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Abstract—A novel perturbation technique is formulated that enables
the efficient calculation of current on surfaces undergoing time-varying
mechanical deformations. The technique computes the current on the
perturbed surface using as its starting point the solution for a related
static case. This is initially derived using a standard analytical or
numerical technique. The key advantage of this approach is that only
an initial (computationally expensive) electromagnetic characterisation
of the static problem is required. The surface current perturbation
terms (and hence the radiated fields) are then directly computed from
the static problem with a very low computational overhead.

1. INTRODUCTION

A broad class of engineering applications require the calculation of
electromagnetic fields radiated or scattered by moving surfaces. For
example, such problems commonly arise in radar applications where it
is necessary to calculate the scattering cross-section and the spectral
dispersion arising from moving targets. Often the profile of these
targets is non-deterministic and the scattered fields are characterised
using a statistical approach [1–3]. Typically, these authors exploit
equivalent current methods and Physical Optics (PO) to determine the
statistical properties of the scattered field. Moreover, these techniques
can be used to treat representative targets such as planes, cylinders
and spheres which are undergoing motions such as translation and
vibration. In recent years much attention has also been given to

Received 20 October 2011, Accepted 16 December 2011, Scheduled 20 December 2011
* Corresponding author: Constantinos Constantinou (c.constantinou@bham.ac.uk).



228 Mehler, Constantinou, and Neve

scattering from deterministic surfaces undergoing translation, rotation
and vibration. For example, one-dimensional deterministic scattering
from vibrating planes [4, 5] and rotating cylinders [6] has been treated
by applying relativistic boundary conditions and the method of
characteristics to obtain numerical solutions.

In this paper, we consider the problem of scattering from surfaces
undergoing mechanical processes that cause translation, rotation and
deformation. These motions can be arbitrary, but are assumed to
be described deterministically. Frequently these processes are time-
harmonic in nature, as exemplified by vibrating panels on aircraft. The
strict electromagnetic (EM) characterisation of such problems requires
the solution of the wave equation subject to time-varying boundary
conditions. Such rigorous solutions have only hitherto been attempted
for the scalar wave equation (in one space dimension) to date [7] and
are of limited applicability to practical problems. Moreover, obtaining
a rigorous solution even when there is no time variation (i.e., for the
static problem) is frequently very demanding. If approximations can
be made (e.g., using high frequency asymptotic techniques such as
the geometrical/uniform theories of diffraction) a considerable time
saving can often be realised. However, approximate solutions to the
full Boundary-Value Problem (BVP), e.g., Physical Optics (PO), are
frequently needed in situations which cannot be solved exactly. An
unfortunate characteristic of these ‘full wave’ solutions is that they are
inevitably expensive to compute.

Sometimes geometries are so complex that even ‘full-wave’
solutions cannot be practically implemented. Fortunately, in recent
times the challenge of modelling EM scattering from complex surfaces
has been addressed by the development of versatile numerical methods,
such as the Method of Moments (MoM) [8], and the Finite Difference
Time Domain (FDTD) technique [9]. This requirement is further
exacerbated if the problem being considered is time-varying, as
computational runs must be repeated for a sequence of discrete
snapshots — each of which represents an individual geometrical
perturbation of the problem. As the computational load varies
linearly with the number of geometrical perturbations to be considered,
it can become prohibitively expensive, even for moderately sized
problems where the boundary deformation is significant. Methods
such as FDTD can be used more intelligently to accommodate moving
boundaries using a general relativistic transformation [10], but still
require significant processing resources to obtain results in acceptable
timeframes.

The motivation for this paper is to develop a technique which can
remove the requirement for performing a large number of independent
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computational runs on geometries that — apart from relatively
small-scale physical perturbations arising from mechanical translation,
rotation and deformation — are otherwise identical. The approach
presented here uses a novel perturbation technique to compute
the current (or equivalent current) on a time-varying surface given
knowledge of the current on an unperturbed (static) surface. The
perturbation analysis adopted explicitly accounts for the effect of
surface translation such that the remaining perturbation/correction
terms need only account for the effect of surface deformation. The
static problem can be computed via any appropriate analytical or
numerical technique, so long as it is capable of producing a solution
of acceptable accuracy for the static problem. A perturbation analysis
is then used to estimate the variation in surface currents arising as a
result of physical movement. In contrast to conventional perturbation
theory [11, 12] the leading term in the expansion is not simply taken
as being identical to the unperturbed case. The key feature of
our approach is that only an initial (computationally expensive) EM
characterisation of the static problem is required: The perturbation
in surface currents (and hence the radiated fields) can be directly
computed from the static problem using the technique presented here
with a very low computational overhead.

