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Abstract—In this paper, a novel Wavelet-Galerkin Method (WGM)
is presented to model the radio-wave propagation in tropospheric
ducts. Galerkin method, with Daubechies scaling functions, is used
to discretize the height operator. Later, a marching algorithm is
developed using Crank-Nicolson (CN) method. A new “fictitious
domain method” is also developed for parabolic wave equation to
incorporate the impedance boundary conditions in WGM. In the end,
results are compared with those from Advance Refractive Effects
Prediction System (AREPS). Results show that the wavelet based
methods are indeed feasible to model the radio wave propagation in
troposphere as accurately as AREPS and proposed method can be a
good alternative to other conventional methods.

1. INTRODUCTION

Parabolic Wave Equation (PWE) method is a widely used technique
for modeling tropospheric anomalous radio wave propagation. To
date, several numerical techniques have been developed to solve PWE.
However, the most popular among them is the Split-Step Fourier
transform Method (SSFM) [1]. Though it is quite popular among
researchers, this algorithm is not effective for modeling arbitrary
boundary conditions. An important advancement in this technique is
the introduction of the Discrete Mixed Fourier Transform (DMFT) [2].
DMFT based SSFM allows one to handle finitely conductive surfaces.
Finite Difference Method (FDM) is considered effective for all types
of boundary conditions [1]. But for non-standard atmosphere or
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complex refractive structure, the matrices become more and more
dense. So, it takes long to solve these matrices and it also uses
up too much memory. Finite Element Method (FEM) has also
been employed for the solution of parabolic equation [3–7]. Effective
boundary handling makes FEM attractive to numerical solution of
partial differential equations (PDE). Recently, Apaydin and Sevgi [8]
extended the solution for the application to surface wave propagation.
But in their work, modified refractivity is assumed linear which is
not a suitable assumption for higher frequencies. From literature
review, it is also found that the finite methods developed so far
are accurate only up to the maximum of second order. To handle
singularities and abnormal environment, higher order methods are not
only computationally more efficient but also more accurate. Advance
Refractive Effects Prediction System (AREPS) software is used as
a benchmark in this work, because it is optimized for tropospheric
radio-wave propagation modeling and considered to be most suitable
software package. The Advance Propagation Method (APM) is the
core of AREPS. APM is a hybrid model which contains four models.
These are flat earth (FE), ray optics (RO), extended optics (XO), and
the Split-Step Parabolic Equation (PE) Algorithm. PE Method is the
primary model around which the other three sub-models are built [9].

In this work, a novel more accurate WGM is presented to model
radiowave propagation in troposphere. Wavelet based numerical
methods are most often used to solve linear and non-linear differential
equations [10–14]. Orthogonality, compact support and exact
representation of polynomials of a fixed degree make them useful for
representing the solutions of PDEs. According to the best of authors’
knowledge, application of wavelets to model radio wave propagation
is not addressed in literature so far. In the formulation of WGM,
Daubechies scaling functions are used as basis functions in Galerkin
method to solve 2D PWE. The discretization process is applied to
height operator. Resultant system of algebraic equations is solved by
CN Method. In this paper, a new fictitious domain method based
on Lu et al. [15] is also developed for parabolic equations to handle
arbitrary boundary conditions without losing the simplicity of WGM.
Parametric refractivity M-profile model is used to generate vertically
modified refractivity profile to mimic real environment [16]. The
proposed method not only provides higher order accurate solution, it
can also handle any type of ducting profile.

The rest of the paper is organized as follows: Brief background of
radio refractive index, an overview of PWE and Basic Wavelet theory
is given in Section 2. Detailed WGM formulation is described in
Section 3. In Section 4, numerical implementation of WGM along
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with fictitious domain method is presented. Results comparison and
discussion is provided in Section 5.

2. BACKGROUND

2.1. Radio Refractive Index

The radio refractive index (n) is caused due to the molecular
constituents of the air [17]. Normally, the numerical difference in
refractivity is a very small fraction of unity. So, a convenient way of
expressing the refractive index is in terms of refractivity (N) is given
by,

N = (n− 1)× 106 (1)

There are four refractive conditions which depend upon refractive
gradient. The relations of refractivity gradient and related refractive
condition are summarized in Table 1 [18]. Trapping condition, often
called ducting phenomenon, causes anomalous radiowave propagation.
Well known tropospheric ducts are surface duct (ground-based duct),
surface-based duct and elevated duct as shown in Figure 1.

