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Abstract—The random wire bundle is an important factor resulting
in the randomness of the interferences. This paper studies the effect
of random wire positions due to the bundle rotation on the coupling
with external fields and presents an efficient method to estimate the
averages and standard deviations of the voltages and powers induced
on the loads. Three configurations of a four-wire bundle under external
fields are investigated by using the Baum-Liu-Tesche equation in the
frequency domain and together with the inverse Fourier transform
in the time domain, and the results show that the induced voltages
and powers change as sine functions when the bundle rotates. The
proposed method can estimate the averages and standard deviations
of the induced voltages and powers quickly, just by three times repeated
analysis, and the results agree well with those obtained statistically.

1. INTRODUCTION

External electromagnetic pulse (EMP) can disturb electronic systems,
which draws much attention. However, because the positions of wires,
cables, and devices inside electronic systems are not definitive, the
interferences on electronic systems have randomicity. As a result, any
deterministic solution is not sufficient for the assessment of system
performance under external threats. The randomness of wire bundles
is an important factor resulting in the randomicity of the interferences
and the study of EMP coupling to random wires is important.
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Lots of researches have been done on external EMPs coupling
to wires or cables in the frequency or time domain [1–12]. In these
researches, the positions and geometries of wires or cables are specified
exactly. Some researchers have paid some attention on the effect due
to the uncertainties of wire or cable positions. Capraro et al. studied
the crosstalk sensitivity to the uncertainties of the wire positions in a
multiwire bundle by statistical analysis of the experimental data [13].
Ciccolella and Canavero used the Monte Carlo method to describe the
geometry and the multiconductor transmission line theory to predict
the crosstalk of a random cable [14]. After 2000, more and more
study has been done on this topic and different models and methods
have been proposed [15–20]. However, these researches are mainly
focused on the crosstalk variation due to the random wire positions,
but without consideration of external fields.

Random wire positions’ effect on fields coupling is more
complicated to analyze than that on crosstalk and much less study
has been done on this topic. Morgan et al. proposed a technique for
external fields induced to an n-wire random cable by the reciprocity
theorem and a representation of a statistical ensemble; however, no
numerical examples were given [21]. Afterwards, Parkinson et al.
investigated statistically an EMP response of a random-lay cable,
where the cable was represented as multisegment lines with random
connections between adjacent segments [22]. Recently, Nuno and
Holloway studied statistically the induced voltage on a random position
cable inside a cavity by using the finite-difference time domain
method [23]. In the study by Paletta et al., external fields interaction
with wiring in a complex system, the random positions of the wires
in bundles were taken into account, but the random wire positions’
influence on the coupling was not studied and the transmission line
parameters were calculated just by averaging the parameters of several
cross-sections [24].

Because wire bundles may rotate around the axis and the cross
section will change, as seen in [24], this paper aims at studying the
effect of bundle rotation on the coupling statistically by using the
Baum-Liu-Tesche (BLT) equation [25, 26], and then puts forward an
efficient method to estimate the averages and standard deviations of
the induced voltages and powers.

This paper is organized as follows. Section 2 presents the analysis
method and Section 3 establishes the models to be analyzed and gives
numerical results. Based on the results, the efficient estimation method
is proposed in Section 4. At last, conclusions are made in Section 5.
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2. COMPUTATION AND ANALYSIS METHOD

The BLT equation, based on the transmission line theory, is adopted
to compute the terminal responses of wire bundles excited by external
plane-wave fields in the frequency domain. The BLT equation is
derived from the propagation and scattering equations and can be
expressed as [26]

V̂ = (U + ρ̂) ·
(
−ρ̂ + Γ̂

)−1
· Ŝ, (1)

where V̂ = [V̂(0), V̂(L)]T is the terminal voltage complex vector and
consists of voltage vectors at the near and far ends, with L the length
of the bundle. ˆ represents complex quantities. U is the unit matrix.
ρ̂ = diag(ρ̂1, ρ̂2) is the scattering matrix, where ρ̂1 and ρ̂2 are the
reflecting coefficient matrix at the near and far ends, respectively.
The propagation matrix Γ̂ is the function matrix of the propagation
constant and the bundle length. Ŝ is a vector related to the excitation
fields and, according to the Agrawal’s model [2], can be written as

Ŝ =

[
1
2

∫ L
0 eγ̂zV̂′

s(z)dz − 1
2V̂s1 + 1

2eγ̂LV̂s2

−1
2

∫ L
0 eγ̂(L−z)V̂′

s(z)dz + 1
2eγ̂LV̂s1 − 1

2V̂s2

]
, (2)

where V̂′
s(z) is distributed voltage source along the bundle and V̂s1(z)

and V̂s2(z) are lumped voltage sources at the ends generated by
external fields.