The perturbation technique is formulated for an arbitrary
perfectly conducting time varying surface, illuminated by a locally
plane monochromatic wave. However, to demonstrate the efficacy of
the technique, the induced surface current on a perfectly conducting
circular cylinder, whose radius is varying harmonically, is calculated.
This was chosen because the problem of scattering from a cylinder
has been extensively studied in the literature [13–16] and a reliable
analytic solution is easily obtained. The surface current distribution
obtained via the perturbation analysis is compared with that obtained
using repeated application of the analytical static solution technique
calculated at every time step. Good agreement is observed, especially
in the illuminated region, even for physical perturbations in excess of
a wavelength.

2. PROBLEM FORMULATION

Consider the time-varying surface shown in Fig. 1, which supports
a surface current J. Following the usual conventions of differential
geometry [17], the surface position vector r may be parameterised in
terms of surface coordinates u, v. The effect of a time-varying surface
deformation can then be introduced through the equation,

r(u, v, t) = r0(u, v) + δ(u, v, t) (1)
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where r0 describes a static, unperturbed surface and δ represents a
time-varying perturbation. For this surface it is possible to determine
an element of surface area dS in terms of the parameters u, v and a
time varying Jacobian of the form,

dS = ξ(u, v, t)dudv (2)

where ξ(u, v, t) =
∣∣ ∂r
∂u × ∂r

∂v

∣∣.
Similarly, with the aid of Eq. (1), the unit surface normal becomes,

n̂ = n0 + nδ (3)

where n0 =
(

∂r0
∂u × ∂r0

∂v

)
/ξ and nδ =

(
∂r0
∂u × ∂δ

∂v + ∂δ
∂u× ∂r0

∂v + ∂δ
∂u× ∂δ

∂v

)
/ξ.

It also follows that,

n̂ = η(u, v, t)n̂0 + nδ (4)

where η(u, v, t) =
∣∣∣∂r0

∂u × ∂r0
∂v

∣∣∣ /ξ, so that n̂0 represents the unperturbed
surface unit normal and nδ characterises the effect of the time-varying
perturbation.

The field radiated by J can be found in the usual way by means of
Green’s theorem [18], where the free-space form of the Green’s function
is appropriate in this case. Strictly, for an arbitrary time-varying
surface current, the full time-domain form of the Green’s function
should be used. However, a useful simplifying approximation can be
made by observing that, surfaces varying at the rate of a few Hertz
will appear almost static at a given instant in time from the point of
view of the electromagnetic scattering process: In the time taken for
the electromagnetic field to propagate across the scatterer, the latter
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Figure 1. Geometry of time-varying surface.
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will have moved only a negligibly small fraction of a wavelength. This
can be exploited to simplify the form of the Green’s function, which is
thus taken to be of the steady-state form. Thus, provided that initial
switching transients can be neglected, the field radiated by the surface
current can be found quasi-statically using the time-harmonic form of
the Green’s function. Therefore, assuming J is excited by an incident
monochromatic plane wave, the scattered field is given by,

A(R, t) = µ0

∫

S
J(R, t)G(R, r)ξ(u, v, t)dudv (5)

where G(R, r) = e−jk|R−r|
4π|R−r| ; with reference to Fig. 1, R is the position

vector of the observation point, r is the source coordinate over which
the integration is taken and is a function of u, v and t, as defined by
Eq. (1).

The aim here is to derive an expression for the induced
surface current J, subject to the time-varying boundary perturbation
described by Eq. (1), given that the unperturbed current on r0 is
known. It is assumed that this unperturbed current J0 on S has
been calculated using an analytical solution where this exists, or via
an appropriate numerical technique. To determine the relationship
between J and J0 it is necessary to consider the associated BVP.
Assuming a perfectly conducting surface S is illuminated by an incident
plane wave Ei, a surface current J will be induced which radiates a
scattered field Es, satisfying the condition,

n̂× (
Ei + Es

)
= 0 on S . (6)

Since n̂ is the surface normal, this merely expresses the constraint
that the tangential component of E vanishes. The electric field
radiated by J can be obtained from Eq. (5) by application of Maxwell’s
equations, in the form [19],

E(R, t) = −j

∫

S

(
ωµ0 +

∇∇.

