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Abstract—In circular synthetic aperture radar (CSAR), the radar
collects data over a circular not a linear trajectory. The two-
dimensional (2D) CSAR image also contains three-dimensional (3D)
information about the target. In this paper, we propose an
imaging algorithm for 3D target reconstruction with two-pass CSAR
observations so as to overcome the problem of limited azimuthal
persistence for real anisotropic targets, and avoid the assumption that
target falls into the same resolution cell for each elevation pass when
multi-pass observations are used. In the algorithm, the first step is
to divide both of the two full-aperture CSAR data into subapertures
in the same way; the second step is to obtain, for each subaperture,
the height of target according to the established relationship between
the pixel displacements in the image pair of two observations on the
same focal plane and the pixel displacements in the image pair of one
observation on two different focal planes; the third step is to obtain
the 3D target coordinates based on the retrieved height information
and the 2D image coordinates; the last step is to get the final 3D
image by combining the obtained 3D images of all subapertures. The
results of point target simulation indicate that the 3D information
(both amplitudes and positions) are well reconstructed. At the
same time, the processing results of backhoe data simulated by the
Xpatch software show that the outline of the 3D structure is also
well reconstructed although the available data corresponding to the
depressing angles are not as good as expected.
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1. INTRODUCTION

In circular synthetic aperture radar (CSAR), the radar illuminates
targets over a complete 360 degree aperture. This wide-angle
non-linear collection geometry makes CSAR can obtain both two-
dimensional (2D) high resolution image and three-dimensional (3D)
image [1–3]. Due to these unique features, CSAR has been widely
used in some special situations, such as, automatic target recognition
(ATR) system for tank or vehicles [1], high resolution imaging
of building or urban area [4], detection of targets in the foliage
or under the ground [5], detection of concealed objects in airport
security systems [6, 7], and geosynchronous Circular SAR (GeoCSAR)
imaging [8].

Because of the curved aperture, classical algorithms, e.g., range
Doppler (RD) algorithm [9], chirp scaling (CS) algorithm [10], and
range migration algorithm (RMA) [11, 12], cannot be directly applied
to CSAR imaging. An algorithm based on the Fourier properties of
slant plane Green function was presented by Soumekh for CSAR [1, 13].
But it involves the unstable pseudo-inversion of the system kernel
matrix. Although a confocal algorithm presented by Ishimaru et
al. can be applied for arbitrary geometry [2], it is impractical due
to computational inefficiency. The back projection (BP) algorithm
can also be adapted to arbitrary geometry and has been widely
used in CSAR imaging [3, 14, 15]. In order to extract the height
information from single pass CSAR data, one method based on the
pixel displacements between different sub-aperture 2D images was
presented by Oriot and Hubert [16]. But it is inefficient and a limited
3D resolution can be achieved for real anisotropic targets.

One way to improve 3D resolution is to add another aperture in
height direction, which is known as elevation and circular synthetic
aperture radar (E-CSAR) system proposed by Soumekh [1]. The
corresponding imaging algorithm based on Fourier decomposition was
also presented. But it is hard for airborne CSAR to satisfy the
acquisition condition of this system, and the processing of large scale
data is very time-consuming. Another interferometric way to improve
3D resolution was considered by Ertin et al. [17, 18]. However, the
real flight paths are non-uniform elevation spacing and non-constant
elevation throughout the circular passes. A sparsity regularized
interpolation is then presented to solve these problems by Ertin et
al. and his research group [19–21].

Among the above one-pass and multi-pass imaging algorithms,
there are mainly two kinds of methods to obtain 3D information
from 2D images. The first kind of method, presented by Oriot
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and Hubert [16], is to divide the full aperture single-pass data into
several subapertures, and find pixel displacements between different
sub-aperture 2D images to calculate the height of target. However,
the matching operation used in finding pixel displacements is not only
time-consuming due to pixel-by-pixel operation but also difficult due to
the different projected shape and amplitude on different sub-aperture
2D images. In addition, for real anisotropic targets, this limited
azimuthal persistence leads to a limited 3D resolution. The second kind
method is the interferometric method presented by Ertin et al. [17, 18].
Multi-pass CSAR data are also divided into several subapertures
and the phase of 2D image sequence for the same subaperture is
processed by the extended version of interferometry to get the height
information with parametric spectral estimation used. With the
relationship between height information and the corresponding 2D
image coordinates, 3D target coordinates can be obtained. But the
pre-condition is that the difference between the elevation angles for the
different passes is small enough so that for each elevation pass target
falls into the same resolution cell, and the elevation spacing should be
uniform.

