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Abstract—We present an approach for very quick and accurate
approximation of infinite series summation arising in electromagnetic
problems. This approach is based on using asymptotic expansions
of the arguments and the use of fast convergent series to accelerate
the convergence of each term. It has been validated by obtaining
very accurate solution for propagation constant for shielded microstrip
lines using spectral domain approach (SDA). In the spectral domain
analysis of shielded microstrip lines, the elements of the Galerkin
matrix are summations of infinite series of product of Bessel functions
and Green’s function. The infinite summation is accelerated by leading
term extraction using asymptotic expansions for the Bessel function
and the Green’s function, and the summation of the leading terms is
carried out using the fast convergent series.

1. INTRODUCTION

In many electromagnetic problems, electric fields [1], magnetic fields,
potentials [2], etc. are expressed in terms of infinite series that have
a very slow convergence. For instance, in many multilayered planar
shielded circuits in the evaluation of Green’s function and in SDA [3],
which is used for solving many problems relating to layered media, we
often come across infinite series summations. Also when analyzing
shielded planar structures, cavity backed antennas, devices inside
photonic crystals, time constant in superconductors [4], etc., the
calculation of infinite summations is computationally intensive and
prevents the development of efficient programs [5]. Tounsi et al. have
proposed an extension of the spectral domain immitance approach

Received 8 October 2011, Accepted 30 November 2011, Scheduled 20 December 2011
* Corresponding author: Sidharath Jain (sjain@iastate.edu).



192 Jain and Song

(SDIA) for layered multiple conductor shielded microstrip but it needs
to be accelerated [6].

In order to accelerate the spectral series summation in application
of SDA to shielded microstrip lines, several techniques have been
used [7–9]. In the SDA, using appropriate basis functions and adding
the asymptotic tails of the series, a drastic improvement in accuracy
and speed can be obtained in the evaluation of the elements of K
matrix [10]. Cano et al. [8] have proposed an asymptotic approximation
technique for acceleration, but it involves the computation of Green’s
function in the space domain followed by a double integral to find each
element of the Galerkin matrix. Medina and Horno [11] have used an
asymptotic approximation technique including a partial leading term
extraction of the Bessel’s function with two terms for the analysis
of cylindrical and elliptical microstrip. Tsalamengas and Fikioris [9]
have proposed a technique based on the asymptotic approximation
in the space domain followed by rapidly convergent series [12] to
accelerate the summation of series. Some other good works can
be found in [8, 9]. Also these techniques are specific for shielded
microstrip using Chebyshev polynomial as basis functions. The mid-
point summation (MPS) [13] has also been used for accelerating the
SDA, but it converges slowly compared to the techniques mentioned
in this paper for small values of the argument.

In this paper, we propose a very efficient and accurate technique
to accelerate the convergence of infinite series summation using fast
convergent series. The fast convergent series is obtained using the
Maclaurin series and integral by parts. The approach has been applied
to the numerical acceleration of the SDA for shielded microstrip to
obtain accurate results for the propagation constant. This is done
by accelerating the convergence of series summation appearing in the
elements of the Galerkin matrix using an asymptotic approximation
to the Bessel and Green’s functions, followed by an approximation of
the infinite summation of each leading term with the fast convergent
series. Similar fast convergent series have been used recently for the
evaluation of periodic Green’s function [14]. Thus, this technique
involving asymptotic approximation followed by use of fast convergent
series is very simple to understand and apply to different problems in
electromagnetics.

