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Abstract—The cosine window function with the parameters opti-
mized by Genetic Algorithm (GA) is applied in bistatic planar near-
field scattering measurements so as to effectively improve the mea-
surement precision. With the infinitely long ideal conductor cylinder
as the target under test, the bistatic planar near-field scattering mea-
surement technique is studied by the method of computer simulation
and some useful results and basic laws are obtained. The calculation
results show that the truncation errors caused by finite scan plane in
the far-field Radar Cross Section (RCS) of the target under test ob-
tained by near-field to far-field transformation can be reduced greatly
by the weighting process of the measured scattered near-field data by
means of the cosine window function with the parameters optimized
by GA.

1. INTRODUCTION

Near field measurement technique does not need very large
measurement range outdoor and has a series of advantages such
as large information quantity obtained, high measurement precision,
little interference from outside, good keeping secret property etc.,
therefore as the rapid development of near-field antenna measurement
technique [1, 2], near-field measurement technique is also studied to
determine the scattering characteristics of targets [3]. By means
of planar near-field scattering measurement technique, not only the

Received 15 October 2011, Accepted 9 December 2012, Scheduled 19 January 2012
* Corresponding author: Weigang Zhai (xidian 2010@qq.com).



52 Yu et al.

monostatic scattering characteristics of the target but also the far field
RCS in the angle range near the normal direction outside the scan
plane can be measured in the case that the target is not rotated, thus
the far field scattering characteristics of the target in the case that the
bistatic angles are different can be obtained [4].

In general, the scattered field of the target is distributed in a
wide range, thus it is usually required that the width of the scan
plane should be large enough so as to reduce the truncation errors
caused by finite scan plane. However in practical bistatic planar
near-field scattering measurements, the width of scan plane is always
limited and the truncation level is not always very low, sometimes
even relatively high. In this case, the truncation errors caused by
finite scan plane are generally large. In order to reduce the truncation
errors and improve the measurement precision, the cosine window
function is introduced and applied in the bistatic planar near-field
scattering measurements [5]. The appropriate choice of the parameters
of the cosine window function has significance for improving the
measurement precision. In this paper, the cosine window function with
the parameters optimized by Genetic Algorithm (GA) is applied in
the bistatic planar near-field scattering measurements so as to greatly
reduce the truncation errors caused by finite scan plane.

2. COSINE WINDOW FUNCTION

From the theory of near-field to far-field transformation in bistatic
planar near-field scattering measurements, the far-field scattering
characteristics of the target can be evaluated from the scattered near
field by Fourier transform. With the two-dimensional problem as an
example, it is assumed that the scattered near field is f(x) and the
Fourier transform of which is F (k). In practical bistatic planar near-
field scattering measurements, only the scattering near fields in the
finite scan plane are assumed to be zero. Therefore, the scattered near
field fw(x) utilized to evaluate the far-field scattering characteristics
of the target can be express as the following equation.

fw(x) = f(x) · w(x)

where w(x) is the rectangle window function. If the width of the scan
plane is assumed to be W , w(x) can be expressed as

w(x) =
{

1, |x| ≤ w/2
0, |x| > w/2

It is assumed that the Fourier transforms of fw(x) and w(x) are
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Figure 1. The magnitude and phase distribution of the cosine window
function, (a) magnitude distribution, (b) phase distribution.

Fw(k) and w̃(k) respectively. Then from the theory of signal process,
Fw(k) is equivalent to the convolution of the two corresponding Fourier
transforms F (k) and w̃(k) [6], i.e.,

Fw (k) = F (k) ∗ w̃(k)

where the symbol “∗” denotes the convolution.
In order to accurately evaluate the far-field scattering characteris-

tics of the target from the measured near field, we should try to make
Fw (k) approach to F (k), which requires that the main-lobe of the
Fourier transform w̃(k) should be narrow enough and the peak value
of the side-lobe small enough. The Fourier transform of the rectangle
window function has narrow main-lobe, but also large peak value of
the side-lobe. Therefore, the rectangle window function may not be
the optimum window function. In this paper, we try to find a bet-
ter window function to substitute the rectangle window function and
weight the scattered near field data so as to improve the precision of
bistatic planar near-field scattering measurements.

The window function is also called weighting function. It is
assumed that the number of sampling points is N and the sampling
interval ds, then the width of the scan plane is W = (N − 1) · ds.
Figure 1 shows the magnitude and phase distribution of the cosine
window function.