ωε0

)
J(R, t)G(R, r)ξdudv (7)

and for convenience in later analysis this can be represented in a linear
operator notation as,

E(R, t) = LS [J;R] (8)
where the subscript S denotes the surface over which the integration
implied by L is taken.

Using the above notation it is possible to express the BVP
concisely. Considering initially the unperturbed case, where r = r0,
then J0 satisfies,

n̂0 ×
(
Ei (r0(u, v)) + LS [J0; r0(u, v)]

)
= 0 (9)
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for u, v ∈ D and where Ei(r0) = E0 exp (−jk0.r0).
It should be noted that, in Eq. (9), the observation point is now

coincident with the surface r0, and the parameters u, v vary over the
integration domain D in order to generate the surface S. If the surface
now undergoes the perturbation described by Eq. (1), r = r0 +δ, then
n̂ = n0 + nδ and S → S′. The resulting BVP now becomes,

(n0 + nδ)×
(
Ei (r(u, v, t)) + LS′ [J; r(u, v, t)]

)
= 0 (10)

for u, v ∈ D. To proceed it is now necessary to express J in terms
of the unperturbed current J0 and a series of perturbation terms.
The magnitude of these perturbation terms compared to J0 can be
significantly reduced, and the method made more computationally
efficient, by recognising that the bulk effect of deforming the surface
will be to induce a phase shift proportional to the distance moved in the
direction of the incident wave, together with a small change in surface
area. These effects can then be explicitly included in the leading term
of the expansion, resulting in an expression of the form,

J = e−jk0.δηJ0 + J1 + J2 (11)

where two perturbation terms J1 and J2 have been included, rather
than a single term, because they can be made to satisfy separable
equations. To this end, J1 is defined so that it satisfies,

LS′ [J1; r] = e−jk0.δLS [J0; r0]− LS′
[
e−jk0.δηJ0; r

]
(12)

for u, v ∈ D, so that combining Eq. (10) with the expansion of Eq. (11)
and eliminating the term operated upon by LS′ using Eq. (12), yields,

n0 ×
(
Ei(r) + e−jk0.δLS [J0; r0]

)
+ n0 × LS′ [J2; r]

+nδ ×
{
Ei(r) + e−jk0.δLS [J0; r0] + LS′ [J2; r]

}
= 0 (13)

for u, v ∈ D. Making use of Eq. (9), together with Ei(r) =
Ei(r0)e−jk0.δ, shows that the above choice of J1 ensures the first
bracketed term vanishes and J2 satisfies,

n̂× LS′ [J2; r] = −nδ ×
{
Ei(r) + e−jk0.δLS [J0; r0]

}
(14)

for u, v ∈ D.
In effect the original BVP expressed by Eq. (10) has been replaced

by Eqs. (12) and (14) for the perturbation currents J1 and J2,
respectively. Moreover, it can be seen that the right hand side of
Eq. (12) depends on the difference between two similar terms and the
right hand side of Eq. (14) is proportional to the small perturbation
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vector nδ. Thus it is to be expected that the perturbation terms
J1 and J2 will be of the order of the perturbation and hence small
compared to the leading term in Eq. (11). In fact, the effects of surface
translations are explicitly included in the leading term of Eq. (11)
and make no contribution to the remaining terms. To make this
explicit, consider the special case when the surface undergoes a time
dependent translation, without deformation. This is described by,
r(u, v, t) = r0(u, v) + δ(t), where δ is expressly not a function of u, v.
Since the Green’s function in Eq. (7) has an argument which depends
on the difference between the source and observation coordinates, such
a translation leaves its value unchanged. This observation, together
with the definition of η given by Eq. (4), applied to Eqs. (7) and (8),
yields,

LS′
[
e−jk0.δηJ0; r

]
= e−jk0.δLS [J0; r0] . (15)

Thus it is possible to conclude that the right hand side of Eq. (12)
vanishes and J1 = 0. Moreover, from Eq. (3) it is evident that
nδ = 0 and thus the right hand side of Eq. (14) vanishes, consequently
resulting in J2 = 0. Therefore, for the special case of translation
without surface deformation, it can be inferred that J1 = J2 = 0, and
the first term of Eq. (11) is an exact solution. In the presence of a
surface deformation, which introduces a non-zero nδ, the perturbation
terms J1 and J2 are non-zero.