2. SPECTRAL DOMAIN APPROACH (SDA)

Figure 1 shows a cross section of a shielded microstrip. Region 2 is air,
and region 1 consists of a dielectric material with relative permittivity
and permeability εr and µr, respectively. The structure is uniform and
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Figure 1. Shielded microstrip.

infinite along the z axis. The thin metal casing and thin metal strip
are assumed to be perfect electric conductors (PECs). The solutions
for microstrip lines are hybrid modes that can be expressed in terms
of superposition of infinite transverse electric (TE) and transverse
magnetic (TM) modes which can in turn be expressed in terms of the
scalar vector potentials [15]. Then by taking the Fourier transform
of all the field components, applying the boundary conditions in
the Fourier domain and assuming Ey to be an even function of x
for the dominant quasi-transverse electromagnetic (TEM) wave, we
obtain [15]:

Ẽx2(αn, h) = Gxx(αn, β)J̃x(αn) + Gxz(αn, β)J̃z(αn), (1)

Ẽz2(αn, h) = Gzx(αn, β)J̃x(αn) + Gzz(αn, β)J̃z(αn), (2)

where αn = (n − 1/2)π/a and β is the propagation constant. J̃x(αn)
and J̃z(αn) are the Fourier transforms of the transverse current density
Jx(x) and the longitudinal current density Jz(x), respectively. The z
dependency of the electric and magnetic field has the form of e−jβz.
The expressions for the Green’s functions are reported in [15].

The basis currents are chosen such that they are nonzero only on
the strip |x| < w/2. Jxi(x) is a real odd function, and Jzi(x) is a real
even function. So from the properties of Fourier transforms, J̃xi(αn) is
a purely imaginary and odd function, and J̃zi(αn) is a purely real and
even function. The subscript i refers to the ith basis function. The
˜ denotes that we are looking at the quantities in the spectral domain.
Chebyshev polynomials of the first and second kinds are chosen as the
basis for Jz(x) and Jx(x), respectively [16].

Jz(x) = (1/
√

1− (2x/w)2)
Mz−1∑

i=0

IziT2i(2x/w) (3)
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Jx(x) =
√

1− (2x/w)2
Mx∑

i=1

IxiU2i−1(2x/w)k0w (4)

Ti and Ui are the Chebyshev polynomials of the first and second kinds,
respectively. The transverse current Jx(x) is proportional to ω, so
as frequency decreases it will become very small compared to Jz(x).
Therefore, it has been normalized with k0w [17].

The Fourier transforms of the basis functions are given by:

J̃x(αn) =
wπ

δn

Mx∑

i=1

Ixii(−1)iJ2i(δn)k0w, (5)

J̃z(αn) = j
wπ

2

Mz∑

i=1

Iz(i−1)(−1)iJ2(i−1)(δn), (6)

where δn = αnw/2 and Jn(z) is the nth order Bessel’s function.
Further, using the Galerkin method, followed by the Parseval’s theorem
and the fact that the product of the tangential field component and
the surface current is always zero on the line, we obtain the following
matrix equation: [

Kxx Kxz

Kzx Kzz

] [
A
B

]
=

[
0
0

]
,

where A and B are vectors related to the coefficients Ixi and Izi,
respectively and

Kpq
ij =

∞∑

n=1

F pq
ij p = x, z and q = x, z, (7)

where F pq
ij = J̃pi(αn)Gpq(αn, β)J̃qj(αn). Finally, the propagation

constant β can be obtained by solving det[K] = 0.

3. APPROXIMATION OF SUMMATION WITH FAST
CONVERGENT SERIES

3.1. Asymptotic Approximation of Green’s Function

Using Taylor expansion, for large αn, the Green’s functions are
approximated as [18]:

Gxx ≈ Gxx0αnw
(
1− y2

xx/α2
n

)
, (8)

Gxz ≈ Gxz0

(
1− y2

xz/α2
n

)
, (9)

Gzz ≈ Gzz0

αnw

(
1− y2

zz/α2
n

)
, (10)
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Figure 2. Convergence of Gzz, Gzz minus the first asymptotic term
and Gzz minus the first two asymptotic terms as function of n for
β = 3k0 for the shielded microstrip shown in Figure 1 and parameters
εr = 11.7, µr = 1, f = 4GHz, h = 3.17 mm, w = 3.04mm,
2a = 34.74mm, d = 50 mm.

