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ACCURATE REPRESENTATION OF EXCITATION AND
LOADING FOR ARBITRARILY SHAPED ANTENNAS
COMPOSED OF CONDUCTING SURFACES IN THE
METHOD OF MOMENTS
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Abstract—In this work, a new method is introduced to model the
excitation and loading for antennas composed of arbitrarily shaped
conducting surfaces treated by the elctric field integral equation
method described by Raw-Wilton-Glisson (RWG). Instead of using
a single non-boundary edge to represent a zero-width exciting gap
according to the conventional method, the proposed method uses either
single or multiple pairs of facing boundary edges to form a real gap of
arbitrary shape and width. The new method has many advantages over
the conventional (zero-width) source/load representation considering
the flexibility in shaping the gap to fit the antenna surface and the
accuracy of the obtained results especially for the antenna input
impedance and the input current distribution. The new method
is described mathematically in detail. Modified basis functions are
described for the gap source/load. Numerical results are obtained
to investigate the dependence of the antenna input impedance and
the current distribution along the gap length on the gap width, the
geometrical shape of the gap and the surface segmentation resolution
along the gap length.

1. INTRODUCTION

Modeling the feeding sources and loads in three-dimensional problems
of multi-port antennas and waveguide sections is one of the most
important and critical issues in the computational electromagnetic
techniques. For dependable results, such models should accurately
represent the actual source or load. This includes the actual geometry,
electric properties, voltage and/or current distributions, internal source
or load impedance and its actual distribution.
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In most antenna problems, the key variables of interest are
typically the input impedance at a particular feed location and the
resulting radiation pattern, directivity and gain. The easiest way to
compute these is to consider the antenna in its transmitting mode,
requiring a reasonable model of the feed system at the input terminals.
Practically, an antenna is fed by an transmission line or by a coaxial
feed through a ground plane. These various feed systems affect the
antenna impedance characteristics in different ways. Many types of
source models have been applied to the method of moments (MoM).
The most commonly used source model is the so-called delta gap
source model. The delta-gap source treats the feed as if the electric
field impressed by the feed line exists only in the gap between the
antenna terminals and is zero outside, i.e., no fringing. This method
typically produces less accurate results for input impedance though it
still performs very well for computing radiation patterns [1, Chapter 4,
p. 65]. According the assumption of this source model, the element of
the voltage vector corresponding to the driving segment has unit value
and the other elements have values of zero voltage. This model has
been used extensively because of its simplicity. However, one of its
drawbacks is that the current at the feed segment depends on the
length of the divided segments [2].

For arbitrarily-shaped antennas composed of conducting surfaces,
the gap voltage source model is appropriate to model the excitation
in the MoM. In [3], Raw-Wilton-Glisson (RWG) basis functions are
defined to expand the unknown current distribution on the conducting
surface. In [4, Chapter 4, p. 61, 65] and [5], the gap source is
represented by a non-boundary edge across which a voltage drop equal
to the exciting voltage is enforced. This is implemented by setting
the corresponding element of the V vector in the MoM equation,
Z I = V , to the value of the applied voltage divided by the length
of the non-boundary edge representing the gap source. In this model,
the excitation gap width is assumed zero (or infinitesimal), which may
not be the actual case. Using the method of [4, Chapter 4, p. 61,
65] and [5], there is no way to represent an excitation gap with a
non-zero width. This actually affects the accuracy of the evaluated
input impedance, which is strongly dependent on the exciting source
representation.

It may be worthwhile to mention that more accurate and realistic
models are described to represent the source in the method of moments
in [6, 7].
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2. NONZERO-WIDTH GAP SOURCE
REPRESENTATION

In the EFIE technique described in [3], the conducting surface is
modeled using a number of N connected triangular patches as shown in
Figure 1(a). Each triangular patch has three edges. Any two adjacent
triangular patches share an edge, which is referred to as a nonboundary
edge. An edge that belongs to only one triangular patch is referred to
as a boundary edge and lies on the conducting surface rim.

Boundary

Edges
Nonboundary

Edges

(a) (b)

Figure 1. (a) Triangular-patch model of a conducting surface.
(b) Two adjacent triangular patches.