In this paper, we propose a 3D imaging algorithm with two-
pass CSAR data. Firstly, both of the two full-aperture CSAR data
are divided into several subapertures in the same way. Secondly,
for each subaperture, the height of target is obtained by relating
pixel displacements between two-pass 2D subimage pair on the same
focal planes to those between two 2D subimages on different focal
planes with the same single pass sub-aperture observation. Thirdly,
based on the height information and 2D image coordinates, 3D
target coordinates can be obtained for each subaperture. Finally,
the reconstructed 3D subimages from all the subapertures are used
to compose the final 3D reconstruction image just by combing them
together. This algorithm makes use of two-pass information rather
than single pass data to overcome the limited azimuthal persistence
for real anisotropic targets, and needs not to assume that target falls
into the same resolution cell for each elevation pass.

The rest of the paper is organized as follows. In Section 2, 2D
imaging including 3D information for CSAR is discussed. A 3D target
reconstruction algorithm with two-pass CSAR data is presented in
Section 3. The imaging results about point target and backhoe data
validating the new algorithm are shown in Section 4. Finally, Section 5
concludes the paper.
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Figure 1. (a) Geometry of CSAR imaging system. (b) Top view.
(c) Side view.

2. TWO-DIMENSIONAL IMAGING FOR CSAR

2.1. System Model

The CSAR imaging geometry is shown in Fig. 1(a). Its top view and
side view are shown in Figs. 1(b) and (c), respectively. Let’s denote
the radar height as zc and the flight radius as Rg. Then the slant range
can be expressed as,

R0 =
√

R2
g + z2

c (1)

and the slant depression angle can be calculated by

θ = arctan(
zc

Rg
) (2)

Let’s further denote the transmitted radar signal as p(t) and define
the reflectivity function of target as f(x, y, z) as shown in Fig. 1, where
the height z is the function of (x, y), i.e., z(x, y). Then the received
echo signal can be given by [1],

s(t, φ) =
∫
y

∫
x f(x, y, z(x, y))

p

[
t− 2

√
(x−Rg cos φ)2+(y−Rg sin φ)2+(z(x,y)−zc)2

c

]
dxdy

(3)

The Fourier transform of (3) with respect to the fast-time t can be
expressed as,

s(ω, φ) = P (ω)
∫

y

∫

x
f(x, y, z(x, y))

exp
(
−j2k

√
(x−Rgcosφ)2+(y−Rgsinφ)2+(z(x, y)−zc)2

)
dxdy (4)
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where ω denotes the fast-time frequency, φ denotes the azimuthal angle,
P (ω) denotes the Fourier transform of p(t), k = ω

c and c = 3×108 m/s.

2.2. 2D Imaging of One Point Target

In this section, we shall discuss about the relationship between 3D
target coordinates and 2D image coordinates of an isotropic point
target.

The geometry is shown in Fig. 2. Assume conditions of a wide
bandwidth radar and far-field are satisfied. When the focal plane zf

is chosen as the height z of the target P (x, y, z), i.e., zf = z, the 2D
image about the target is a focused point; otherwise, when zf 6= z, the
result shall be a defocused ring. This conclusion can be illustrated by
the following simulation experiment. In the simulation, the target is
located at (0, 0.1m, 0), and the used parameters are listed in Table 1.
Fig. 3(a) shows the 3D imaging result. Figs. 3(b)–(d) respectively show
the 2D imaging results at different focal planes. It is obvious that when
zf = 0, the 2D imaging result of point target is a focused point and
when zf 6= 0, the result is a defocused ring.

Table 1. The system parameters.

Carrier frequency 10GHz
Bandwidth 6 GHz

Radius of the flight track 200m
Height of the radar 200m

Radius of imaging area 0.2m

In fact, there exists a relationship between the radius of defocused
ring and the height of point target, which can be expressed by [22],

R ≈ z tan θ (5)
Based on Equation (5), another relationship between 3D point

target coordinates (x, y, z) and its 2D image coordinates (xl, yl) can be
written as, {

xl = x + z · tan θ cosφ
yl = y + z · tan θ sinφ

(6)

2.3. The Transformation between 2D Images on Different
Focal Planes

In Section 2.2, different imaging results are obtained when different
focal planes are chosen. However, the information included in these
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Figure 2. 2D imaging of one point target including 3D information.
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Figure 3. (a) 3D imaging result. 2D image on the focal plane,
(b) Zf = 0 m, (c) Zf = 0.025m, (d) Zf = 0.05m.
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Figure 4. The transformation between 2D images on different focal
planes.

images is same since the flight pass is unchanged, and any one of
them I(xl, yl, zf ) can be regenerated from the image I(xl, yl, 0) on the
focal plane zf = 0 when the condition |zf | ¿ R0 is satisfied. The
transformation process is as follows [1, 17],

I(xl, yl, zf ) = F−1
x,y

[
Fx,y [I(xl, yl, 0)] exp

(
−j

√
k2

x + k2
y tan θzf

)]
(7)

where
{

kx = ω
c cos θ cosφ

ky = ω
c cos θ sinφ

.