2.2. Parabolic Wave Equation (PWE)

A two dimensional scalar wave equation in the cartesian coordinates
system can be written as:

∂2ψ

∂x2
+

∂2ψ

∂z2
+ k2n2ψ = 0. (2)

In the equation mentioned above, k = 2π/λ is the wave number in
vacuum, and n is the refractive index. To reduce (2) into PWE, a
function associated with the paraxial direction x is taken as [1],

ψ(x, z) = u(x, z)ejkx (3)

Table 1. Refractive condition.

Condition
N-Gradient

(N — Unit/km)
M-Gradient

(M — Unit/km)
Trapping dN/dh ≤ −157 dM/dh ≤ 0

Supper Refraction −157 < dN/dh ≤ −79 0 < dM/dh ≤ 78
Standard −79 < dN/dh ≤ 0 78 < dM/dh ≤ 157

Sub Refraction dN/dh > 0 dM/dh > 78
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Substituting (3) into (2) we obtain

∂2u

∂x2
− 2jk

∂u

∂x
+

∂2u

∂z2
+ k2

(
n2 − 1

)
u = 0 (4)

Using paraxial approximation, i.e., ∂2u/∂x2 ¿ 2jk∂u/∂x, (4) will be
reduced to the familiar PWE in two-dimensional space:

∂2u

∂z2
− 2jk

∂u

∂x
+ k2

(
n2 − 1

)
u = 0 (5)

This is called standard parabolic equation (SPE). For Earth flattening,
the factor (n2 − 1) in (5) should be replaced by (n2 − 1 + 2z/R) [8],
where, R is the Earth’s Radius and z the height above the ground
level.

2.3. Boundary Conditions

2.3.1. Impedance Boundary Conditions

With the assumption that the skin depth of electromagnetic radiation
within the earth is small as compared to the earth’s radius of
curvature, the boundary conditions (BC) at smooth earth surface can
be approximated by [2]:

α1(x)
∂

∂z
u(x, z)|z=0 + α2(x)u(x, z)|z=0 = 0 (6)

where, α1(x) and α2(x) are constants. For a perfectly conducting
surface, α1(x) = 0 (Dirichlet BC) and α2(x) = 0 (Neumann BC)
for horizontal and vertical polarization respectively. For finitely
conducting earth surface, α1(x) = 1, while α2(x) = (j/µ0ω)η for

(a) (b) (c)

Figure 1. Type of Ducts. (a) Surface duct. (b) Surface-based duct.
(c) Elevated duct.
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horizontal polarization and α2(x) = −jωεsη for vertical polarization,
where εs is the permittivity of the surface medium, µ0 the free-space
permeability, and ω the radial frequency.

2.3.2. Absorbing Boundary Conditions

In order to limit the height of computational domain there is a need
to truncate the domain at finite height. Artificial truncation can cause
strong reflections. To avoid these non-physical reflections, a windowing
function, perfectly matched layer (PML) termination, or locating an
absorbing layer is used [1, 8, 19]. In this paper, a windowing function
is used as an absorbing layer.

2.4. Initial Field

PWE is an initial value problem. It is necessary to specify the field
at range x = 0. There are several ways that the starting field can
be generated, e.g., by some analytical function or by using antenna
theory. The field at range x = 0 is essentially the antenna aperture
distribution, and the far-field antenna pattern f(p) and its aperture
distribution A(z) are a Fourier transform pair [9],

A(z) F−→f(p) (7)

where F is Fourier transform. Applying the boundary condition that
the field vanishes at the surface, we use image theory to obtain:

ψ(0, z) = A(z − z0) + Γ ·A∗(z + z0) (8)

where Γ is the reflection coefficient. Equation (8) is written as the sum
of the source and image fields, and z0 represents the antenna height.
Since the antenna pattern is what is normally dealt with, one can
simply transform it to obtain

ψ̃(0, p) = f(p)e−jpz0 + Γ · f∗(p)e−jpz0 (9)

Pattern factor f(p) for omnidirectional antenna is equal to 1, and for
a normalized Gaussian antenna pattern:

f(p) = e−p2w2/4, where w =
√

2 ln 2/k0 sin(θbw/2) (10)

In (10), θbw/2 is beam-width angle. Elevation angle can easily be
incorporated by replacing f(p) by f(p− p0). Where p0 = k0 sin θ0.
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2.5. Basic Wavelet Theory