For a computational model of the conducting surface, the
triangular patches and the nonboundary edges are indexed as shown
in Figure 1(b). An unknown linear current density is assumed
perpendicularly crossing each of the nonboundary edges. This current
density is assumed constant over the nonboundary edge. The
distribution of the linear current density on the conducting surface
is expressed as

K =
N∑

m=1

Kmfm (1)

where N is the number of the nonboundary edges of the surface
model, Km is the unknown linear current density crossing the mth
nonboundary edge and fm is the RWG basis function defined over the
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areas of Pm+ and Pm− as

fm(r) =





lm
2Sm+

ϑ+
m(r), r ∈ Pm+

lm
2Sm−

ϑ−m(r), r ∈ Pm−

0, elsewhere

(2)

where lm is the length of the nonboundary edge Lm, Sm+ and Sm− are
the areas of the triangular patches Pm+ and Pm− , respectively, ϑ+

m(r)
and ϑ−m(r) are the vectors defined as shown in Figure 1(b), and r is the
position vector of an arbitrary point on the conducting surface relative
to the origin.

A matrix equation is formulated as

Vm =
N∑

n=1

ZmnKn, m = 1, 2, . . . , N (3)

where Vm is excitation voltage difference applied across the mth
nonboundary edge and Zmn is the mutual impedance between the mth
and nth nonboundary edges, which is evaluated as described in [5].

The linear system of equations described by (3) has N equations
in N unknowns and can be solved for the unknown current distribution
on the conducting surface.

2.1. The Conventional Method of Excitation Using Local
Ports

The conventional method of attaching excitation voltage source to a
conducting surface is described in [4] for a point-matching MoM and
in [5] for a Galerkin’s technique. In this section we generalize this
method to attaching multiple sources to a conducting surface. A source
port is a part of a conducting body over which an excitation voltage can
be imposed. Let a number of source ports be defined on a conducting
surface and let an integer x represent a source port index within all
the defined source ports. The conventional method uses a nonboundary
edge Lmx as that shown in Figure 2 to represent the infinitesimal-width
gap source, where mx is the index of the specified nonboundary edge
within all the nonboundary edges of the model. The current component
normally crossing the edge Lmx is equal to Imx , which is continuous
across Lmx and constant along it. The corresponding linear current
density is, thus, Kmx = Imx/Lmx , which is also constant along Lmx .

In some specific antenna feeding problems, the antenna has two
separated arms or detached parts between which a voltage source
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Figure 2. Conventional model
for an infinitesimal gap source
model.
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Figure 3. Triangular patch
model for the planar spiral an-
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should be applied, whereas the triangular-patch surface model for such
an antenna does not possess a non-boundary edge to represent the
excitation gap. An example for this case is the spiral antenna shown in
Figure 3. In the conventional approach described above, to handle this
case, an extra part, which is not a part of the actual antenna structure,
must be added to the antenna model to attach the two separated parts
or arms to enable the application of the exciting voltage across a gap
represented by a non-boundary edge between the two antenna arms.
The drawback of this conventional approach is that this part, which is
artificially added to the antenna model just to enable the application
of gap excitation, may be considered a modification of the antenna
structure, which causes the surface model to be different from the
actual antenna and thus affecting the accuracy of the obtained results.
The artificially added part to the antenna model may contribute to the
radiation and, hence, the (modified) antenna characteristics including
the antenna impedance and radiation pattern may significantly differ
from those of the actual antenna. An example for such a case is that
shown in Figure 3 for a triangular patch model of a two-arm planar
equiangular spiral antenna. A zoom-in view focused on the central part
of the antenna is presented in Figure 4(a). As shown in the figure, the
two arms are detached from each other. To apply a gap excitation to
such an antenna, one may have to add a number of extra triangular
patches to the antenna model to form a bowtie-like segment as that
shown in Figure 4(b) in gray color. Adding this extra segment to the
antenna model enables the application of an exciting voltage source
across the infinitesimal gap represented by the central non-boundary
edge which is shown as a thick line in Figure 4(b).
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Figure 4. Zoom-in view at the central part of the spiral antenna
showing (a) the circular arc edges between which an excitation voltage
is required to be applied, and (b) an artificially added bowtie segment
(the grayed triangles) to provide a central non-boundary edge across
which an excitation voltage (gap source) can be applied.

