires iterative solution of a very large
sparse linear equation system, which is usually very inefficient. Solu-
tion of FDFD as well can significantly benefit from GPU acceleration.

So far, the only contribution published in the literature on GPU
acceleration of FDFD equations is the one by Zainud-Deen et al. [12],
where Brook is used to implement the FDFD code. While solving large
sparse matrix equations, customarily only the non-zero coefficients of
a matrix would be stored along with the coordinates of the coefficients
in the matrix. In [12], a similar coordinate format storage scheme is
used, and the respective calculations are based on this storage scheme.

It should be noted that a good choice of the storage scheme
is an important factor for achieving an efficient solution. For
instance, [13] presents the effective use of two matrix storage schemes,
Compressed Sparse Row (CSR) and Hybrid (HYB) Ellpack Coordinate
formats, for the solution of MoM equations on GPU using CUDA.

It has been shown in [14] that the coefficients that describe FDFD
equations can be stored in three-dimensional arrays, similar to the
updating coefficients of the FDTD method, and an algorithm based
on this scheme can improve the efficiency of FDFD solution both in
terms of computation time and memory usage. Moreover, this scheme
presented in [14] inherently lends itself to high level of parallelism,
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similar to FDTD method, on a GPU architecture. In the current
contribution, we show that the speed of FDFD calculations can further
be improved on a GPU by using the algorithm presented in [14].

Section 2 presents the FDFD formulation considered in this
contribution. Section 3 summarizes the algorithm that is presented
in [14] and adopted here for CUDA implementation. Section 4 presents
the CUDA implementation of iterative FDFD solution. Section 5
illustrates the speed-up factors achieved by the presented algorithm.

2. FDFD FORMULATION

FDFD formulation is based on Maxwell’s curl equations expressed in
frequency domain

∇× Ētotal = −jωµH̄total, (1)
∇× H̄total = jωεĒtotal, (2)

where Ētotal and H̄total are the electric and magnetic fields, and ε and
µ are permittivity and permeability parameters. The time harmonic
convention used in (1) and (2) is ejωt. Scattered field formulation [15]
can be used for scattering problems, where the total fields (Ētotal and
H̄total) are sum of incident fields (Ēinc and H̄inc) and scattered fields
(Ēscat and H̄scat). Incident fields are the fields that propagate in free
space in which no scatterers exist, thus they satisfy Maxwell’s equations
in free space, and they excite the problem space in consideration. After
some manipulations (1) and (2) can be written in terms of incident and
scattered fields as

H̄scat = − 1
jωµ

∇× Ēscat +
µ0 − µ

µ
H̄inc, (3)

Ēscat =
1

jωε
∇× H̄scat − ε0 − ε

ε
Ēinc, (4)

where ε0 and µ0 are free space permittivity and permeability
parameters. Equations (3) and (4) are vector equations, and they
can be expressed in terms of six scalar equations imposed on Cartesian
coordinate system. For instance, one of these equations is

Hscat,x =
1

jωµx

∂Escat,y

∂z
− 1

jωµx

∂Escat,z

∂y
+

µ0 − µx

µx
Hinc,x, (5)

At this point, these equations can be slightly modified to account for
perfectly matched layer (PML) [16] absorbing boundary conditions as
shown in [7] or [12]. Since only the material parameters ε and µ are
slightly modified, the form of equations will stay the same. Therefore,
to keep the following discussions simple, the PML-related modifications
will be omitted in the following equations.
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The partial differential equations (PDEs) as (5) can be imposed
on a grid composed of Yee cells [17] on which electric and magnetic
field components are specified at discrete spatial positions. Yee cells
are used as the basis of FDTD method as well, therefore, the same
type of geometrical modeling can be done in FDFD as in FDTD. As
will be discussed later, the same type of spatial dependence of fields
between FDTD and FDFD will allow us to develop a very similar type
of GPU acceleration code for FDFD as in FDTD.

Expressing equations as (5) on a discrete Yee grid using central
difference approximation to partial derivatives yields

Hscat,x(i, j, k)− 1
jωµx(i, j, k)∆z

Escat,y(i, j, k + 1)

+
1

jωµx(i, j, k)∆z
Escat,y(i, j, k) +

1
jωµx(i, j, k)∆y

Escat,z(i, j + 1, k)

− 1
jωµx(i, j, k)∆y

Escat,z(i, j, k) =
µ0 − µx(i, j, k)

µx(i, j, k)
Hinc,x(i, j, k), (6)

Hscat,y(i, j, k)− 1
jωµy(i, j, k)∆x

Escat,z(i + 1, j, k)