Ingrid Daubechies constructed the class of compactly supported scaling
and wavelet function in 1988 [20]. Briefly, scaling function (ϕ) satisfies
the following expression, called Dilation Equation:

ϕ(z) =
M−1∑

k=0

hkϕ(2z − k)

where M is the order of Daubechies wavelet, and ϕ(z) is called scaling
function. The associated wavelet function ψ is required to satisfy the
following equation called wavelet equation:

ψ(z) =
M−2∑

k=−1

(−1)khk+1ϕ(2z + k)

where hk is the set of nonzero constant scaling coefficients with
condition

M−1∑

k=0

hk = 2

The orthogonal wavelet and scaling functions generated with these
scaling coefficients will have a supp(ϕ) = [0,M − 1]. For j, k ∈ Z,
the dilation and translations of scaling function (ϕ(z)) and wavelet
function (ψ(z)) can be written as:

ϕj,k(z) = 2j/2ϕ
(
2jz − k

)

ψj,k(z) = 2j/2ψ
(
2jz − k

)

Let V be the set of all scaling functions and W the set of all wavelet
functions. A brief summary of wavelet properties is given as follows.
For more details, see [20–22].

(1) {ϕj,k}j≥0,k∈Z is an orthonormal basis for L2(R).
(2) Vj+1 = Vj ⊕Wj .
(3) L2(R) = closL2(V0 ⊕∞j=0 Wj).

(4) {ϕ0,k, ψj,k}j≥0,k∈Z is an orthonormal basis for L2(R).
(5)

∫∞
−∞ ϕ(z)dz = 1.

(6)
∑

k∈Z ϕ0,k = 1.

(7)
∫∞
−∞ ψ(z)zkdz = 0: k = 0, . . . , L− 1.

(8) {zk}L−1
k=0 ∈ VN , where L is an positive integer.
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Figure 2. Daubechies scaling and wavelet function for M = 6 with
support [0, 5].

Based on property (2), the multiresolution analysis is a nested
sequence,

V0 ⊂ V1 ⊂ . . . ⊂ L2(R)

satisfying the following properties [22].

(1)
⋂

j∈Z Vj = 0

(2) closL2(
⋃

j∈Z Vj) = L2(R).

(3) f(z) ∈ Vj ⇔ f(2z) ∈ Vj+1.
(4) There is a function ϕ ∈ V0 such that {ϕ0,k(z) = ϕ(z − k)} form a

Riesz basis for V0.

For arbitrarily large even M , the Daubechies family of wavelet
have fundamental support in the interval [0, M − 1]. In Figure 2
an example of a compactly supported Daubechies scaling and wavelet
functions for M = 6 are shown.

3. WAVELET GALERKIN METHOD (WGM)

Solution domain is divided into several subdomains in WGM. The
approximate solution is written in the form of,

f(z) =
Nz∑

l=1

flϕl(z) (11)
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where Nz is number of grid points, fl the unknown coefficients, and ϕl

the wavelet scaling basis functions. Inner product of basis functions
can be defined as,

〈ϕk, ϕl〉 =
∫ ∞

−∞
ϕkϕldz (12)

Inner product of wavelet scaling basis functions with or without
derivatives is called connection coefficients. Connection coefficients
for unbounded intervals were described by Latto et al. [23]. In General
form, n-term connection coefficients can be defined as

Ωd1,...,dn

k1,...,kn
=

∫ ∞

−∞
ϕd1

k1
. . . ϕdn

kn
dz =

∫ ∞

−∞

n∏

i=1

ϕdi
ki

dz (13)

where superscript di refers to the derivative of the scaling function ϕ(z)
with respect to z. If the discretizing operator is linear, then integral
will have the form as hereunder,

Ωd1,d2

k,l =
∫ ∞

−∞
ϕd1

k ϕd2
l dz (14)

here, Ωd1,d2

k,l is known as 2-term connection coefficients. In the
formulation of PWE, maximum of 2-term connection coefficient will
be used. By change of variable, 2-term connection coefficient Ωd1,d2

k,l

can be turned into Ωd1,d2

0,l−k := Ωd1,d2

0,l′ , where l′ = l − k. For simplicity,

Ωd1,d2

l will be used throughout this document,

Ωd1,d2

l =
∫ ∞

−∞
ϕd1ϕd2

l dz (15)

More details can be found in [23, 24].