Equation (2) implies that even for a very simple random bundle
it is difficult to study the coupling variation analytically and thus the
statistical method is applied. The rotation angle, with the definition
given in Figure 1, is assumed to be uniformly distributed in the range of
[0, 2π] and N samples of the rotation angles are selected. For each angle

Figure 1. Cross section of the four-wire bundle and definition of the
rotation angle.
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sample, the voltages on the terminal loads are computed by using the
BLT equation in the frequency domain and together with the inverse
Fourier transform (IFT) in the time domain, and then the averages
and standard deviations of the voltages and powers on the loads are
estimated statistically.

3. MODELS AND NUMERICAL RESULTS

A four-wire bundle with the length 1.0 m excited by a plane-wave
electromagnetic field is studied. Figure 1 shows the cross section of
the four-wire bundle. The four wires with radius r0 = 0.68mm are
insulated with each other. The diameter of the insulators d is 1.36 mm.
In order to study the rotation effect on the coupling of electromagnetic
fields to the bundle, three different configurations of the bundle are
considered, as shown in Table 1. The four-wire bundles in case 2 and
case 3 are over the infinite and perfectly conducting ground with the
height h = 10.0mm. Case 1 and case 2 have terminal connection 1
while case 3 has terminal connection 2. The details of the terminal
connections are given in Table 2, with all resistances 50Ω. In terminal
connection 1, the wire 1, wire 2, and wire 3 are connected to the wire 0
by resistances Ri1, Ri2, and Ri3 at both the ends of the bundle (i = 1
at the near end and i = 2 at the far end), respectively, but while in
terminal connection 2, all the four wires are connected to the ground
by 50 Ω resistances at both the ends. The sample number N is set to

Table 1. Three cases of the four-wire bundle.

Ground Terminal connection
Case 1 Without the ground Terminal connection 1
Case 2 With the ground Terminal connection 1
Case 3 With the ground Terminal connection 2

Table 2. Two different terminal connections (i = 1 at the near end
and i = 2 at the far end).

Terminal connection 1 Terminal connection 2
Wire 0 Ground

Wire 0 × Ri0

Wire 1 Ri1 Ri1

Wire 2 Ri2 Ri2

Wire 3 Ri3 Ri3
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30.
The plane-wave electromagnetic field of oblique incidence is

considered and the incident angles are θp = 45◦, ϕp = −60◦, and
θE = 90◦, respectively, with the definitions shown in Figure 2.
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Figure 2. Definitions of the incident angles of the plane-wave
electromagnetic field.

(a) (b)

(c)

Figure 3. The real part of the voltage induced on R11. (a) Case 1.
(b) Case 2. (c) Case 3.
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3.1. Frequency Domain Analysis

The incident wave of the unit electric field is applied for the frequency
domain analysis. For each sample, the voltages and powers of the loads
induced by external fields are computed by using the BLT equation.
Figure 3 shows the real parts of the voltage V̂11 on the load R11 in
the three cases. In case 1 and case 2, the curves of the Re (V̂11)
with different rotation angles are symmetric around the y = 0, so
the averages of Re (V̂11) in cases 1 and 2 are zero. In case 1, the
configuration has not the ground and relatively positions of the wires
do not change with the rotation angle, so the per-unit-length (p.u.l.)
parameters, such as capacitance and inductance, do not change with
the rotation angle. As a result, only the term Ŝ in (1) changes with
the angle α. In cases 2 and 3, not only the term Ŝ but also the p.u.l.
parameters change with the angle α because of the ground. Thus, it is
difficult to conjecture the trend of the induced voltages changing with

(a) (b)

(c)

Figure 4. The real parts of the induced voltages at 250MHz. (a)
Case 1. (b) Case 2. (c) Case 3.
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(a) (b)

(c)

Figure 5. The imaginary parts of the induced voltages at 250MHz.
(a) Case 1. (b) Case 2. (c) Case 3.

the angle α directly.
To get the trend of the induced voltages when the bundle rotates,

Figures 4 and 5 show the real and imaginary parts of the induced
voltages changing with the rotation angle α at 250 MHz, respectively.
It can be tentatively concluded that both the real and imaginary parts
of all the induced voltages are sine functions of the rotation angle α
with cycle 2π whatever the ground exists or the bundle has different
terminal connections. To validate this conclusion, Figure 6 shows the
comparison between the induced voltage V̂11 and the sine functions,
whose parameters are listed in Table 3, and they agree well with each
other.