where

Gxx0 =
1

1 + εr
, Gxz0 =

β

(1 + εr)k0
,

Gzz0 =

(
β2 − k2

1

)
+ µr

(
β2 − k2

2

)

k2
0(1 + εr)(1 + µr)

, (11)

y2
xx =

β2

2
+

εrk
2
1 + k2

2

2(1 + εr)
, (12)

y2
xz =

β2

2
+

(
k2

2 − k2
1

)
(1− µr)

2(1 + µr)
− εrk

2
2 + k2

1

2(1 + εr)
, (13)

y2
zz =β2 − k2

2 +
1
2

[
(
k2

2 − k2
1

) ( 1
1 + µr

+
1

1 + εr

)

− (β2 − k2
1)(β

2 − k2
2)(1 + µr)

(β2 − k2
1) + µr(β2 − k2

2)

]
. (14)

In Figure 2, Gzz refers to the Green’s function Gzz, the
1st diff refers to the difference between Green’s function and the
first asymptotic term of Gzz, and 2nd diff refers to the difference
between Green’s function and the first two asymptotic terms of Gzz.
Also Figure 2 verifies the accuracy of the asymptotic extraction for
Gzz as using first k leading terms Gzz converges as 1/n2k+1.
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3.2. Asymptotic Approximation of the Bessel’s Function

The Bessel function [19] can be written in the following form:

Jn(z) =
( 2

zπ

)1/2[
cos

(
z − nπ

2
− π

4

)(
1− C2

n

(8z)2
+ . . .

)

− sin
(
z − nπ

2
− π

4

)(C1
n

8z
− C3

n

(8z)3
+ . . .

)]
, (15)

where n ∈ {0, 1, 2, 3, . . .}, C0
n = 1 and

Ck
n =

1
k!

k∏

m=1

[4n2 − (2m− 1)2] =
4n2 − (2k − 1)2

k
Ck−1

n . (16)

Using the asymptotic forms of the Bessel function and Green’s
functions for large αn and considering terms up to 1/α5

n

F̃ pq
kl (−1)i+jπ/2 =

Gpq0

(αnw)2

{
1 + sin(αnw) +

(
C1

2i + C1
2j

) cos(αnw)
4αnw

−
[
16y2

pqw
2 + C2

2i + C2
2j − C1

2iC
1
2j +

(
16y2

pqw
2 + C2

2i + C2
2j

+ C1
2iC

1
2j

)
sin(αnw)

]
/(4αnw)2 −

[
C3

2i + C3
2j + C2

2iC
1
2j

+ C1
2iC

2
2j + 16y2

pqw
2
(
C1

2i + C1
2j

) ]cos(αnw)
(4αnw)3

}
, (17)

where i = k−1 for p = z, i = k for p = x and j = l−1 for q = z, j = l
for q = x.

Kpq
kl ≈

Nmax∑

n=1

[
F pq

kl − F̃ pq
kl

]
+

∞∑

n=1

F̃ pq
kl . (18)

Therefore, from (17), one observes that F̃ pq
kl only consists of a

weighted sum of terms of the form sin(nz)/nk, cos(nz)/nk and 1/nk.
Thus, in the second term on the right hand side in (18), the terms
involving infinite summation of sinusoidal functions divided by αk

n
are approximated using fast convergent series developed for different
powers of n in the next section. And those of the form 1/αk

n can be
evaluated using the Riemann Zeta function [20].

In order to consider up to the fourth asymptotic term in the
expression for F̃ pq

kl , we need to consider only first two asymptotic terms
in the Green’s function. Also, as the frequency increases beyond a few
tens of GHz for dimensions in the mm range, one needs to consider
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even the third order term in the asymptotic expansion for the Green’s
function if faster convergence is required in the value of the propagation
constant.