2.2. The New Method of Excitation Using Realistic Local
Port Model

In this paper, we introduce a new method to model the gap source.
Instead of using a single non-boundary edge to represent the exciting
gap, the proposed method uses a single or multiple pairs of facing
boundary edges that form a real gap of arbitrary shape and width.
This method has many advantages over the conventional (zero-width)
gap source representation described above: Firstly, it does not require
the addition of any extra segments to the antenna model. Secondly,
unlike the conventional method that necessitates zero-width of the gap
across which the exciting voltage difference is applied, the proposed
method enables the representation of a gap source with arbitrary gap
width. Thirdly, it enables the spatial variation of the applied excitation
voltage (for the same source) along the length of the gap. Moreover, the
proposed method enables the exciting gap to take arbitrary geometrical
shape, which makes it a more appropriate model for exciting arbitrarily
shaped structures.

A triangular-patch model for a conducting structure excited by a
gap source of nonzero gap width is shown in Figure 5. The structure
possesses 6 non-boundary edges and 12 boundary edges. Each non-
boundary edge has unknown current crossing it normally. No current
is allowed to cross a boundary edge unless it belongs to an excitation
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Figure 5. Triangular-patch model for a conducting surface excited by
a gap of non-zero width. The surface model has 12 boundary edges, 6
non-boundary edges, and 7 current edges.

gap. The boundary edges constituting the excitation gap, shown in
Figure 5, have current components passing normal to them through
the excitation gap. This will be discussed in detail later on. In the
EFIE formulation, this pair of boundary edges has unknown normal
current component. Thus, the unknown currents to be determined
using the MoM are those normally crossing the nonboundary edges as
well as those passing through each pair of boundary edges constituting
the excitation gaps. Considering the case shown in Figure 5, the
structure has six non-boundary edges and one pair of boundary edges
constituting the excitation gap. Hence, the total number of the
unknown currents is 7. In the following discussions, all the edges (both
boundary and nonboundary) that have normal current component will
be referred to as current edges. According to this description, a current
edge may be a single nonboundary edge or a pair of boundary edges
constituting an excitation gap.

Instead of representing the gap source by a non-boundary edge
across which a voltage difference is applied, the source gap is
represented as a pair of boundary edges: L+

mxi
and L−mxi

as shown in
Figure 6, where mxi is the global index of the specified boundary edges
pair within all the current edges of the model, i is its index within the
group of boundary edges pairs representing the specified source port
and x is the index of the source port within all the source ports on the
conducting surface model.
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Figure 6. Proposed model for a gap source of non-zero width.

A displacement current Imxi is assumed flowing across the gap
where the positive reference direction is from the positive edge of the
gap source L+

mxi
to the negative edge L−mxi

. The displacement field
lines are normal to the gap edges at their start and end points. For
source current continuity, the component of the current flowing out
of Pm+

xi
and normally crossing the edge L+

mxi
should be equal to the

current component flowing into Pm−
xi

and normally crossing the edge
L−mxi

. Of course, this current component should be equal to Imxi .
According to the above description of the gap source representa-

tion, the unknown gap current Kmxi should be included in the unknown
current vector [I] of the MoM matrix equation and the gap voltage Vmxi

should be included in the voltage vector [V ]. This means that each gap
source represented as a pair of facing boundary edges increases the di-
mensions of the Z matrix by adding a row: Zmxin;n = 1, 2, . . . , N +1
and a column: Zmmxi ;m = 1, 2, . . . , N + 1 corresponding to Vmxi

and Kmxi , respectively. These additional impedance elements on their
additional row and column of the matrix [Z] should be evaluated.
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3. NON-ZERO WIDTH GAP LOAD REPRESENTATION

A load port can be represented in the same way of representing a source
port but with some differences. A load impedance is represented by a
load gap which is modeled as a pair of boundary edges: L+

mli
and L−mli

,
where mli is the global index of the current edge within all the current
edges of the model and i is its index within the group of boundary
edges pairs representing the load port of index l within all the load
ports in the model. The difference between the representation of a
source and that of a load is that instead of including an additional gap
voltage Vmxi in the voltage vector [V ] corresponding to each pair of
boundary edges in a source port, a load impedance ZL

li
is added to the

element of the matrix [Z] that corresponds to each pair of boundary
edges in the load port. This is described in detail as follows.