Unfortunately, the rigorous determination of J1 and J2 by the
solution of Eqs. (12) and (14) is a procedure equal in complexity to
solving the original BVP, given by Eq. (10). However, it is possible to
simplify this procedure by exploiting PO [19] to approximate J1 + J2.
The PO approximation determines the surface current in terms of
the incident magnetic field Hi, through the relation JPO = 2n̂ ×Hi.
Therefore, the perturbed PO current may be written as,

JPO = 2 (n0 + nδ)×H0e
−jk0.r (16)

where use has been made of Eq. (3) and Hi = H0e
−jk0.r is the incident

magnetic field. This can be further expanded by means of Eqs. (1) and
(4), to yield,

JPO = e−jk0.δηJ′0 + 2nδ ×H0e
−jk0.r (17)

where J′0 = 2n̂0 ×H0e
−jk0.r0 .

Here J′0 is the unperturbed current on r0 determined to within
the PO approximation, unlike J0 which is exact. Eq. (17) can be used
to approximate J1 + J2, by direct comparison with Eq. (11),

J1 + J2 ≈ 2nδ ×H0e
−jk0.r. (18)
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Finally, incorporating this result into Eq. (11), yields,

J ≈ e−jk0.δηJ0 + 2nδ ×H0e
−jk0.r. (19)

Whilst the first term in this equation is exact, the second term
is subject to the PO approximation. Hence the approximation will
deteriorate if the dimensions of the scatterer are electrically small. In
practice, this means the method becomes unreliable for scatterers of a
few wavelengths extent, with small radii of curvature and significant
edge effects [19]. Fortunately, these cases can be tackled efficiently
using numerical methods without the need to resort to perturbation
techniques.

It is also instructive to derive the far-field radiated by the surface
current, given by Eq. (19). This is straightforward to derive from
Eq. (5) by making use of the usual far-field approximation |R − r| ∼
R− r.R̂, which yields,

A ∼ µ0

4π

e−jkR

R

∫

S
Jejk(R̂.r)ξdudv. (20)

Substituting Eq. (19) into Eq. (20) and making use of Eqs. (1)–(4),
gives,

A =
µ0

4π

e−jkR

R

∫

S

{
W(u, v)ejk((R̂−k̂0).δ)

+2
(

∂r0

∂u
× ∂δ

∂v
+

∂δ

∂u
× ∂r0

∂v
+

∂δ

∂u
× ∂δ

∂v

)
×H0e

jk((R̂−k̂0).r)
}

dudv (21)

where,

W(u, v) = J0e
jk(R̂.r0)

∣∣∣∣
∂r0

∂u
× ∂r0

∂v

∣∣∣∣ . (22)

It is evident from Eq. (20) that W is just the integrand associated
with the unperturbed case (δ = 0). Therefore, it is possible to
conclude from Eq. (21) that effect of the perturbation is to introduce
an additional phase factor ejk((R̂−k̂0).δ), and a perturbation term
proportional to the first order derivatives of δ. As the extent of the
perturbation is increased, this phase factor will reduce the coherence
of W and hence the significance of the first term compared with
the second. The second term which arises solely because of the
perturbation, is proportional to the degree of surface deformation, as
characterised by ∂δ

∂u and ∂δ
∂v . It should also be remarked that since

δ is a function of t, the scattered field will also undergo spectral
dispersion. In practice this effect will be small since the rate of surface
deformation is small compared with the frequency of the incident field.
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Nevertheless, this effect can be quantified by explicitly computing the
electric field in the time domain using, E = ∂

∂t(<(ejωtA)).
In the next section the range of validity of Eq. (19) is investigated

by comparison with the canonical solution for a right circular cylinder.