+
1

jωµy(i, j, k)∆x
Escat,z(i, j, k) +

1
jωµy(i, j, k)∆z

Escat,x(i, j, k + 1)

− 1
jωµy(i, j, k)∆z

Escat,x(i, j, k) =
µ0 − µy(i, j, k)

µy(i, j, k)
Hinc,y(i, j, k), (7)

Hscat,z(i, j, k)− 1
jωµz(i, j, k)∆y

Escat,x(i, j + 1, k)

+
1

jωµz(i, j, k)∆y
Escat,x(i, j, k) +

1
jωµz(i, j, k)∆x

Escat,y(i + 1, j, k)

− 1
jωµz(i, j, k)∆x

Escat,y(i, j, k) =
µ0 − µz(i, j, k)

µz(i, j, k)
Hinc,z(i, j, k), (8)

Escat,x(i, j, k) +
1

jωεx(i, j, k)∆z
Hscat,y(i, j, k)

− 1
jωεx(i, j, k)∆z

Hscat,y(i, j, k − 1)− 1
jωεx(i, j, k)∆y

Hscat,z(i, j, k)

+
1

jωεx(i, j, k)∆y
Hscat,z(i, j − 1, k) =

ε0 − εx(i, j, k)
εx(i, j, k)

Einc,x(i, j, k), (9)
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Escat,y(i, j, k) +
1

jωεy(i, j, k)∆x
Hscat,z(i, j, k)

− 1
jωεy(i, j, k)∆x

Hscat,z(i− 1, j, k)− 1
jωεy(i, j, k)∆z

Hscat,x(i, j, k)

+
1

jωεy(i, j, k)∆z
Hscat,x(i, j, k − 1) =

ε0 − εy(i, j, k)
εy(i, j, k)

Einc,y(i, j, k), (10)

Escat,z(i, j, k) +
1

jωεz(i, j, k)∆y
Hscat,x(i, j, k)

− 1
jωεz(i, j, k)∆y

Hscat,x(i, j − 1, k)− 1
jωεz(i, j, k)∆x

Hscat,y(i, j, k)

+
1

jωεz(i, j, k)∆x
Hscat,y(i− 1, j, k) =

ε0 − εz(i, j, k)
εz(i, j, k)

Einc,z(i, j, k). (11)

In (6)–(11) scattered field components on the left-hand sides are the
unknowns to be computed, while the right-hand sides include the
excitations. At this point, (6)–(11) can be used to construct a linear
set of equations, such as

Ax = y, (12)

where A is a coefficient matrix, x is a vector including all scattered
electric and magnetic field components, while y is the excitation
vector. If a three-dimensional computational domain is composed of,
for instance, N cells, the vectors x and y will be of size 6N , while
matrix A will be of size 6N ×6N , since both the electric and magnetic
field components are the unknowns.

It is possible to obtain Hscat,x, Hscat,y, and Hscat,z from (6)–(8) and
use them in (9)–(11) to obtain three equations in which Escat,x, Escat,y,
and Escat,z are the only unknowns. Such equations are shown in [7]
(Equations (2.27), (2.28), and (2.29)). Using these reduced equations,
a matrix equation as (12) can be obtained, where the vectors x and
y will be of size 3N , while matrix A will be of size 3N × 3N for a
computational domain of N cells.

Here it should be noted that the coefficient matrix A is highly
sparse and it includes only 13 nonzero coefficients per row as shown
in [7]. Since A is highly sparse, it is sufficient to store only its nonzero
components on computer memory while processing it in a program.
Special storage schemes are used to store such sparse matrices, details
of which are discussed in [18]. For instance, [7] uses a scheme referred
to as coordinate format, in which the data structure consists of three
arrays: (1) an array containing all the complex values of the nonzero
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elements of A; (2) an integer array containing their row indices;
and (3) a second integer array containing their column indices. All
three arrays are of length 39N . It should be noted that [12] uses
the coordinate format storage scheme with two arrays: (1) an array
containing the values of the nonzero elements; and (2) an integer array
containing their column indices. Each of these arrays are of size 39N .
Since it is already known that each row contains 13 elements, there
is no need to store row indices. Although two other sparse storage
schemes, named as compressed sparse row (CSR) format and modified
sparse row (MSR) format, are available and slightly more efficient, the
memory requirement is still very high for the storage of A. We discuss
a storage scheme presented in [14] that stores the coefficients in three-
dimensional arrays, which leads to improved efficiency in computation
time and memory usage in the next section.