3.1. WGM Formulation for PWE

In the formulation of WGM, weak form of (5) can be obtained by
multiplying (5) with basis function ϕk and integrating over the domain:

∫
ϕk

(
∂2u

∂z2
− 2jk

∂u

∂x
+ k2

(
n2 − 1

)
u

)
dz = 0 (16)

In discrete space,
u(x, z) =

∑

l

al(x)ϕl(z) (17)

where,
al = 〈u(x, z), ϕl〉
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After substituting the wavelet expansion of u(x, z) into (16) and
rearranging, we have

∑

l

a′l(x)
∫

ϕkϕldz +
∑

l

al(x)
(

j

2k

∫
ϕkϕ

′′
l dz

−jk

2
(
k2(n2 − 1)

) ∫
ϕkϕldz

)
= 0 (18)

In matrix notations, (18) can be written as

[δk,l]{a′l(x)}+ [Lk,l + Sk,l]{al(x)} = 0 (19)

where,

δk,l = Ik,l =
∫

ϕkϕldz,

Lk,l =
j

2k

∫
ϕkϕ

′′
l dz =

j

2k

(
Ω0,2

l

)
,

Sk,l = −jk

2
(
k2(n2 − 1)

) ∫
ϕkϕldz,

δk,l is known as Kronecker delta function, and Ω0,2
l are the connection

coefficient briefly described in previous section. If whole domain is
divided into Nz number of grid points, then l = k = 0, . . . , Nz − 1.
In order to satisfy the BC, Equation (6) can be incorporated to PWE
of (5) with fields approximated as in (17). Assume BCk,l to be resultant
BC matrix, that is given by,

[
α1(x)Ω0,1

l |z=0 − α2(x)δk,l|z=0

]
{al(x)} = 0,

[BCk,l]{al(x)} = 0.

(20)

Combining (20) with (19) gives us the required system of linear
equations that satisfy both the PWE and its boundary conditions.

[δk,l]{a′l(x)}+ [Lk,l + Sk,l + BCk,l] {al(x)} = 0 (21)

Finally, the resultant linear system given in (21) is solved using
CN method. The general solution of Equation (21) can be written as,

{al(x + ∆x)} =
(

2[Ik,l]−∆x [Lk,l + Sk,l + BCk,l]
2[Ik,l] + ∆x [Lk,l + Sk,l + BCk,l]

)
{al(x)}. (22)
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It is an iteractive algorithm. Once the system is initiated with starting
field, field at the next range step can be calculated from the previous
one. It is an unconditionally stable, a second order accurate system
in range operator. The accuracy of height operator is dependent on
the choice of wavelet Genus. Higher order wavelet provides higher
accuracy. Overall complexity of algorithm is same as conventional
finite methods. Although, CN Method provides fast solutions but the
step-size should be chosen as small as necessary to overcome numerical
oscillation problems [8].

4. NUMERICAL IMPLEMENTATION

Connection Coefficients derived by the Latto et al. [23] are for
unbounded intervals. In order to deal with bounded intervals,
fictitious domain method and capacitance matrix method are more
common [10, 15]. However, Green function solution is required for the
implementation of capacitance matrix method. But Green function
is not readily known for PWE [25]. Due to this, fictitious domain
approach is used to handle boundary condition in the solution of PWE.
In this approach, interval is modified by adding a fictitious interval
outside of interested domain. Same connection coefficient can be used
to handle real boundary conditions as calculated by Latto et al.

4.1. Fictitious Domain Method

For the case of PWE, overall scenario is illustrated in Figure 3. Bottom
surface (Zmin) is finitely conductive surface while an absorbing layer
is placed at the top (Zreq) of ‘domain of interest’. Total altitude is
divided into Nz number of grid points, therefore, ϕ has analytical

Figure 3. Computation domain for WGM.
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boundaries at 0 and Nz−1. To satisfy the support of expansion in (17),
i.e., [−M + 1, M − 2 + Nz], there is a need to add M − 1 functions
both at the top and bottom of ‘domain of interest’, where, M is the
genus of wavelet scaling function. With this approach, the real domain
will be stretched and analytical boundaries will be shifted to −M + 1
and M − 2 + Nz. The dimensions of resultant linear system will be
Nz + 2 × (M − 1) − by − Nz + 2 × (M − 1). After discretizing with
Daubechies-6 (D6), the matrices in (22) are obtained as:

Sk,l = diag




S−5,−5
...