4. FAST CONVERGENT SERIES

For any series of the form [16]
∑∞

n=1,3,5... e
jnz/nk where k = 2, 3, 4, . . .,

we have
∞∑

n=1,3...

ejnz

nk
= j

∞∑

n=1,3...

∫ z

0

( ejnz

nk−1

)
dz +

∞∑

n=1,3...

1
nk

. (19)

Also from [16], we know
∞∑

n=1,3...

ejnz

n
= −1

2
ln

[
tan

(z

2

)]
+ j

π

4
, 0 < z < π, (20)

Using Mathematica, the Maclaurin series expansion for ln(tan z) can
be written as:

ln(tan z) = ln z + z2/3 + 7z4/90 + 62z6/2835

+ 127z8/18900 + 146z10/66825 + O[z]12, |z| < π. (21)
The first term on the right hand side of (19) is evaluated by
substituting the value of ln[tan(z/2)] from (21) into (20) and then
substituting the expression for

∑∞
n=1,3..

ejnz

n , thus we obtain (19).
The second term on the right hand side of (19) is calculated using
the Riemann Zeta function [21]. Then by comparing the real and
imaginary parts on the right and left hand sides, one obtains:

∞∑

n=1,3,5,...

sin(nz)
n2

=−
[
(z/2) ln(z/2)− z/2 + z3/72 + 7z5/14400

+ 31z7/1270080 + 127z9/87091200 + . . .
]

(22)
∞∑

n=1,3,5,...

cos(nz)
n2

=π2/8− πz/4 (23)

Thus, following the same procedure by substituting the expression
for

∑∞
n=1,3...

ejnz

nk−1 in (19), sequentially fast convergent series for values
of k up to 5 have been obtained. There will exist a closed form
expression for the infinite summation over odd integers for sin(nz)
divided odd powers of n and also for cos(nz) divided even powers of
n. The expressions for these have been given in the appendix.

Following the same procedure, a series for summation of n over
n = 1, 2, 3 . . . can also be obtained.
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5. NUMERICAL RESULTS

The approach was numerically validated using a shielded microstrip
with parameters εr = 11.7, µr = 1, f = 4 GHz, h = 3.17mm, w =
3.04mm, 2a = 34.74mm, d = 50mm [8].

The kth difference in Figure 3 refers to considering up to kth
asymptotic term for F̃ zz

11 in the difference F zz
11 − F̃ zz

11 . It shows that if
we use up to k leading terms, the difference converges as 1/nk+1 which
confirms the accuracy of the asymptotic expansion. From Figures 4(a)
and 4(b), it is observed that the convergence of Kzz

11 and determinant of
K matrix changes from 1/Nmax using the direct summation to 1/N3

max
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using up to second leading term and finally to 1/N5
max using up to

fourth leading term. Here, the result using four leading terms with
Nmax = 106 is used as reference. Also Figures 4(a), 4(b), 5(a) and
5(b) show that the results are similar if we use odd number of leading
terms or the next even number of leading terms. This can be explained
by the fact that the even leading terms do not have a constant term
but only sinusoidal functions which converge faster than the constant
term.

Table 1 shows the comparison of our results with [9]. We have used
MATLAB to write our codes, and the CPU time for getting εreff correct
up to 12 digits is less than 0.05 seconds using a 2.66 GHz processor. We
have used c = 299, 792, 456.2m/s which is the same as that used in [9]
and was determined by email communication. Using Mz = 2, Mx = 2
and Nmax = 52, an εreff = 8.8100416 is obtained, which is the same as
that in [8, 13]. For a given basis, the convergence of the approach can
be accelerated by using larger number of asymptotic terms.

Table 2 shows the comparison of εreff for a different number of
basis functions using the proposed approach (FCS) and MPS [13] with
c = 299, 792, 458m/s [22]. It is seen that MPS converges nearly two

Table 1. εreff for different basis functions and Nmax = 40, 70 for a
shielded microstrip with parameters same as in Figure 2.