The geometry of 2D image I(xl, yl, zf ) regenerated from image
I(xl, yl, 0) is shown in Fig. 4. The height locations of three isotropic
point targets P1, P2 and P3 are z = zf , z 6= zf , 0, and z = 0,
respectively. When I(xl, yl, zf ) is regenerated from I(xl, yl, 0), P1
is transformed from a defocused ring to a focused point, P3 is
transformed from a focused point to a defocused ring, and P2 is
transformed from a defocused ring to another defocused ring with a
different radius. This transformation process can also be proved by the
following simulation experiment. The parameters are listed in Table 2,
and three targets are respectively located at (−1m, 1m, 0.2 m), (0,
0.05m, 1 m), and (1.2 m, 0, 0). Figs. 5(a) and (c) show 2D images
on the focal planes zf = 0 and zf = 0.2m, respectively. Fig. 5(b) is
regenerated from Fig. 5(a). It is obvious that Figs. 5(b) and (c) are
almost the same.
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Table 2. The system parameters.

Carrier frequency 10GHz
Bandwidth 6GHz

Radius of the flight track 200 m
Height locations of the radar 200m, 240 m

Radius of imaging area 0.2m
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Figure 5. (a) 2D image on the focal plane Zf = 0. (b) The focal
plane is transformed from Zf = 0 to Zf = 0.2m. (c) 2D image on the
focal plane Zf = 0.2 m.

3. A 3D TARGET RECONSTRUCTION ALGORITHM
BASED ON TWO-PASS CSAR OBSERVATIONS

3.1. The Principle

In Section 2.2, if the depression angle θ changes, then 2D image
coordinates (xl, yl) in Equation (6) will also change. Therefore, there
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should be pixel displacements between the 2D images of two passes on
the same focal planes. In Section 2.3, although only single pass CSAR
data is used, there are pixel displacements between two 2D images on
different focal planes. In this section, we will establish the relationship
between pixel displacements in these two cases.

Case A: The geometry is shown in Fig. 6. The ground plane is
chosen as the focal plane, i.e., zf = 0.

For the first pass, the height of radar is Zc1 and the depression
angle is θ1 = arctan(Zc1/Rg). The location relationship between 3D
target P (x, y, z) and its 2D image P1(xl1, yl1) can be written as,{

xl1 = x + z · tan θ1 cosφ
yl1 = y + z · tan θ1 sinφ

(8)

For the second pass, the height of radar is Zc2 and the depression
angle is θ2 = arctan(Zc2/Rg). The location relationship between 3D
target P (x, y, z) and its 2D image P2(xl2, yl2) can be written as,{

xl2 = x + z · tan θ2 cosφ
yl2 = y + z · tan θ2 sinφ

(9)

By subtracting Equation (8) from Equation (9), the pixel
displacements between P1 and P2 can be obtained as,{

∆xl = xl2 − xl1 = z cosφ(tan θ2 − tan θ1)
∆yl = yl2 − yl1 = z sinφ(tan θ2 − tan θ1)

(10)

Case B: The geometry is shown in Fig. 7. Only the second pass
data is used in imaging.

When the focal plane is zf = 0, the result is the same as
Equation (9) indicated. When the focal plane is zf = h, the
location relationship between 3D target P (x, y, z) and its 2D image
P ′

2(xl2 new, yl2 new) can be written as,{
xl2 new = x + (z − h) · tan θ2 cosφ
yl2 new = y + (z − h) · tan θ2 sinφ

(11)

By subtracting Equation (11) from Equation (9), the pixel
displacements between P2 and P ′

2 can be obtained as,{
∆xl new = xl2 − xl2 new = h tan θ2 cosφ
∆yl new = yl2 − yl2 new = h tan θ2 sinφ

(12)

If the pixel displacements in case A and case B are equal to each
other,{

∆xl new = ∆xl = h tan θ2 cosφ = z cosφ(tan θ2 − tan θ1)
∆yl new = ∆yl = h tan θ2 sinφ = z sinφ(tan θ2 − tan θ1)

(13)

then the height of target can be calculated by the following equation,
z = h tan θ2/(tan θ2 − tan θ1) (14)
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3.2. Description of Algorithm

From Equation (14), the depression angles of θ1 and θ2 can be
calculated according to system parameters, so the key to reconstruct
the height of target is to obtain the focal plane parameter h. The
algorithm is based on CLEAN technique [23, 24], which removes the
strongest scatterer on the 2D images each time, and the detailed
description of the algorithm steps are as follows,

(1) Divide the full aperture data into subapertures and each one
is with a few degree of azimuthal angle range.