If the cosine window function is assumed to be the following
equation:

T (n) = A(n)ejP (n) n = 1, 2, 3, . . . , N

Then A(n) and P (n) can be expressed as the following equations
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respectively:

A(n)=





1
2

{
1−cos

[
(n−1) · ds · π

W · x%

]}
1 ≤ n ≤ 1 + (N−1) · x%

1 1+(N−1) · x% < n
≤ 1 + (N − 1)(1− x%)

1
2

{
1−cos

[
(n−1) · ds · π−W · π

W · x%

]}
1+(N−1)(1−x%)<n≤N

P (n)=





−mpd · cos
[
(n−1) · ds · π

2W · x%

]
1 ≤ n ≤ 1 + (N−1) · x%

0 1+(N−1) · x% < n
≤ 1 + (N − 1)(1− x%)

−mpd · cos
[
(n−1) · ds · π−W · π

2W · x%

]
1+(N−1)(1−x%)<n≤N

where x% is the proportion of the distance between the tapering
point and the edge to the whole width of the scan plane; mpd is the
maximum phase delay of the edge relative to the tapering point and
n = 1, 2, 3, . . . , N .

Compared with the Fourier transform of the rectangle window
function, the Fourier transform of the cosine window function has a
little wider main-lobe, but much smaller peak value of the side-lobe. As
mentioned in Section 1, in practical bistatic planar near-field scattering
measurements, because the scattered field of the target is distributed
in a wide range and the width of the scan plane is always limited,
the truncation level at the side of the scan plane is not always very
low, sometimes even relatively high. In this case, if the traditional
rectangle window function is utilized to weight the measured scattered
near field data, because the scattered near fields outside the scan plane
are assumed to be zero, the discontinuity of the scattered near fields
at the side of the scan plane is very obvious, which will introduce large
truncation errors in the measurement results. However, if the cosine
window function is utilized to weight the measured scattered near field
data, because the scattered near fields at the side of the scan plane
are set to be zero, the discontinuity of the scattered near fields at the
side of the scan plane can be overcome, which will greatly reduce the
truncation errors in the measurement results. Therefore in bistatic
planar near-field scattering measurements, the cosine window function
is better than the traditional rectangle windows function for improving
the measurement precision. There are two important parameters
(x% and mpd) in the cosine window function. The measurement
precision can be effectively improved by appropriate choice of the
two parameters. In this paper, Genetic Algorithm (GA) is utilized to
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Figure 2. Illustration of the calculation model.

optimize the two parameters so as to greatly improve the measurement
precision.

3. CALCULATION MODEL

As shown in Figure 2, the incident ideal plane wave with the expression
of ~Ei = ẑE0e

−jkx (k is the wave number) is transmitted vertically
toward the infinitely long ideal conductor cylinder, the radius of which
is a. It is assumed that d is the distance between the scan plane and
the center of the cylinder and that α (−π ≤ α ≤ π) is the angle formed
by the direction inverse to the incident plane wave from the center of
the cylinder (i.e., the direction of −x) and the direction of the straight
line vertical to the scan plane from the center of the cylinder (i.e., the
direction of x′). The number of sampling points is N and the sampling
interval ds, so the width of the scan plane is W = (N − 1) · ds.

From the electromagnetic field theory [7], the theoretical far-field
RCS of the infinitely long ideal conductor cylinder is expressed as the
following equation

σ(φ)= lim
ρ→∞2πρ

|Es
z |2∣∣Ei
y

∣∣2=
4
k

∣∣∣∣∣
∞∑

n=−∞

Jn(ka)

H
(2)
n (ka)

ejnφ

∣∣∣∣∣
2

≈4
k
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N∑

n=−N
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H
(2)
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2

=
2λ

π
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where λ is wavelength; the value of N can be taken as N = INT (ka+
9); the symbol “INT” denotes taking integer; Jn is the first kind of
Bessel function with n order; H

(2)
n is the second kind of Hankel function

with n order.
The process of computer simulation is as follows:
Firstly, the scattered near fields Es

z(i) (i = 1, 2, 3, . . . , N) produced
at the sampling points as the ideal plane wave is transmitted vertically
toward the infinitely long ideal conductor cylinder are calculated. Then
the scattered near-field data are dealt with by means of the cosine
window function introduced above and the scattered fields outside the
scan plane are assumed to be zero, and so the weighted scattered near
fields Es

z(m) (m = 0, 1, 2, . . . , N
′′ − 1) are obtained. Finally, from the

theory of near-field to far-field transformation, the far-field RCS can be
evaluated by the following formula, which can be effectively calculated
by means of fast Fourier transform (FFT) [4, 8].