3. AN ALGORITHM FOR EFFICIENT SOLUTION OF
FDFD

The solution of large sparse systems is very costly, if not impossible,
in terms of computer time and memory if direct linear system
solution methods (i.e., Gaussian elimination, LU decomposition, etc.)
are used. These large systems can often be solved only by using
iterative methods. There are several iterative techniques proposed for
solving linear systems [18, 19]. Among these techniques, Generalized
Minimal Residual (GMRES) method [20] and Biconjugate Gradients
Stabilized (BICGSTAB) [21, 22] method are the most commonly used
for numerical solution of Maxwell’s equations [14].

It is widely recognized that preconditioning is the most critical
ingredient in the development of efficient solvers for challenging
problems in scientific computation, and that the importance of
preconditioning is destined to increase even further [30]. A well-chosen
preconditioner can significantly improve the efficiency of an iterative
solver. The current contribution addresses the GPU acceleration of
FDFD, where the BICGSTAB algorithm is utilized. One should
consider finding and using an efficient preconditioner as well to further
accelerate the computations both on the CPU and GPU platforms.

An iterative solver starts with an initial guess x0 and minimizes
the residual r = y − Axk = y − y′ as the iterations proceed, where xk

is the solution at the kth iteration. As the residual minimizes the xk

converges to the solution x. This process requires a multiplication of
A by xk to produce the next residual [14]. The matrix-vector product
Axk is the most time consuming stage in the iterative procedure. As
discussed in Section 2, generally one of the sparse matrix storage
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schemes is used to store A and the operation Axk is performed in a
function, usually referred to as matvec, that is based on the employed
scheme. However, it is not necessary to employ one of these storage
schemes mentioned above; one can develop an alternative storage
scheme and develop an algorithm based on this new scheme. Then a
matvec function that computes y′ = Axk based on this new algorithm
and returns the result to the iterative solver can be implemented. Such
an algorithm to improve the efficiency of Axk stage is proposed in [14].
A summary of this algorithm is provided next.

3.1. Storage of Coefficients in Three-Dimensional Arrays

One can notice that (6)–(8) can be cast in a form as

xe + Aexh = ye, (13)

whereas (9)–(11) can be given as

xh + Ahxe = yh, (14)

where Ae and Ah are coefficient matrices, xe and xh are vectors of
electric and magnetic field components, respectively, and ye and yh are
excitation vectors. One can use xh from (14) in (13) and obtain

xe −AeAhxe = ye −Aeyh, (15)

which is equivalent to (12). For a given xk, y′ = Axk can be performed
in multiple steps using (15) such that

xt = Ahxk, xt = Aext, y′ = xk − xt, (16)

where xt is a vector used to store intermediate results. The advantage
of this scheme is that instead of using a matrix A with 39N nonzero
coefficients, we use two matrices, Ae and Ah, each with 12N (3
fields × 4 nonzero coefficients per row ×N cells) nonzero coefficients.
This implies a reduction in storage of coefficients from 39N to 24N .
Examining (6)–(11) one can notice that we have coefficient pairs in
which the pairs are different only by their signs. For instance, (6) can
be expressed as

Hscat,x(i, j, k)− Chxey(i, j, k)(Escat,y(i, j, k + 1)− Escat,y(i, j, k))

+Chxez(i, j, k)(Escat,z(i, j + 1, k)−Escat,z(i, j, k))

=
µ0 − µx(i, j, k)

µx(i, j, k)
Hinc,x(i, j, k), (17)
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which implies that the coefficient storage requirements can further be
reduced by half, and we need to store only 12N coefficients. This is
done by storing the coefficients, such as Chxey(i, j, k) and Chxez(i, j, k),
as three-dimensional arrays each with size Nx×Ny×Nz, where Nx, Ny,
and Nz are the numbers of cells in x, y, and z directions, respectively.
Thus, the total number of cells becomes N = Nx×Ny×Nz. This way
of coefficient storage also eliminates the need for integer arrays that
contain row and column indices discussed in Section 2. It has been
shown in [14] that the required amount of computer memory to store
coefficients can be reduced by 80%. To comply with the presented
scheme, the unknown vector x is stored as well as a three-dimensional
array with size Nx ×Ny × 3Nz. The dimension in the z direction is 3
times Nz, since first section stores Escat,x, second section stores Escat,y,
and the third section stores Escat,z. Fig. 1 shows this storage scheme
and how field indices in three-dimensional space relate to field indices
in the x vector.

Another advantage with this scheme is that, when storing the
parameters in arrays we can directly do array operations, i.e., element-
wise addition, multiplication, etc., which can be easily optimized for
speed by compilers. It is shown in [14] that FDFD solution can be
achieved 30% faster with the presented algorithm. The presented
storage scheme will be referred to as coefficient arrays storage in the
subsequent sections.