(2) Choose the focal plane zf = 0, and reconstruct 2D images of
I1 and I2 for each subaperture, which corresponds to two-pass CSAR
observations, respectively.

(3) Set the height range to be [−H,H], and the height spacing to
be ∆H. Then calculate the total number of transformation N = 2H

∆H ,
and regenerate 2D image sequence I ′2(i), i = 1, 2, . . . , N from I2 at
different focal height.

(4) Set the iterative parameters as k = 1, I1k = I1, I2k =
I2, I ′2k(i) = I ′2(i), i = 1, 2, . . . , N , as well as the total number of
iterations M and the residual energy threshold ratio Thr Ratio, and
then calculate the residual energy threshold Thr through Thr =
Thr Ratio×∑(

|I1|2
)
.

(5) Search the maximum amplitude Ak max of I1k and their image
coordinates (x pos, y pos), and then normalize I1k with respect to
Ak max.

(6) Normalize I ′2k(i) and get the amplitude of I ′2k(i) at
(x pos, y pos).
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Figure 6. 2D imaging results
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Table 3. The system parameters.

Carrier frequency 10GHz
Bandwidth 6GHz

Radius of the flight track 200 m
Height locations of the radar 200m, 240 m

Radius of imaging area 2m

Table 4. Original point targets.

Scatter No. (x, y, z) (m) Amplitude
1 (0, 0, 0) 1
2 (0, 0.75, 0.1) 1
3 (0.75, 0, 0.1) 1
4 (0, 0, 0.3) 1
5 (0, 0, −0.3) 1

(7) Calculate the difference between the maximum of I1k and
I ′2k(i)(x pos, y pos), i.e., E(i) =

∣∣∣1− I ′2k(i)(x pos, y pos)
∣∣∣. Then

calculate Emin = Min {E(i)} and record the value of i.
(8) Calculate the height of focal plane through hk = −H+i×∆H,

and then calculate the height of target through zk = hk tan θ2/(tan θ2−
tan θ1) according to Equation (14). Further calculate the target

coordinates (xk, yk) through
{

xk = x pos− zk · tan θ1 cosφ
yk = y pos− zk · tan θ1 sinφ

. Save

the locations and amplitude of the kth target (xk, yk, zk, Ak).
(9) Renew I1, I1k and I ′2k(i) by removing the information about

the kth target.
(10) If the residual energy of I1 i.e.,

∑(
|I1|2

)
is smaller than Thr,

or the iterative number is larger than M , then update the iterative
number and proceed to the next subaperture; otherwise, repeat steps
(5)–(9).

(11) Repeat steps (2)–(10) until all subapertures are processed.
(12) Combine 3D subimages of all subapertures to get the final

3D image.
The flow diagram of the algorithm is shown in Fig. 8, and the

processing steps in dashed rectangular are for subaperture imaging.
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Figure 9. 2D image with (a) the first pass sub-aperture data (b) the
second pass sub-aperture data.

Table 5. Reconstructed point targets and the corresponding errors
for the first subaperture.

Scatter No. (x, y, z) (m) Amplitude ( x, y, z) (m) Amplitude

1 ( 0.0107, 0.0107, 0 ) 1 (0.0107, 0.0107, 0) 0

2 ( 0.0107, 0.7614, 0 ) 0.9767 (0.0107, 0.0114, 0) 0.0233

3 ( 0.7614, 0.0107, 0 ) 0.9628 (0.0114, 0.0107, 0) 0.0372

4 ( 0.0087, 0.0101, 0.3047 ) 0.9587 ( 0.0087, 0.0101, 0.0047 ) − 0.0413

5 (   0.0105, 0.0084,   0.2813 0.9528 ( − 0.0105, 0.0084, 0.0187 ) − 0.0472

−

−

− − )

4. SIMULATION RESULTS

4.1. Point Targets

The simulation parameters are listed in Table 3, and original target
coordinates are list in Table 4. Both of two-pass full 360◦ aperture
echo data of five targets are divided into 25 subapertures. Figs. 9(a)
and (b) present the imaging results of the first subapertures of two-pass
observations, respectively, Figs. 10(a)–(d) present the constructed 3D
image and its projections onto different planes. In the same manner,
one can get all other 3D images and their projections. Figs. 11(a)–
(d) present the final images after combining all subaperture images
together. For the first subaperture, the reconstructed point targets
and the corresponding errors are listed in Table 5.
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Figure 10. (a) 3D reconstructed image of the first subaperture.
Projected image on (b) X-Y plane, (c) X-Z plane, (d) Y -Z plane.