Figure 7 shows the standard deviations of the real and imaginary
parts of the induced voltages in case 1. The induced power P is an
important quantity in the EMP effect analysis and can be computed
from the induced voltage V̂ by the expression

P (ω) =
1

2R

∣∣∣V̂ (ω)
∣∣∣
2
. (3)
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(a) (b)

(c)

Figure 6. The comparison between the voltage V̂11 and the sine
functions at 250MHz. (a) Case 1. (b) Case 2. (c) Case 3.

(a) (b)

Figure 7. The standard deviations of the real and imaginary parts
of the induced voltages in case 1. (a) Standard deviations of the real
parts. (b) Standard deviations of the imaginary parts.
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Table 3. The values of the parameters in the sine functions.

Ai θi Ci Bi Φi Di

Case 1

(i = 1)
9.71× 10−4 4.09 0.00 5.35× 10−4 −1.20 0.00

Case 2

(i = 2)
6.94× 10−4 4.48 0.00 9.54× 10−4 3.91 0.00

Case 3

(i = 3)
13.5× 10−4 3.94 −14.6× 10−4 6.80× 10−4 3.87 −9.47× 10−4

(a) (b)

Figure 8. The averages and standard deviations of the induced powers
obtained statistically. (a) Averages. (b) Standard deviations.

Figure 8 shows the averages and standard deviations of each load’s
induced power and the total induced power, which is the sum of
the powers induced on all the loads, in the first configuration. The
results indicate that each load’s induced power’s standard deviation is
of the similar size with its average; however, the total induced power’s
standard deviation is much smaller than its average. This means that
single load’s induced power rather than the total induced power can
reach zero when the bundle rotates. Figure 9, which shows each load’s
induced power and the total induced power change with the rotation
angle α at the frequency of 250 MHz, proves this conclusion. Since
the induced voltage is the sine function of the rotation angle α, the
induced power is also the sine function of the angle α, but with the
cycle of π, as shown in Figure 9.

3.2. Time Domain Analysis

The incident wave modeled by the biexponential pulse E0(t) =
kE0[exp(−βt) − exp(−αt)], where k = 1.3, E0 = 50 kV/m, α =



176 Xie et al.

Figure 9. Each load’s induced power and the total power change with
the angle α at 250MHz.

Figure 10. The transient in-
duced voltages at 5 ns in case 2.

Figure 11. The standard devi-
ations of the induced voltages in
case 2.

6.0 × 108 s−1, and β = 4.0 × 107 s−1, is used for the time domain
analysis. For each sample, the voltages and powers induced on the
loads in the time domain are computed by using the BLT equation
together with IFT. Because the real and imaginary parts of the induced
voltage are the sine functions of the rotation angle α in the frequency
domain analysis, it is not difficult to get that the transient induced
voltage V is also the sine function of the rotation angle α. Figure 10
shows the induced voltage on each load in case 2 at the time of 5 ns.
In this configuration, the induced voltages on all the loads are sine
functions of the angle α with the cycle of 2π and the average about 0.
The standard deviations of all the loads’ induced voltages computed
statistically are shown in Figure 11.
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(a) (b)

Figure 12. The averages and standard deviations of the induced
powers in case 2. (a) Averages. (b) Standard deviations.

The induced power P can be easily calculated by using the
expression P (t) = V 2(t)/R. Then the averages and standard
deviations of each load’s power and the total power can be computed
statistically and are shown in Figure 12. The results imply that the
total induced power has the maximum average 148.7W at 5.3 ns, when
the standard deviation is 18.9 W.

4. EFFICIENT ESTIMATION METHOD

In Section 4, the effect of the bundle rotation on the external fields
coupling to the wire bundle has been studied and the averages and
standard deviations of the induced voltages and powers have been
estimated statistically. However, the estimation of the averages
and standard deviations by the statistical analysis takes lots of
computation, attributed to the need to compute N samples of the wire
bundle. In order to estimate the averages and standard deviations of
the induced voltages and powers quickly, an efficient estimation method
is put forward.