Ex(i,j,k) =

x[(i 1)+(j 1)*nx+(k 1)*nxy]

Ey(i,j,k) =

x[(i 1)+(j 1)*nx+(k 1)*nxy+nxyz]

Ez(i,j,k) =

x[(i 1)+(j 1)*nx+(k 1)*nxy

+ 2*nxyz]

Ex(1,1,1) = x[0]

E y(1,1,1) = x[nxyz]

Ez(1,1,1) = x[2*nxyz]

x
y

z

− − −

− − −

− − −

Figure 1. Field indices mapping from three-dimensional space to
x vector. All fields are scattered electric fields. Domain size is N =
Nx×Ny×Nz cells. Here nxy = Nx×Ny and nxyz = Nx×Ny×Nz.
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Presented algorithm can particularly benefit for efficiency of
computations on GPU for two main reasons. (1) Storing the data
as three-dimensional arrays naturally represents a three-dimensional
space and converts FDFD to a data-parallel algorithm. (2) As will be
discussed later, one major bottleneck in efficiency of computations on
a GPU is data transfers from and to GPU global memory. Using less
number of coefficients means less data transfer from the GPU global
memory, and higher efficiency.

3.2. Coefficient Indices Storage Scheme

In this section, we present another improvement on the coefficient
arrays storage scheme that utilizes the additional cached memory
spaces available on CUDA enabled GPU and further reduces the data
storage on GPU global memory and data transfers from the GPU
memory. This scheme further reduces the memory requirements and
speeds up the calculations.

The coefficient arrays storage scheme can handle solution of
highly inhomogeneous problems even in which every single coefficient
associated with the field components in the Yee grid is different from
the others in value. If there are a small number of unique values
of coefficients, it is better to store these unique values in a separate
small size coefficient array, and store the indices of these coefficients in
indices arrays associated with field components (or in other terms the
edge components) in the Yee grid.

Since two coefficient values are needed per field component, as
in (17), unique combination of coefficient pairs needs to be stored
instead of single coefficient values. Then the indices to these coefficient
pairs need to be stored in 6 arrays, each with size N , where each index
is type ‘unsigned short’ of size 2 bytes. The total storage requirement
for indices becomes 12N bytes. This storage scheme is refereed to as
coefficient indices storage in this contribution.

In the coefficient arrays storage scheme, we need to store 12N
coefficients, where each coefficient is type ‘cuDoubleComplex’ of size 16
bytes. These numbers indicate that coefficient indices storage scheme
requires 1/16 the memory space compared with the coefficient arrays
storage scheme. The smaller size indices arrays lead to less data
transfer from the GPU global memory during the computations on
GPU, thus lead to higher efficiency. This kind of coefficient indices
storage scheme is often employed in CUDA implementations of FDTD
as well.

The next section presents the CUDA implementation of the
FDFD solution based on, first, the coefficient arrays and, second, the
coefficient indices storage schemes.
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4. IMPLEMENTATION OF FDFD USING CUDA

4.1. CUDA Concepts

In this section, a brief description of some concepts in CUDA is
summarized from [23] in order to prepare the reader for the discussions
that follow.

To program using CUDA the programmer defines C functions,
called kernels, that, when called, are executed N times in parallel by
N different CUDA threads. Each of the threads that executes a kernel
is given a unique thread ID that is accessible within the kernel through
the built-in threadIdx variable. In CUDA, a number of threads form
a thread block. A kernel function can be executed by multiple equally-
shaped thread blocks, so that the total number of threads is equal to
the number of threads per block times the number of blocks. Then
a number of thread blocks are organized to form a grid of thread
blocks. Each block within the grid can be identified by an index
accessible within the kernel through the built-in blockIdx variable. The
dimension of the thread block is accessible within the kernel through
the built-in blockDim variable.

CUDA threads may access data from multiple memory spaces
during their execution. Each thread has a private local memory and
a shared memory visible to all threads of the block and with the same
lifetime as the block. Finally, all threads have access to the same global
memory. Global memory is the main memory space on the device to
store the application data. However, data access to global memory
is very slow and that inefficiency becomes the main bottleneck in the
execution of a kernel. On the other hand, the shared memory is much
faster to access but the size of the shared memory is very limited.
However, though very limited in size, the shared memory can provide
the means for data reuse and improve the efficiency of a kernel.