From Fig. 10 one can see that all the targets are almost
reconstructed correctly. In Table 5, both reconstructed target
coordinates (x, y, z) and amplitudes are compared with the
original. Their errors are denoted as (∆x, ∆y, ∆z) and ∆Amplitude
respectively. Errors about target coordinates may come from (1)
the approximate radius R of defocused ring in Equation (5); (2)
the approximate azimuthal angle φ for each subaperture; (3) the
quantization error of height H. Errors about amplitudes are mainly
from the different energy distribute of targets with different height in
the same 2D image.

In Fig. 11, some targets are seemed to be reconstructed many
times while others are seemed to be reconstructed only one time. In
fact, all targets are reconstructed 25 times, each by one subaperture.
If the reconstructions from some different subapertures are the same,
they will overlap with each other in the composite image, and if they
are different, then there is no overlap in the composite image. When
apply this 3D reconstruction algorithm to real anisotropic targets, they
may be reconstructed only few times because of the limited azimuthal
persistence over the full aperture.
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Figure 11. (a) 3D reconstructed image of the full aperture. Projected
image on (b) X-Y plane, (c) X-Z plane, (d) Y -Z plane.

4.2. Backhoe Data

Backhoe data is generated using XpatchF electromagnetic scattering
prediction software [19]. It have been generated for 8–12GHz frequency
range, 0◦–360◦ azimuth range, and 0◦–90◦ incident angle range. Fig. 12
shows the 3D CAD model and its projection on different planes. Only
parts of two-pass data were published on the website [25]. Two
depression angles are 0◦ and 30◦, respectively, and both of them
have angles 100◦–250◦ in azimuth. 2D composite images of the two
data sets are shown in Figs. 13(a) and (b) respectively. Comparing
these two images, one can see that the image at 30◦ depressing
angle is much blurred than that at 0◦ depressing angle as well as
the scattering strength is much stronger. In order to achieve 3D
reconstruction, both of the two-pass part aperture echo data are first
divided into 29 subapertures. Then 2D image pairs corresponding to
same subapertures are utilized to reconstruct 3D subimages. At last,
the final 3D image is formed by combing all of the 3D subimages.
The 3D image and its projected 2D images are respectively shown in
Figs. 14(a)–(d). The 3D reconstructed image of Fig. 14(a) is shown in
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Figure 12. (a) 3D backhoe model. Projected model on (b) X-Y
plane, (c) X-Z plane, (d) Y -Z plane.
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Figure 13. 2D composite image with (a) depression angle 0o,
(b) depression angle 30o.
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Figure 14. (a) 3D reconstructed image. Projected image on (b) X-Y
plane, (c) X-Z plane, (d) Y -Z plane.

the same viewing angle as Fig. 12(a) shown, and Figs. 14(b), (c), and
(d) are shown in same viewing angles as Figs. 12(b), (c), and (d) shown.
By comparing these image pairs, one can see that the reconstructed 3D
image partially reflects the real 3D structure of the target, i.e., some
parts of the target structure are reconstructed well, but some parts
are not or even missed. The main reason is the depressing angles of
two passes are much different and results in much less common points
between subimage pairs. Totally speaking, as one can see that the
outline of the backhoe has been reconstructed.

5. CONCLUSION

In this paper, a new algorithm performing 3D target reconstruction
based on two-pass CSAR data is presented. Different from other 3D
imaging algorithms from 2D images, the proposed algorithm makes use
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of two-pass data rather than single pass data to overcome the limited
azimuthal persistence for real anisotropic targets, and does not need to
assume target falls into the same resolution cell for each elevation pass.
For each subaperture, the height of target is reconstructed through
the relationship between the pixel displacements in the image pair
of two observations and the pixel displacements in the image pair
of one observation on two different focal planes, and then 3D target
coordinates can be obtained based on the retrieved height information
and the 2D image coordinates. Both imaging results about point
targets and backhoe data show effectiveness of the presented algorithm.

We should point out that, as other 3D targets reconstruction
algorithms from 2D images do, the algorithm will fail when overlay
occur on 2D images. If locations of the maximum amplitudes of
different targets in the overlaid area occur in the same resolution cell
on 2D image, then only the location of one target can be reconstructed;
otherwise, both amplitudes and locations of these targets can not be
reconstructed correctly. We shall do further work to deal with these
cases.
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