If a lumped load impedance ZL
li

is attached to the conducting
surface at the current edge number mli , the connection is considered
in series and, hence, it results in additional voltage drop equal to
ZL

li
Imli

on crossing this current edge, which is added to the right hand
side of (3) to get

Vmli
= ZL

li
Imli

+
N∑

n=1

Zmli
nIn (4)

This means that attaching a series lumped load impedance to a
specific segment of the conducting surface is accounted for by adding
the value of the load impedance to the original value of the self
impedance of this segment in the matrix [Z]. Hence, one gets the
modified self impedance expressed as

Z ′mlimli
= Zmlimli

+ ZL
li

(5)

4. BASIS FUNCTION FOR THE GAP SOURCE AND
THE GAP LOAD

Up to the author’s knowledge, all the previous publications using the
RWG basis functions require that the basis functions are defined only
for the nonboundary edges, which means that each of the boundary
edges has no current component crossing it. In the newly proposed
method, the basis functions are not only defined for the nonboundary
edges but also for each pair of boundary edges in a source or load
gap. This requires the definition of a new basis function to describe
the conduction current on the triangular patches Pm+

x
and Pm−

x
on

the sides of the excitation gap, where mx represents the index of the
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specified pair of boundary edges within all the current edges. The
following definition of the source/load basis function applies only when
the pair (L+

mx
, L−mx

) belongs to a source port or a load port.

fmx(r) =





l+mx

2Sm+
x

ϑ+
mx

(r), r ∈ Pm+
x

l+mx

2Sm−
x

ϑ−mx
(r), r ∈ Pm−

x

(6)

It should be noted from the definition of fmx given by (6), that
unlike the basis functions defined for the nonboundary edges, the
component of fmx normal to the boundary edges of the excitation
gap suffers a discontinuity when crossing the gap from Pm+

x
to Pm−

x
.

Furthermore, the linear current density crossing the edge L+
mx

is
K+

mx
= Imx/l+mx

at all the points on L+
mx

, whereas the linear current
density crossing the edge L−mx

is K−
mx

= Imx/l−mx
at all the points on

L−mx
. Thus the linear current densities crossing L+

mx
and L−mx

are not
the same. Nevertheless, this has no concern with the current continuity
across the gap source as the current components normal to L+

mx
and

L−mx
are equal. Hence, the current flowing into the gap source is equal

to the current flowing out of it.
Let us define

G
(
r, r′

)
=

e−jko|r−r′|

|r− r′| , (7)

and
Gcp

(
r′

)
= G

(
rcp, r′

)
(8)

where rcp is the centroid of the triangular patch Pp.
By following the procedure applied in [3] and making the necessary

modifications according to the new consideration of the source and load
representation, we arrive at the following expressions for the elements
of the Z matrix.

Zmn = jω αmn + βmn (9)

where,

αmn = αm+n+

mn + αm+n−
mn + αm−n+

mn + αm−n−
mn (10)

βmn = βm+n+

mn + βm+n−
mn + βm−n+

mn + βm−n−
mn (11)

αm+n+

mn =
µo

16π
1

Sn+

ϑ+
cm
·




∫

Pn+

ϑ+
n Gcm+dS′


 (12)
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αm+n−
mn =

µo

16π
1

Sn−
ϑ+

cm
·




∫

Pn−

ϑ−n Gcm+dS′


 (13)

αm−n+

mn =
µo

16π
1

Sn+

ϑc
−
m ·




∫

Pn+

ϑ+
n Gcm−dS′


 (14)

αm−n−
mn =

µo

16π
1

Sn−
ϑc−m ·




∫

Pn−

ϑ−n Gcm−dS′


 (15)

βm+n+

mn =
1

jω4πεoSn+

∫

Pn+

Gcm+dS′ (16)

βm+n−
mn =

−1
jω4πεoSn−

∫

Pn−

Gcm+dS′ (17)