4.2. Thread to Cell Mapping

The presented FDFD algorithm in Section 3 uses three-dimensional
arrays that provide direct mapping between the coefficients that are
used to calculate field components and the cells in which these field
components exist. This scheme maximizes data parallelization and
lets one-to-one mapping between cells and the CUDA threads that
process the data in these cells. One can construct a grid of thread
blocks in which each block consists of a number of threads such that
the total number of cells is equal to the total number of threads in the
grid. However, a different approach is followed in this contribution:
instead of mapping threads in a grid to cells in a three-dimensional
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computational domain, threads in a grid are mapped to cells in an xy
plane cut of the computational domain. Then, each thread is used
to process all other cells in the same column by iterating the cells in
the z direction, thus the entire FDFD domain is covered. As will be
illustrated later, this algorithm helps for global memory reuse, which
improves efficiency. This scheme of thread-to-cell mapping is used and
illustrated in [2] for a CUDA implementation of FDTD method, and
it is referred to as xy-mapping.

4.3. Coalesced Global Memory Access

In CUDA, when accessing global memory, there are 400 to 600
clock cycles of memory latency [23]. If a code is dominated by
memory accesses rather than arithmetic instructions the memory
access inefficiency becomes the bottle-neck for the efficiency of a
program on GPU. Global memory bandwidth is used most efficiently
when the simultaneous memory accesses by threads in a half-warp
(during the execution of a single read or write instruction) can be
coalesced into a single memory transaction of 32, 64, or 128 bytes [23].

The three-dimensional field and coefficient arrays are actually
stored as one-dimensional arrays on computer memory, and they are
accessed as one-dimensional arrays in kernel functions. It should be
noted that the base code of FDFD considered in this contribution is
implemented in FORTRAN. In FORTRAN, the first array index varies
most rapidly in multi-dimensional arrays, i.e., for an array of A (i, j, k),
i index varies most rapidly, then j, and then k, as illustrated in Fig. 1.
This ordering is retained after the arrays are transferred to GPU. The
size of the three-dimensional arrays is the same as the size of the FDFD
domain in number of cells. If the size of the FDFD domain in the x
and y directions is multiple of 16, then the coalesced memory access is
ensured [2]. If a problem space is composed of Nx×Ny×Nz cells and Nx

or Ny is not a multiple of 16, then the computational domain is enlarged
in the respective direction to have the number of cells as a multiple
of 16. Since the problem space is terminated by PML, expansion in
domain size will only move the PML away from the scattering objects
in the problem space, which will not affect the solution.

Once it is ensured that Nx and Ny are multiples of 16, then thread
blocks of size 256 can be used to map threads in a grid to cells in an
xy plane cut using the xy mapping scheme.

4.4. BICGSTAB Using CUDA

The iterative solver used to solve the presented FDFD equations is the
“vanilla” version of BICGSTAB [22]. A FORTRAN implementation
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of BICGSTAB, developed by Botchev and Fokkema, is obtained from
the authors’ website [24]. This FORTRAN code is first converted
to a C code so that it can be modified and transformed into a
CUDA implementation. The BICGSTAB code includes several array
instructions, i.e., element-wise multiplication and addition of arrays.
These operations are the time-consuming parts of the BICGSTAB, so
they are ported to run on GPU using CUDA. To facilitate this all
arrays, including coefficient, field, and temporary arrays, are copied to
GPU global memory. Many of these array instructions are available
in Basic Linear Algebra Subprograms (BLAS) [25] libraries. At this
point, cuBlas, a BLAS library ported to CUDA, is utilized and cuBlas
functions are called in the developed C version of the BICGSTAB
where applicable.

4.5. Matrix-vector Product Using CUDA: Coefficient
Arrays Storage Scheme

As mentioned earlier, calculation of y′ = Axk is the stage which takes
the most significant computation time during the iterative solution.
Kernel functions based on the algorithm presented in Section 3 are
developed to speed-up the calculations on GPU. Listing 1 shows a C
function that initializes and launches these kernel functions. Here the
arrays that reside on GPU global memory are indicated with a dv
prefix. The function cuda matvec basically calculates y for a given x.
Here, the pointers to the arrays that reside on GPU global memory
are indicated with a dv prefix. The pointers to coefficient arrays are
indicated with a dvC prefix. The first three kernels perform the first
line of (16), whereas the following three kernels perform the second
and third lines of (16). In other terms, the first three kernels perform
operations associated with (6)–(8), respectively, while the following
three kernels perform operations associated with (9)–(11).