σ (θ) =
k

|E0|2
cos2 θds2

∣∣∣∣∣
N ′′−1∑

m=0

Es
z (m)ej 2πmn

N′′

∣∣∣∣∣

2

where the value of N
′′
can be taken as N

′′
= 2048 = 211 and the

relationship between n and θ is given by

n =
N ′′ · ds

λ
sin θ, n = −N ′′

2
,−N ′′

2
+ 1, . . . ,

N ′′

2
− 1

In this paper, GA is utilized to optimize the selection of the
parameters (x% and mpd) for the cosine window function in bistatic
planar near-field scattering measurements. GA is mainly composed
of three operators: reproduction, crossover and mutation [9–16]. It is
operated in the following steps:

1) create an initial population;
2) evaluate the fitness of each population member;
3) invoke natural selection;
4) select population members for mating;
5) generate offspring;
6) mutate selected members of the population;
7) terminate run or go to step 2).

Here we use roulette wheel method as the selection operator and
single point crossover operator as the crossover operator. Crossover
rate is 0.6, and we take basic bit mutation operator as the mutation
operator. Mutation rate is 0.001, and binary coding is taken as the
individual encoding. Population size is up to 100 and operation steps
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size 400. Optimization precision is 0.001 for x% and 1◦ for mpd.
Individual fitness function is:

fitness =
∑

i

|RCS theory(i)−RCS test(i)|

where RCS theory and RCS test are the dB values of the far-field RCS
calculated theoretically and the far-field RCS evaluated by near-field
to far-field transformation, respectively. The search range for x% is
from 0 to 0.5, and that for mpd is from 0◦ to 360◦.

4. CALCULATION RESULTS AND DISCUSSION

By means of the calculation model established above, bistatic planar
near-field scattering measurements are studied by the method of
computer simulation with the infinitely long ideal conductor cylinder
as the target under test and some useful results are obtained.

In order to study the effect of near-field data processing method
on the measurement results, in the case that other conditions are
not changed, the scattered near-field data are dealt with by means
of the cosine window functions with different window parameters (x%
and mpd) respectively and without using the cosine window function
(i.e., the window parameters are taken as x = 0%, mpd = 0◦),
then the RCS curves in the angle range [−30◦, 30◦] relative to the
x′ axis are calculated by means of near-field to far-field transformation
respectively and compared with the theoretical RCS curve.

In the following calculation, the parameters are taken as f =
9375MHz, a = 2λ, α = 120◦, d = 6λ, N = 47, ds = 0.5λ. Here
we choose two sets of different window parameters: the first one is
x% = 30%, mpd = 90◦; the second one is x% = 40%, mpd = 120◦.
The calculation results are shown in Figure 3.

It can be seen that the deviation between the RCS curve obtained
by using the cosine window function and the theoretical RCS curve
is much smaller than the deviation between the RCS curve obtained
without using the cosine window function and the theoretical RCS
curve, which proves the validity of dealing with the scattered near
field data by means of cosine window function. Furthermore, the
deviation between the RCS curve obtained as the first set of window
parameters are taken, and the theoretical RCS curve is smaller than the
deviation between the RCS curve obtained as the second set of window
parameters are taken and the theoretical RCS curve. Therefore, the
results obtained by selecting different window parameters are different,
and the selection of appropriate window parameters has significance for
improving the measurement precision.
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By selecting different window parameters and comparing the
corresponding RCS curves obtained with the theoretical RCS curve, we
find out a better set of window parameters, i.e., x% = 13%, mpd = 20◦
(the third one). The calculation results are shown in Figure 4.

It can be seen that the RCS curve obtained as the third set of
window parameters is more close to the theoretical RCS curve than the
RCS curves obtained before with the first and second sets of window
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parameters are selected, respectively. But the selected parameters of
cosine window function may not be the optimal parameters. Here
Genetic Algorithm (GA) as described in Section 3 is utilized to
determine the optimal parameters of cosine window function so as to
improve the measurement precision at most. The optimal parameters
obtained are x% = 25%, mpd = 15.499◦ and the corresponding
calculation results are shown in Figure 5.