4.1. Estimation in the Frequency Domain

From the above analysis, the real and imaginary parts of the induced
voltages on all the loads are the sine functions of the rotation angle α,
so the ith load’s induced voltage V̂i can be expressed as

V̂i(α, ω) = Ai(ω) sin (α + θi(ω)) + Ci(ω)
+j [Bi(ω) sin (α + φi(ω)) + Di(ω)] (4)
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where Ai(ω), θi(ω), Ci(ω), Bi(ω), ϕi(ω), and Di(ω) are unknown
quantities to be determined. From (4), we have

V̂i(α + π/2, ω) = Ai(ω) cos (α + θi(ω)) + Ci(ω)
+j [Bi(ω) cos (α + φi(ω)) + Di(ω)] (5)

V̂i(α + π, ω) = −Ai(ω) sin (α + θi(ω)) + Ci(ω)
+j [−Bi(ω) sin (α + ϕi(ω)) + Di(ω)] . (6)

Combing (4) with (6) yields

Ci =
1
2
Re

[
V̂i(α) + V̂i(α + π)

]
(7)

Di =
1
2
Im

[
V̂i(α) + V̂i(α + π)

]
. (8)

From (4) and (5), Ai and Bi can be written as

Ai =

√(
Re

(
V̂i(α)

)
− Ci

)2
+

(
Re

(
V̂i(α + π/2)

)
− Ci

)2
(9)

Bi =

√(
Im

(
V̂i(α)

)
−Di

)2
+

(
Im

(
V̂i(α + π/2)

)
−Di

)2
. (10)

Then sin(α + θi) and cos(α + θi) can be obtained by

sin(α + θi) =
(
Re

(
V̂i(α)

)
− Ci

)
/Ai (11)

cos(α + θi) =
(
Re

(
V̂i(α + π/2)

)
− Ci

)
/Ai. (12)

If cos(α + θi) ≥ 0, then

θi = arcsin
(

1
Ai

(
Re

(
V̂i(α)

)
− Ci

))
− α. (13)

Otherwise,

θi = π − arcsin
(

1
Ai

(
Re

(
V̂i(α)

)
− Ci

))
+ α (14)

The angle φi can be computed similarly. The above equations imply
that the unknown quantities Ai, θi, Ci, Bi, φi, and Di can be
determined with the values of V̂i(α), V̂i(α+π/2), and V̂i(α+π), where
the angle α can be any value in [0, 2π] and is set to 0 for convenience.
This implies that the induced voltage V̂i can be determined once V̂i(0),
V̂i(π/2), and V̂i(π) are computed and only 3 rather than N samples of
the wire bundle have to be computed.
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The rotation angle α is uniformly distributed in [0, 2π], so the
average and standard deviation of the function y(α) can be computed
by

〈y(α)〉 =
1
2π

∫ 2π

0
y(α)dα (15)

σ(y(α)) =

√
1
2π

∫ 2π

0
(y(α)− 〈y〉)2 dα =

√
〈y2〉 − 〈y〉2. (16)

With (4), (15), and (16), the induced voltage’s average and the real
and imaginary parts’ standard deviation can be written as,〈

V̂i

〉
= Ci + jDi (17)

σ
(
Re

(
V̂i

))
= Ai/

√
2 (18)

σ
(
Im

(
V̂i

))
= Bi/

√
2 (19)

By Equation (3), the average and standard deviation of the induced
power can be computed and are given by

〈Pi〉 =
1

4Ri

(
A2

i + B2
i + 2C2

i + 2D2
i

)
(20)

σ(Pi) =
1

4Ri

{
2 [AiBi cos (θi − φi) + 4CiDi]

2 − 32C2
i D2

i

+
1
2

(
A4

i + B4
i

)
+ 8

(
A2

i C
2
i + B2

i D2
i

)−A2
i B

2
i

}1/2

(21)

Then the average and standard deviation of the total induce power Pt

are given by

〈Pt〉=
n∑

i=1

1
4Ri

(
A2

i + B2
i + 2C2

i + 2D2
i

)
(22)

D(Pt) =
n∑

i=1

n∑

k=1

1
16RiRk

{
[AiAk cos(θi−θk)+4CiCk]

2−A2
i A

2
k

2
−16C2

i C2
k

+ [AiBk cos (θi − φk) + 4CiDk]
2 − A2

i B
2
k

2
− 16C2

i D2
k

+ [BiAk cos (φi − θk) + 4DiCk]
2 − B2

i A2
k

2
− 16D2

i C
2
k

+ [BiBk cos (φi − φk) + 4DiDk]
2 − B2

i B2
k

2
− 16D2

i D
2
k

}
(23)

σ(Pt) =
√

D(Pt), (24)
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where D(Pt) is the variance of the total induced power.
The induced voltage vector V̂ in case 1 is computed first when

the rotation angle α is 0, π/2, or π. Then the above method is used
to estimate the standard deviations of the real and imaginary parts of
the induced voltages and the results are shown in Figure 13, which are
in a good agreement with Figure 7.