Listing 2 shows the details of the second kernel, which is associated
with the operation in (7) based on the coefficient arrays storage scheme,
where all three-dimensional coefficient arrays are copied to the global
memory before the iterative solution is performed. Due to (16), the
required operation of (7) translates to
tmpy(i, j, k) = Chyez(i, j, k)(−Escat,z(i + 1, j, k) + Escat,z(i, j, k))

+Chyex(i, j, k)(Escat,x(i, j, k+1)−Escat,x(i, j, k)). (18)
In Listing 2, first the index of the cell in an xy plane cut that maps

to the active thread is calculated and stored as ci. Then an index k
is used to iterate in a for loop. While k iterates in the z direction, an
index i traverses all the cells in the column of cell ci. As i proceeds,
the respective value of array tmpy[i] is calculated as required by (18).
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Listing 1. Launching kernels for y′ = Axk.

void cuda matvec (double2 ∗ dvx, double2 ∗ dvy)

{
int number of threads = 256;

int number of blocks = nx ∗ ny/number of threads;

dim3 threads = dim3 (number of threads, 1, 1);

dim3 grid = dim3 (number of blocks, 1, 1);

cuda matvec tmpx kernel <<< grid, threads >>>

(dvx, dvy, dvtmpx, dvChxey, dvChxez, nx, ny, nz);

cuda matvec tmpy kernel <<< grid, threads >>>

(dvx, dvy, dvtmpy, dvChyex, dvChyez, nx, ny, nz);

cuda matvec tmpz kernel <<< grid, threads >>>

(dvx, dvy, dvtmpz, dvChzey, dvChzex, nx, ny, nz);

cuda matvec yex kernel <<< grid, threads >>>

(dvx, dvy, dvtmpx, dvtmpy, dvtmpz, dvCexhy, dvCexhz, nx, ny, nz);

cuda matvec yey kernel <<< grid, threads >>>

(dvx, dvy, dvtmpx, dvtmpy, dvtmpz, dvCeyhx, dvCeyhz, nx, ny, nz);

cuda matvec yez kernel <<< grid, threads >>>

(dvx, dvy, dvtmpx, dvtmpy, dvtmpz, dvCezhy, dvCezhx, nx, ny, nz);

}

In (18) one can notice that Escat,x(i, j, k) and Escat,x(i, j, k + 1)
are used together. Therefore, both values will be fetched from the
global memory during an iteration of k. At the next iteration of k,
the previous value of Escat,x (i, j, k + 1) becomes the new value of
Escat,x (i, j, k), and it is already available in the local memory, so there
is no need to fetch it again from the global memory. Thus, this iterative
procedure saves a global memory fetch and slightly improves the speed
of the calculations.

In (18) Escat,z is first copied into shared memory that is indicated
with a pointer S. Here Escat,z (i, j, k) and Escat,z (i + 1, j, k) are
needed together. When the threads in a thread block fetch respective
elements of Escat,z (i, j, k) from global memory, the next element
Escat,z (i + 1, j, k) on the boundary of the thread block will not be
available to use yet. Therefore, another fetch, controlled by if (ti < 16)
statement, from global memory is made and the data is copied into the
shared memory. Once all data are available on the shared memory, the
respective instructions afterwards are performed. Other kernels are
implemented similarly. This type of implementation is very similar to
that of FDTD discussed in [2].
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Listing 2. Second kernel in Listing 1.

−−global−− void cuda matvec tmpy kernel

(cuDoubleComplex ∗ x, cuDoubleComplex ∗ y, cuDoubleComplex ∗ tmpy,

cuDoubleComplex ∗ chyex, cuDoubleComplex ∗ chyez, intnx, intny, intnz)

{
−−shared−− cuDoubleComplex S[256 + 16];

int ti = threadIdx.x; int ci = blockIdx.x ∗ blockDim.x + threadIdx.x;

int i, k; intnxy = nx ∗ ny; intnxyz = nxy ∗ nz;

cuDoubleComplex ∗ ex = x; cuDoubleComplex ∗ ey = &x[nxyz];

cuDoubleComplex ∗ ez = &x[2 ∗ nxyz];

double2 a, b, c, exi, exi p; i = ci; exi = ex[i];

for (k = 0; k < nz − 1; k + +)

{
exi p = ex[i + nxy]; S[ti] = ez[i];

if (ti < 16)

{
S[ti + blockDim.x] = ez[i + blockDim.x];

}
−−syncthreads();

a.x = exip.x− exi.x; a.y = exip.y − exi.y;

b.x = S[ti].x− S[ti + 1].x; b.y = S[ti].y − S[ti + 1].y;

−−syncthreads();

c.x = chyex[i].x ∗ a.x− chyex[i].y ∗ a.y +chyez[i].x ∗ b.x− chyez[i].y ∗ b.y;

c.y = chyex[i].x ∗ a.y + chyex[i].y ∗ a.x +chyez[i].x ∗ b.y + chyez[i].y ∗ b.x;

tmpy[i] = c; exi = exi p; i = i + nxy;