It can be seen that the RCS curve obtained with the parameters
of cosine window function optimized by GA agrees with the theoretical
RCS curve is much better than the RCS curve obtained as the third
set of window parameters (i.e., x% = 13%, mpd = 20◦) are taken.

If the value of the angle α is changed, the parameters of cosine
window function can also be optimized by GA, and the corresponding
RCS curve can be calculated by near-field to far-field transformation.
The calculation results in the cases that α = 0◦ and α = −180◦ are
shown in Figure 6 and Figure 7, respectively. The corresponding
optimal parameters of cosine window function are x% = 27.44%,
mpd = 12.68◦ and x% = 22.7%, mpd = 12.68◦ in the cases that α = 0◦
and α = −180◦, respectively.

In the following calculation, the parameters are taken as f =
9375MHz, α = 120◦, ds = 0.5λ. The window parameters are
x% = 13%, mpd = 20◦. In the case that the radius of the cylinder
and the distance between the scan plane and the center of the cylinder
are changed, the RCS in the angle range [−30◦, 30◦] relative to the
x′ axis is calculated and compared with the theoretical RCS. Then
the minimum number of sampling points needed in order to make
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the maximum deviation less than 0.5 dB, corresponding width of the
scan plane and ratio of the width of scan plane to the diameter of
the cylinder are determined. The calculation results are listed in the
Table 1 below.

It can be seen from the above results that with the increase of
radius of the cylinder, the required minimum width of the scan plane
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will also increase, but the ratio W/2a of the minimum width of the
scan plane and diameter of the cylinder will reduce. When the radius
of the cylinder is increased up to 25λ, the value of W/2a is equal to 2,
that is the required minimum width of the scan plane equal to twice of
the diameter of the cylinder. Along with a further increase of radius
of the cylinder, the value of W/2a gradually decreases. At the same
time, it can also be seen that in the case that value a of the radius
of the cylinder is remained unchanged, with the increase of value d of
the distance between the scan plane and the center of the cylinder, the
required minimum width of the scan plane will accordingly increase.

In addition, with the increase of radius of the cylinder, the optimal
parameters of the cosine window function will also change. In the case

Table 1. the calculation results in different cases.

a(λ) d(λ) N W (λ) W/2a

2 6 47 23 5.75
5 10 61 30 3.0
10 15 93 46 2.3
10 20 107 53 2.65
15 20 127 63 2.10
20 25 163 81 2.025
20 30 179 89 2.225
25 30 201 100 2.0
30 35 237 118 1.967

Table 2. the optimal parameters of the cosine window function in
different cases.

a(λ) d(λ) N x% mpd (degree)
2 6 47 0.25 16
5 10 61 0.16 28
10 15 93 0.14 19
10 20 107 0.13 22
15 20 127 0.13 15
20 25 163 0.12 15
20 30 179 0.11 19
25 30 201 0.08 10
30 35 237 0.07 16
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that the radius of the cylinder, the distance between the scan plane and
the center of the cylinder and the number of the sampling points are
taken the same values as that in Table 1, the corresponding optimal
parameters of the cosine window function are obtained by GA. The
calculation results are listed in Table 2 below.

It can be seen from Table 2 that with the increase of radius of the
cylinder, the optimal value of x% decreases, i.e., the cosine window
function becomes more and more steep near the edge of the scan plane,
but the optimal value of mpd does not have regular changes.

5. CONCLUSION

In bistatic planar near-field scattering measurements, how to process
the measured scattered near-field data so as to reduce the truncation
errors caused by finite scan plane and improve the measurement
precision is a key problem with very important theoretical and
practical significance. In order to solve this problem, the application
of the cosine window function with the parameters optimized by
Genetic Algorithm (GA) in the bistatic planar near-field scattering
measurements is studied by the method of computer simulation with
the infinitely long ideal conductor cylinder as the target under test
and some useful results and basic laws are obtained. The calculation
results show that the truncation errors caused by finite scan plane
in the far-field RCS of the target under test obtained by near-field
to far-field transformation can be reduced greatly by the weighting
process of the measured scattered near-field data by means of the cosine
window function with the parameters optimized by GA, which proves
the validity and applicability of the near-field data processing method
based on the cosine window function with the parameters optimized
by GA in the bistatic planar near-field scattering measurements.
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