Figure 14 shows the averages and standard deviations of all the
loads’ power and the induced powers obtained by the Equations (20) ∼
(24), and agrees well with Figure 8.

(a) (b)

Figure 13. Standard deviations of the real and imaginary parts of
the induced voltages in case 1 obtained by the proposed method. (a)
Standard deviations of the real parts. (b) Standard deviations of the
imaginary parts.

(a) (b)

Figure 14. The averages and standard deviations of the powers in
case 1 are estimated by using the efficient method. (a) Averages. (b)
Standard deviations.
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4.2. Estimation in the Time Domain

The induced voltages in the time domain are also the sine function of
the angle α. However, the expressions of the induced voltages in the
time domain are much simpler than those in the frequency domain,
because the induced voltages in the time domain have no imaginary
parts. As a result, the ith load’s voltage Vi can be written as

Vi(α, t) = Mi(t) sin (α + ϕi(t)) + Ni(t) (25)

where Mi, ϕi, and Ni are unknown quantities to be determined.
Similarly as in the frequency domain, Mi, ϕi, and Ni can be determined
once Vi(0), Vi(π/2), and Vi(π) are computed. If SPICE models for
transmission lines excited by external fields are used to compute the
induced voltages in the time domain directly [4, 27], Mi, ϕi, and Ni

can be determined very quickly.
The quantities Mi, ϕi, and Ni can be calculated by the following

equations,

Ni = (Vi(0) + Vi(π)) /2 (26)

Mi =
√

(Vi(0)−Ni)
2 + (Vi(π/2)−Ni)

2 (27)

sin(ϕi) = (Vi(0)−Ni) /Mi (28)

cos(ϕi) = (Vi(π/2)−Ni) /Mi. (29)

If Vi(π/2)−Ni ≥ 0, then

ϕi = arcsin ((Vi(0)−Ni) /Mi) ; (30)

Otherwise,
ϕi = π − arcsin ((Vi(0)−Ni) /Mi) (31)

With (15) and (16), the averages and standard deviations of the
induced voltages and powers can be written as

〈Vi〉 = Ni (32)

σ(Vi) = Mi/
√

2 (33)

〈Pi〉 =
1

2Ri

(
M2

i + 2N2
i

)
(34)

σ(Pi) =
√

D(Pi) =
M2

i

2
√

2Ri

√
M2

i + 16N2
i (35)

〈Pt〉 =
n∑

i=1

1
2Ri

(
M2

i + 2N2
i

)
(36)
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σ(Pt) =
√

D(Pt)

=

√√√√√√√√√

n∑
i=1

n∑
k=1

1
8RiRk

{
2 [MiMk cos (ϕi − ϕk) + 4NiNk]

2

−32N2
i N2

k −M2
i M2

k

} .(37)

Figure 15 shows the standard deviations of the induced voltages
in case 2 obtained by the proposed method. The results agree well
with those in Figure 11, but take much less time than the statistical
method does. The averages and standard deviations of the induced

Figure 15. The standard deviations of the induced voltages in case 2
are estimated by the proposed method.

(a) (b)

Figure 16. The averages and standard deviations of the induced
powers in case 2 are estimated by the proposed method. (a) Averages.
(b) Standard deviations.
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powers in case 2 are estimated and shown in Figure 16, which agrees
well with Figure 12.

5. CONCLUSIONS

This paper studies the effect of the bundle rotation on external fields
coupling to the bundle and presents an efficient method to estimate the
averages and standard deviations of the voltages and powers induced
on the loads. The results show that both the real and imaginary parts
of the induced voltages in the frequency domain and the transient
induced voltages in the time domain are all sine functions of the
rotation angle. The proposed estimation method, which needs only
three times repeated calculations, can quickly provide the averages
and standard deviations of the induced voltages and powers and the
results agree well with those from statistical analysis.
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