}
}

4.6. Matrix-vector Product Using CUDA: Coefficient
Indices Storage Scheme

As discussed before, employing the coefficient indices scheme reduces
the required memory on the global memory space of GPU; Instead of
storing the coefficients, one can store the indices to coefficient pairs on
the global memory. Moreover, unique coefficient pairs as well need to
be copied to the GPU memory. The arrays that store each of the unique
coefficient pairs are not suitable for coalesced memory access, thus it is
inefficient to store them on the global memory. Instead, CUDA enabled
GPU devices provide two additional memory spaces, the texture and
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constant memory, which are cached to enable fast access to unordered
data. However, the sizes of these memory spaces are small. As long
as the unique coefficient pair arrays can fit in the limited size of these
memory spaces, the coefficient indices storage scheme can be used.

The coefficients used in this contribution are with double precision.
CUDA does not support double precision on the texture memory,
while it supports double precision on the constant memory. Therefore,
constant memory is used to store the coefficient arrays. The presented
algorithm is implemented and executed on a Nvidia Tesla C1060 card
which holds 64KB constant memory. Since each coefficient pair needs
32 bytes, 2048 coefficient pairs in total can be stored on the constant
memory.

Listing 3. Second kernel in Listing 1 based on coefficient indices
storage scheme.

−−global−−void

cuda matvec tmpy kernel with indexing

(cuDoubleComplex ∗ x, cuDoubleComplex ∗ y,

cuDoubleComplex ∗ tmpy, unsigned short ∗ chy ind, int nx, int ny, int nz)

{ −−shared−−cuDoubleComplex S[TILE SIZE ∗ TILE SIZE + TILESIZE];

int ti = threadIdx.x; int ci = blockIdx.x ∗ blockDim.x + threadIdx.x;

int i, k; int nxy = nx ∗ ny; int nxyz = nxy ∗ nz;

cuDoubleComplex chyez, chyex; unsigned short edge index;

cuDoubleComplex ∗ ex = x; cuDoubleComplex ∗ ey = &x[nxyz];

cuDoubleComplex ∗ ez = &x[2 ∗ nxyz]; cuDoubleComplex a, b, c, tx, txp;

i = ci; tx = ex[i];

for (k = 0; k < nz − 1; k + +)

{ txp = ex[i + nxy]; S[ti] = ez[i];

if (ti < TILE SIZE)

{ S[ti + blockDim.x] = ez[i + blockDim.x]; }
−−syncthreads();

edge index=chyind[i]; chyez=dvCh1[edge index]; chyex=dvCh2[edge index];

a.x = txp.x− tx.x; a.y = txp.y − tx.y;

b.x = S[ti].x− S[ti + 1].x; b.y = S[ti].y − S[ti + 1].y;

−−syncthreads();

c.x = chyex.x ∗ a.x− chyex.y ∗ a.y +chyez.x ∗ b.x− chyez.y ∗ b.y;

c.y = chyex.x ∗ a.y + chyex.y ∗ a.x +chyez.x ∗ b.y + chyez.y ∗ b.x;

tmpy[i] = c; tx = txp; i = i + nxy;

} }
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Listing 3 shows the details of the second kernel in Listing 1, based
on the coefficient indices storage scheme. Here chy ind is a coefficient
indices array that reside on the global memory, while dvCh1 and dvCh2
are two coefficient arrays, each holding one of the pairs, that reside on
the constant memory.

5. RESULTS

The performance of the presented algorithm is analyzed through two
examples in this section. The solution times on GPU and CPU are
compared. The following codes are considered in the analyses:

CPU: A BLAS version of BICGSTAB developed by Fokkema is
obtained from [24]. This code is in FORTRAN. Single-threaded version
of Intel Math Kernel Library (Intel MKL) is used to execute the
BLAS routines. The function that performs the matrix-vector product
(matvec) is implemented in FORTRAN as presented in [14]. The code
is run on an Intel Xeon E5405 CPU at 2 GHz.

GPU: The codes of the presented algorithm based on the
coefficient arrays and coefficient indices storage schemes are run on an
Nvidia Tesla C1060 computation card at 1.3 GHz. The abbreviations
CAS and CIS denote the coefficient arrays and coefficient indices
storage schemes, respectively, in the following discussions.

5.1. Scattering from a Dielectric Sphere

First, scattering from a dielectric sphere is calculated. The sphere
has 7.2 cm radius and dielectric constant of 4. The incident field is
an x polarized plane wave at 1GHz traveling in +z direction. The
cubic computational domain is 32 cm on a side. FDFD calculations are
performed, both on CPU and GPU, each time with a different cell size,
thus with a different number of cells. The results are shown in Table 1.
It can be seen that as problem size gets bigger, the efficiency of the
CUDA program increases. It is possible to solve FDFD on a GPU 20
times faster than on a CPU. Moreover, the coefficient indices storage
scheme is slightly faster than the coefficient arrays storage scheme.
Fig. 2 shows bistatic radar cross-section (RCS) of the sphere calculated
by CUDA FDFD and compared with an analytical solution obtained
from a Matlab program presented in [26].