βm−n+

mn =
−1

jω4πεoSn+

∫

Pn+

Gcm−dS′ (18)

βm−n−
mn =

1
jω4πεoSn−

∫

Pn−

Gcm−dS′ (19)

5. DISTRIBUTED GAP SOURCES OF ARBITRARY
SHAPE

For a wide strip dipole antenna as that shown in Figure 7, the gap made
to apply a voltage source excitation should have its length equal to the
width of the strip dipole. Such a wide dipole should be divided along
its width into many segments for accurate computation of the current
distribution on the antenna surface and which allows the accurate
computation of the antenna input impedance and the near field and
far field quantities. Thus, each of the gap edges has multiple segments
(boundary edges) each of which is a boundary edge in the triangular
patch model of the strip dipole. A voltage difference is applied between
the boundary edges of each of the pairs: (L+

m11
, L−m11

), (L+
m12

, L−m12
),

and (L+
m13

, L−m13
) as shown in Figure 7. If the excitation voltage is

assumed to be uniform over the edge length (i.e., the strip width) then
the applied voltage for each pair of the boundary edges forming the
gap should be the same. The gap excitation can be seen as parallel
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combination of the voltage sources applied between the edges of each
pair of the boundary edges.

5.1. Calculating the Input Impedance of a Conducting
Surface Excited by Distributed Gap Source

The input impedance of the wide-strip dipole antenna evaluated using
an arbitrarily-shaped distributed gap source model is obtained by
calculating the parallel combination of Z in

11, Z in
12, and Z in

13, where

Z in
11 =

Vm11

Im11

, Z in
12 =

Vm12

Im12

, Z in
13 =

Vm13

Im13

(20)

where Im11 , Im12 , and Im13 are the surface currents flowing out of the
triangular patches Pm+

11
, Pm+

12
, and Pm+

13
, respectively, and normally

crossing the boundary edges L+
m11

, L+
m12

, and L+
m13

, respectively. These
currents can be obtained using the well known procedure of the MoM.
To calculate the input impedance one should calculate Z in

11, Z in
12, and

Z in
13 using (9) and then the input impedance is calculated as follows.

1
Z in

=
1

Z in
11

+
1

Z in
12

+
1

Z in
13

(21)

Also, if we refer to Figure 7, we can substitute for voltage vector
elements appearing in (20) as:

Vm11 = V S
11 (22a)
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Vm12 = V S
12 (22b)

Vm13 = V S
13 (22c)

5.2. Arbitrarily-Shaped Distributed Gap Source with
Internal Impedance

The proposed method enables the excitation gap to have arbitrary
geometry as shown in Figure 8. The exciting voltages can be
distributed along the gap as shown in the same figure. The applied
voltage sources can have internal impedances as those shown in
Figure 8. In this case, the Z-matrix should be modified by adding
the internal impedances to the original values of the corresponding
Z-matrix elements as follows:

Z ′m11m11
= Zm11 m11 + ZS

11 (23a)

Z ′m12m12
= Zm12 m12 + ZS

12 (23b)

Z ′m13m13
= Zm13 m13 + ZS

13 (23c)

6. RESULTS AND DISCUSSIONS

In the following discussions, we present some numerical results to
examine the dependence of the antenna input impedance on the
excitation gap width, the effect of the geometrical shape of the
excitation gap on the antenna input impedance. Also, we study
the dependence of the antenna input impedance on the resolution or
segmentation along the gap length.

6.1. Effect of the Excitation Gap Width on the Antenna
Input Impedance

The capability of the modeling a gap source of nonzero width in
the MoM solution using the method described in Section 2 enables
the study of the dependence of the antenna input impedance on the
excitation gap width. An example is a straight strip dipole antenna
of 7.255 cm length and 1.81mm width operating at 2 GHz. The
geometrical model of the strip dipole is shown in Figure 9. The dipole
has two arms each of which is divided into seven rectangular segments
along its length and one segment along its width. Each rectangular
segment is divided into two triangular patches. The dependence of
the input impedance on the gap width is investigated in two cases.
In the first case, the total dipole length Ld, is kept constant while
increasing the gap width Wg. This means that arm length La varies
with varying the gap width, i.e., La = (Ld−Wg)/2. In the other case,
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Figure 9. Dependence of a straight strip dipole antenna impedance
on the gap width of the exciting gap source. The strip dipole has a
length of 7.255 cm and a width of 1.81mm. The operating frequency
is 2 GHz.