Mz Mx Nmax = 40 Nmax = 70 Nmax = 40 [9] Nmax = 70 [9]

1 1 8.8114915 8.8114916 8.8114918 8.8114916

2 1 8.8100414 8.8100414 8.8100416 8.8100414

2 2 8.8100417 8.8100416 8.8100418 8.8100417

3 2 8.8100416 8.8100416 8.8100417 8.8100416

3 3 8.81004157493 Nmax = 230

3 3 8.81004157493 Nmax = 260 [9]

4 3 8.81004157493 Nmax = 220

Table 2. Comparison of the FCS and the MPS εreff for different basis
functions for a shielded microstrip with parameters same as in Figure 2.

Mz Mx εreff Nmax(FCS) Nmax(MPS)

1 1 8.81 4 11

2 1 8.810041 18 42

2 2 8.8100416 52 61

3 2 8.810041567 130 140

3 3 8.81004156779 243 255

4 3 8.81004156779 232 243
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Figure 5. The convergence of εreff for different basis and different
number of leading terms for a shielded microstrip with parameters
same as given in Figure 2. (a) Convergence of εreff using different
number of basis. (b) Convergence of εreff using different number of
leading terms.

times slower than the FCS especially when only a few digits of accuracy
is required which is the case in most practical applications. For very
high accuracies, the FCS converges slightly faster than MPS.

Figure 5(a) shows that the rate of convergence decreases as we
increase the number of basis functions for small Nmax, but by using
higher order basis functions and larger number of terms we get even
more accurate results. From Figure 5(b) it is observed that the rate
of convergence increases as we use more number of leading terms.
Also it can be seen from Figure 5(b) that in the evaluation of the
elements of K matrix, if we are considering odd number of leading
terms, the next leading term does not speed up the convergence so
much, because even leading terms do not have constant terms but
only sinusoidal function, which have a much smaller contribution to
the matrix elements than the constant terms and will therefore not
significantly affect their convergence.

6. CONCLUSION

The speed of computation and accuracy are major issues for design
applications, and very efficient computer programs are required in
such applications. By using the present approach, it is possible to
write very efficient programs for many applications in electromagnetics
for computing the Green’s functions, electric fields, magnetic fields,
analysis of shielded planar circuits and transmission lines, and
problems involving SDA in which the speed is limited by the slow
convergence of infinite series. In addition, this approach is very simple
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to implement and does not involve the overheads of the computation
of complex coefficients or numerical integration.
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APPENDIX A.

The super convergent series for the infinite summation over odd
integers for sin(nz) divided even powers of n and also for cos(nz)
divided odd powers of n thus obtained are:

∞∑

n=1,3,5,...

sin(nz)/n2 =− z/2 log(z/2)− z/2 + z3/72 + 7z5/14400

+ 31z7/1270080 + 127D9/87091200 (A1)
∞∑

n=1,3,5,...

cos(nz)/n3 =1.051799790264644999725 + z2/4 log(z/2)

− 3z2/8 + z4/288 + 7z6/86400 (A2)
∞∑

n=1,3,5,...

sin(nz)/n4 =1.051799790264644999725z + z3/12 log(z/2)

− 11z3/72 + z5/1440 + z7/86400 (A3)
∞∑

n=1,3,5,...

cos(nz)/n5 =1.0045237627951387− (0.5258998951323225z2

+ z4/48 log(z/2)− 25z4/576 + z6/8640) (A4)
The closed form expressions for the infinite summation over odd
integers for sin(nz) divided odd powers of n and also for cos(nz) divided
even powers of n are:

∞∑

n=1,3,5,...

sin(nz)/n3 = π2z/8− πz2/8 (A5)

∞∑

n=1,3,5,...

cos(nz)/n4 = π4/96− π2z2/16 + πz3/24 (A6)

∞∑

n=1,3,5,...

sin(nz)/n5 = π4z/96− π2z3/48 + πz4/96 (A7)
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