S0,0
...

SNz−1,Nz−1
...

SNz−1+5,Nz−1+5




, BCk,l = diag




BC−5,−5
...

BC0,0
...

BCNz−1,Nz−1
...

BCNz−1+5,Nz−1+5




,

Lk,l is a 9-diagonal matrix with l = −4, . . . , 0, . . . , 4,

Lk,l =




Ω0,2
0 Ω0,2

1 Ω0,2
2 ... Ω0,2

4 ... 0 ... 0 0 0

Ω0,2
−1 Ω0,2

0 Ω0,2
1 ... Ω0,2

3 ... 0 ... 0 0 0

...
...

...
...

...
... 0

...
...

...
...

0 Ω0,2
−4 Ω0,2

−3 ... Ω0,2
0 ... 0 ... 0 0 0

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 ... Ω0,2

0 ... Ω0,2
3 Ω0,2

4 0

...
...

...
... 0 ...

...
...

...
...

...
0 0 0 0 0 ... Ω0,2

−3 ... Ω0,2
−1 Ω0,2

0 Ω0,2
1

0 0 0 0 0 ... Ω0,2
−4 ... Ω0,2

−2 Ω0,2
−1 Ω0,2

0




,

Ik,l = [Identity Matrix]Nz+2(5)×Nz+2(5) ,

and

al(z) = [a−5 a−4 . . . a0 . . . aNz−1 . . . aNz−1+4 aNz−1+5]
T

.

A symmetric extension of refractive profile is taken in extended region
at bottom while same profile is extended at top, as shown in Figure 3.
We can write,

S−m,−m = Sm,m for m = 1, 2, . . . , 5.

It can be seen that real boundaries exist at BC0,0 and BCNz−1,Nz−1.
It should also be noted that,

BCk,l = 0 for k, l 6= 0 & Nz − 1.
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For Dirichlet BC, coefficients (al(z)) should equal to zero at Zmin.
Hence, [BCk,l] and first M rows and columns of linear system, given
in (22), will be zero. For Neumann BC, coefficients (al(z)) are
unknown at Zmin but the implementation of Neumann BC will also
yield [BCk,l] = 0. For finitely conductive surfaces, an assumptions
is made that the extended domain at bottom consists of the same
material as at BC0,0. We can write:

BCm,m =
−j

2k0
α2(x) for m = −5,−4, . . . , 0.

After reaching the desired range step using marching solution
given in (22), the required coefficients, [a0, . . . , aNz−1]T , will be
extracted from the extended domain solution.

4.2. Propagation Loss

In rectangular coordinate system, propagation factor can be calculated
by

F =
√

x|u(x, z)|
where, x and z is in meters. x is the distance between the transmitting
antenna and receiving antenna, and z is the altitude measured with
respect to the mean sea surface. Once propagation factor F is obtained,
the propagation loss in dB is determined by the basic radio wave theory
in the form of [26],

L = Lf − 20 log F

where, Lf is free space propagation loss and computed from the formula
given by,

Lf = 20 log f(MHz) + 20 log x(m)− 27.56

5. NUMERICAL RESULTS

To validate the efficiency of proposed method, the propagation path
loss is calculated for standard and ducting environment conditions.
Normalized Gaussian antenna pattern is used for all simulations. The
bottom boundary is assumed to be flat sea surface. The results from
AREPS package are obtained with only PE mode and with same
parameters.

5.1. Standard Environment

In the first case, path loss results for 50 km transmission range are
obtained using WGM as shown in Figure 4(a). Horizontally polarized
transmitter antenna height is chosen at 50 m above the ground level.



Progress In Electromagnetics Research B, Vol. 36, 2012 47

(a) (b)

(c)(d)

Figure 4. (a) Range (km) vs. height (m) pathloss (dB) diagram of
WGM for standard environment. (b) Pathloss vs. height for range
of 20 km. (c) Path-loss vs. range for height of 30m. (d) Standard
environment refractive profile.