the arm length is kept constant while varying the gap width, which
means that the total dipole length increases with increasing the gap
width, i.e., Ld = 2La+Wg. In both cases, the resistive and the reactive
parts of the input impedance decrease with increasing the gap width
as shown in Figure 9. The reactive part shows stronger dependence on
the gap width as it decreases much more rapidly than the resistive part.
The second case, in which the arm length is kept of constant length
while the total dipole length increases with increasing the gap width,
shows less dependence on the gap width. This means that the input
impedance of the strip dipole antenna is much more dependent on the
length of the conducting arms rather than the gap width. However, the
latter has a significant effect on the antenna impedance, especially its
reactive part. With increasing the gap width, the strip dipole antenna
impedance becomes more capacitive.

6.2. Current Distribution along the Excitation Gap Length

One of the major advantages of the proposed technique is its ability
of studing the current distribution along the edges of the gap. The
conventional technique uses only one (non-boundary) edge for the gap
source representation, which does not allow the variation of the current
along the gap. The newly proposed method allows the voltage source to
be represented by multiple (adjacent) edges along the gap and, thereby,
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enables the current distribution to be correctly distributed along the
gap length. This becomes more essintial in the cases of long excitation
gap.

The following four figures show the current distribution along the
excitation gap length for a strip dipole excited by a gap source of 1 mm
width. In these four cases, the gap length varies as: 20 mm for the
results presented in Figure 10, 7.255 mm for Figure 11, 3.6275mm for
Figure 12 and, finally, 1.451 mm for Figure 13. In all these cases, the
number of segments taken along the gap length is 6. The objective of
such a presentation is to show the necessity of using multiple segments
along the gap length especially for long gaps.

Figure 10 shows the variation of the input current to a strip dipole
antenna along the gap length in the case of a long gap (20 mm). The
current has singular behavior at the ends of the gap edge, which is
known as the edge behavior. Except for the two ends of the excitation
gap, the current seems to be constant along the gap length. This is
not the same behavior in the case of a narrow strip dipole (1.451 mm)
for which the current distribution is presented in Figure 13 in spite of
dividing the gap length to the same number of segments. The current
distribution over the gap length seems to require a less number of
segments along the narrow gaps.
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Figure 10. Current distribution (magnitude) along the excitation
gap length. Dipole length = 7.255 cm, width = 2 cm, gap width 1 mm,
number of segments along one arm = 7, number of segments along the
strip width = 12, and f = 2 GHz.
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Figure 11. Current distribution (magnitude) along the excitation
gap length. Dipole length = 7.255 cm, width = 0.7255 cm, gap width
1mm, number of segments along one arm = 7, number of segments
along the strip width = 12, and f = 2 GHz.

6.3. Dependence of the Antenna Input Impedance on the
Geometrical Shape of the Excitation Gap

The method proposed in Section 2 to model a gap source of arbitrary
shape is applied here to construct a gap source excitation of a planar
spiral antenna whose geometrical model is shown in Figure 3. Recall
that, as described in Section 2, the conventional gap source excitation
of such an antenna requires the addition of extra triangular segments
to the geometrical model of the spiral antenna to enable the application
of a voltage source across the gap represented by the central boundary
edge as shown in Figure 4(b). The newly proposed method enables us
to model a circular gap with multiple boundary edges and distributed
voltage excitation. The circular gap model is shown in Figure 14(a)
where some extra triangular segments, shown in gray color in Figure 14,
are added to enable the variation of the circular gap diameter. A
straight gap of non-zero width can also be used to excite this antenna
as shown in Figure 14(b).

It may be worth to mention that, in the case of a circular exciting
gap with a diameter equal to the inner diameter of the spiral antenna
as shown in Figure 4(a), no additional segments are required. In this
case, a distributed voltage source can be applied as shown in Figure 15.
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Figure 12. Current distribution (magnitude) along the excitation
gap length. Dipole length = 7.255 cm, length = 0.36275 cm, gap width
1mm, number of segments along one arm=11, number of segments
along the strip width = 6, and f = 2 GHz. Input impedance =
79.04 + j5.68.