5.2. Scattering from a Human Head

As a second example, calculation of scattered fields from a human head
is presented here. First, an updated, dedicated MRI head phantom
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Table 1. Results for a sphere.

cell size

(mm)

total

number

of cells

time on

CPU

(seconds)

time on

GPU (CAS)

(seconds)

time on

GPU (CIS)

(seconds)

5 64× 64× 64 337 22 21

4 80× 80× 80 851 49 42

3.333 96× 96× 96 1901 115 99
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Figure 2. Bistatic radar cross-section of a sphere with 7.2 cm radius
and dielectric constant of 4 at 1 GHz. Cell size is 4 mm on a side.
Domain size is N = 80× 80× 80 cells.

made available by techniques described in [27] is downloaded from [28],
which is 256 × 256 × 128 cells in size. This anatomical model data
is decimated by half in each direction and a 128 × 128 × 64 cells
model is obtained. A cross-section view of the head that shows
tissue distribution is shown in Fig. 3. In this model the cell size
is 2.2mm × 2.2 mm × 2.8mm, where each cell is filled with a tissue
material. Then, permittivity and conductivity values of these tissues
are obtained from [29]. This head model is placed in an FDFD problem
space with size 160× 160× 93, and FDFD calculations are performed
to calculate scattered electric fields due to an incident plane wave with
z polarization at 900 MHz that hits the head on its side. Fig. 4 shows
the z component of scattered electric field on an xy cross-section.

Table 2 shows solution times for this case. Solution of FDFD is
achieved about 28 times faster on a GPU compared with that on a
CPU. One can notice that, as problem size gets larger, solution speed-
up factor gets higher on GPU.
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Figure 3. An xy cross-section
view of an anatomical head model
used in FDFD simulation.

Figure 4. Scattered electric
field (Escat,z) distribution from
a human head on an xy cross-
section.

Table 2. Results for a human head.

total number
of cells

time on
GPU

(minutes)

time on
GPU (CAS)
(minutes)

time on
CPU (CIS)
(minutes)

160× 160× 93 130 5.4 4.6

5.3. Use of Preconditioners

It is widely recognized that preconditioning is the most critical
ingredient in the development of efficient solvers for challenging
problems in scientific computation, and that the importance of
preconditioning is destined to increase even further [23]. A well-chosen
preconditioner can significantly improve the efficiency of an iterative
solver. The current contribution addresses the GPU acceleration of
FDFD, where the BICGSTAB algorithm is utilized. One should
consider finding and using an efficient preconditioner as well to further
accelerate the computations both on the CPU and GPU platforms.

Analyses of simple preconditioners, such as Jacobi, ILU(0), and
SSOR [18], are performed to evaluate their effectiveness to improve
the solution speed. First, Jacobi and ILU(0) preconditioners are
considered. It has been found that these preconditioners do not
improve the solution. Moreover, sometimes they yield divergent
solutions. The SSOR preconditioner is found to improve convergence
rate significantly, i.e., convergence is achieved with a much less number
of iterations, however, the overhead introduced by the application of
the preconditioner adversely affects the solution speed, and the overall
solution time becomes more with the preconditioner.
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These preconditioner analyses are performed on a CPU platform.
It should be noted that an effective implementation of a preconditioner
is more difficult on a GPU platform. Most preconditioners are based
on LU decomposition and forward and backward solutions of resulting
triangular matrix equations. In the standard forward and backward
substitution algorithms for solving triangular systems, the outer
loop of the substitution for each unknown is sequential. Therefore,
these algorithms are not suitable for parallel processing. Some
other methods, such as level scheduling, which exploits topological
sorting [18], need to be employed for better parallelism [31].

6. CONCLUSION

A CUDA implementation of FDFD method is presented in this
contribution to speed-up the solution of electromagnetics problems.
The presented algorithm uses BICGSTAB iterative solver. The
BICGSTAB solver is ported to run on a GPU using CUDA. Then,
integrated with BICGSTAB, an efficient method of performing matrix-
vector products for the linear system of FDFD equations is adapted
from [14] and implemented in CUDA based on two coefficient schemes
to further improve the speed of calculations. It has been shown that,
with the presented algorithm, FDFD can be solved more than 20 times
faster on a GPU than on a CPU.
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