Beam-width is set to be 3 degrees. Detailed comparison of results
with AREPS package is illustrated in Figure 4(b)–(c). Figure 4(b)
shows the comparison of pathloss versus height at range of 20 km while
Figure 4(c) shows pathloss versus range comparison at the height of
15m. It is observed that for normal gradient of refractivity, energy
moves away from the earth’s surface as shown in Figure 4(a). The
results also show that for lower receiving antenna height pathloss is
very high after a few kilometers . Communication range can only
be improved by increasing the altitude of receiver and/or transmitter
antenna.

5.2. Ducting Environment

Two different ducting environments are studied to validate the
performance of WGM in ducting environment.

5.2.1. Surface Duct

To demonstrate the behavior of radiowave in surface duct, propagation
loss is calculated with 5.8 GHz frequency. Simulations were performed
with horizontally polarized antenna. Transmitter antenna is taken
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(a) (b)

(c)(d)

Figure 5. (a) Range (km) vs. height (m) pathloss (dB) diagram of
WGM for surface duct. (b) Pathloss vs. height for range of 30 km.
(c) Path-loss vs. range for height of 15m. (d) Surface duct refractive
profile.

at 25 m above the ground level. Beam-width is set to be 3 degrees.
Anomalous radio wave propagation can be seen in Figure 5(a).
Comparison of WGM results with AREPS is given in Figures 5(b)–
(c). Ducting profile is illustrated in Figure 5(d). Result shows that
propagation has been extended to several kilometers due to ducting
phenomenon. As the total occurrence time of surface-based duct is very
small, we cannot take benefit from this phenomenon for a reliable long
range communication. But this phenomenon becomes a cause of strong
interference to other communication systems even at far distances.

5.2.2. Evaporation Duct

Evaporation duct is one of the most important ducting phenomenon.
10.5GHz is chosen for further path loss measurement because the effect
of evaporation duct is more dominant in this range of frequencies.
Simulations are carried out with horizontally polarized transmitter
antenna with 15 m height above the ground level. Beam-width is
set to be 2 degrees. Figure 6(a) shows the trapping of signals in
evaporation duct. A detailed comparison of results with AREPS
package is provided in Figures 6(b)–(c) for specific range and height.
From results, it can be seen that in trapping condition, the signal
attenuation is much less even at 100 km as shown in Figure 6(c).



Progress In Electromagnetics Research B, Vol. 36, 2012 49

(a) (b)

(c)(d)

Figure 6. (a) Range (km) vs. height (m) pathloss (dB) diagram
of WGM for evaporation duct. (b) Pathloss vs. height for range of
45 km. (c) Path-loss vs. range for height of 10 m. (d) Evaporation
duct refractive profile.

Table 2. Mean relative squared error (MRSE) w.r.t. AREPS.

Environment Condition Case RMSE

Standard
Figure 4(b) 2.3128× 10−5

Figure 4(c) 1.1456× 10−4

Surface Duct
Figure 5(b) 5.9757× 10−6

Figure 5(c) 2.2107× 10−4

Evaporation Duct
Figure 6(b) 2.1279× 10−5

Figure 6(c) 2.4398× 10−4

5.3. Discussion

In brief, the performance of WGM is measured under different complex
environments and the accuracy of proposed method with respect to
AREPS is summarized in Table 2. In Table 2, mean relative squared
error (MRSE) is computed for the cases discussed in previous section.
Table 2 shows that the maximum of mean squared relative difference of
WGM and AREPS is of the order of 10−4. Hence, results give a strong
agreement with AREPS package. The formula used to calculate MRSE
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is given by,

MRSE =
1
n

k∑

i=0

(
AREPSdatai −WGMdatai

AREPSdatai

)2

.

6. CONCLUSION

In this paper, a novel wavelet-Galerkin method is presented for
the numerical solution of two dimensional parabolic equation. A
new ‘fictitious domain method’ is also introduced for parabolic wave
equation to incorporate the impedance boundary conditions. A brief
discussion on the behavior of radiowave propagation in troposphere
is also provided. At the end, results are compared with those from
AREPS for both environment conditions — standard and ducting.
The results show that the proposed algorithm is nearly as good
as AREPS and it can be a better alternative to other well-known
methods. From the simulation results, it is also found that the grid
size for height and range operator is chosen carefully to make WGM
computationally efficient. Smaller grid size is required for higher
frequencies due to which WGM cannot save significant computation
cost, relative to the AREPS. In spite of this, wavelet methods still have
special properties like multi-resolution analysis and exact solution of
connection coefficient which make them superior to other conventional
methods and allow to provide higher accurate solutions.
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