In the following discussion, a comparison is made between the
value of the antenna input impedance obtained when a circular gap
source is used and that obtained when a straight gap source is used.
The variation of the input impedance of such an antenna with varying
the diameter of the circular gap model as well as the width of the
straight gap model is presented in Figure 16. As shown in Figure 16(a),
no significant difference between the values of the resistive parts of the
input impedance obtained using the two models. On the other hand,
the values of the reactive parts shows significant dependence on the
geometrical model of the gap source as shown in Figure 16(b). As the
diameter of the circular gap and the width of the straight gap approach
the inner diameter of the spiral, the values of the reactive part of the
input impedance obtained using the two models approach each other.

6.4. Dependence of the Antenna Input Impedance on the
Segmentation along the Gap Length

In this section, the effect of the number of segments taken along the
gap length on the calculated value of the antenna input impedance
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Figure 13. Current distribution (magnitude) along the excitation gap
length. Dipole length = 7.255 cm, width = 0.1451 cm, gap width 1mm,
number of segments along one arm = 21, number of segments along
the strip width = 6, and f = 2 GHz. Input impedance = 74.77+j2.87.
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Figure 14. Triangular patch model for the spiral antenna excited by
(a) a circular gap source, and (b) a straight gap source.
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Figure 15. Application of distributed voltage excitation between the
facing segments of the circular edges constituting the inner circle of a
two-arm spiral antenna.
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Figure 16. Variation of (a) the resistive part and (b) the reactive
part of the input impedance of a planar spiral antenna with changing
the gap width or diameter when using a straight gap model and a
circular gap model of the source. The spiral inner diameter = 1 cm,
end angle = 1.5π (270◦), arm width = 90◦, winding angle = 60◦, and
f = 2 GHz.

is investigated.
As shown in Figure 17, the calculated value of the input impedance

of a strip dipole approaches its exact value with increasing the number
of segments taken along the gap length (strip width). However, good
accuracy of the calculated antenna impedance (about 5% error) is
obtained even when a single segment is taken along the gap length.

As shown in Figure 18, the calculated value of the input impedance
of a wide strip dipole approaches its exact value with increasing the
number of segments taken along the gap length (strip width). However,
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Figure 17. Dependence of the calculated value of the input impedance
of a straight strip dipole antenna on the resolution of segmentation
of the excitation gap edges. Dipole length = 7.255 cm, width =
0.7255 cm, gap width 1 mm, number of segments along one arm = 7,
and f = 2GHz.
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Figure 18. Dependence of the calculated value of the input
impedance of a wide straight strip dipole antenna on the resolution
of segmentation of the excitation gap edges. Dipole length = 7.255 cm,
width = 2 cm, gap width 1mm, number of segments along one arm = 7,
and f = 2GHz.

an error of about 9% of the calculated antenna impedance is obtained
when a single segment is taken along the gap length compared to the
value of the input impedance calculated when 18 segments are taken
along the gap length. Comparing the results presented in Figure 17 to
those presented in Figure 18 for a wider strip dipole, it becomes clear
that the accuracy of the calculated antenna impedance requires finer
segmentation as the excitation edge length becomes wider.

7. CONCLUSION

A method is described to model the excitation and loading for antennas
composed of arbitrarily shaped conducting surfaces. Instead of using
a single non-boundary edge to represent a zero-width exciting gap
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according to the conventional method, the proposed method uses either
single or multiple pairs of facing boundary edges to form a real gap
of arbitrary shape and width. It is shown that the new method
has many advantages over the conventional (zero-width) source/load
representation. The proposed method provides more flexibility in
shaping the gap to fit the antenna surface. Also, the results obtained
for the antenna input impedance and the input current distribution
are much more accurate. Numerical results are obtained to investigate
the dependence of the antenna input impedance and the current
distribution along the gap length on the gap width, the geometrical
shape of the gap and the surface segmentation resolution along the gap
length. It is shown that using multiple segments along the excitation
gap is necessary to get the correct current distribution especially for
long gaps.
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