3. COMPARISON OF PERTURBATION METHOD
WITH CANONICAL CYLINDER SOLUTION

To investigate the accuracy of Eq. (19), it can be compared directly
with the canonical solution for a right circular perfectly conducting
cylinder over a range of parameter values. Fig. 2 illustrates a perfectly
conducting circular infinite cylinder, with its axis along the ẑ-direction.
It is illuminated by a homogeneous uniform plane wave of unit field
strength propagating in the x̂-direction. The cylinder has a radius a0

and the incident field is assumed to be magnetically polarised with Hi

along the ẑ-direction. By imposing the boundary condition Eθ = 0 on
the surface of the cylinder, a solution for the total magnetic field Hz

can be obtained in terms of a series of cylindrical modes [13], namely,

Hz =
∞∑

n=−∞

j−nejnθ

H
(2)
n

′
(k0a0)

×
{

Jn(k0a0)H(2)
n

′
(k0a0)− J ′n(k0a0)H(2)

n (k0a0)
}

. (23)

The associated surface current is given by J = n̂ ×H, which in this
case reduces to the azimuthal current Jθ = −Hz.

y

xz

 

a0

J  

Ey

H z k0

Incident field

θ

θ

Observation point

Figure 2. Geometry of canonical cylinder problem.
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Now consider the case when the cylinder’s radius is time-varying,
so that in the notation of Eq. (1),

r0 = (a0 cosu, a0 sinu, v) and
δ = (∆ sinωst cosu,∆sin ωst sinu, 0).

(24)

This implies that the radius is varying sinusoidally about a0 by
±∆. The angular frequency of this motion, ωs, which is assumed
mechanical in origin, is orders of magnitude less than the radio
frequency ω. Hence an exact solution can be obtained from Eq. (23),
since the displacement is quasi-static, by replacing a0 → a0+∆ sinωst.
Furthermore, Eqs. (3) and (4) lead to the results,

nδ =
∆sin ωst

a0 + ∆sinωst
(cosu, sinu, 0) η =

a0

a0 + ∆ sinωst
. (25)

Since the incident plane wave is x̂-directed, k0 = 2π
λ0

x̂ and hence,

k0 · δ =
2π∆
λ0

sinωst cosu k0 · r =
2π

λ0
(a0 + ∆ sinωst) cosu. (26)

Substituting Eqs. (24)–(26) in Eq. (19) and noting that in this
example u ≡ θ, yields,

Jθ =
−e−jk0∆sin ωst cos θ

a0+∆ sinωst
×

{
a0J0+2∆ sinωste

−jk0a cos θU
(
θ−π

2

)}
. (27)

Here J0 is the unperturbed (δ = 0) azimuthal component of
current derived from Eq. (23). U(x) is a unit step function and is
included because the PO current is only non-zero in the illuminated
region π

2 ≤ θ ≤ π.
Figures 3 and 4 show comparisons between the magnitude of

the azimuthal current Jθ calculated using the exact solution given
by Eq. (23) and the perturbation method described by Eq. (27).
Since the perturbation is at a maximum when sinωst = ±1, which
corresponds to the most extreme surface deformation a0 → a0 ± ∆,
these figures illustrate this instance. Fig. 3 show the cases a0 = 3λ0

with ∆ = ±0.5λ0, ±λ0, whereas Fig. 4 plot results for a0 = 9λ0

with ∆ = ±λ0, ±2λ0. As might be anticipated, these plots show
that exact and perturbation methods begin to diverge as ∆ increases.
Nevertheless, the perturbation method remains good out to quite
large values of ∆. Specifically, for the 3λ0 radius cylinder, ∆ = λ0

(0.33a0) and for the 9λ0 radius cylinder ∆ = 2λ0 (0.22a0). In all cases
agreement in the illuminated region 90◦ ≤ θ ≤ 180◦ is excellent, where
the computed values show differences of < 0.1 dB. This also applies to
the differences in phase which were computed to be < 3◦.
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In the shadow region 0 ≤ θ < 90◦, where the perturbation terms
J1 and J2 are taken as zero, differences begin to appear as ∆ increases.
Although agreement between magnitudes is still quite good over the
whole range, in the shadow region for large perturbations (a = 9λ,
∆ = 2λ), below about −20 dB, phase errors of around 50◦ are possible.
Moreover, in the deep shadow region 0 ≤ θ < 45◦, especially near
pattern nulls where the phase is very oscillatory, its estimate can
become unreliable. However, this is an extreme test, since prediction
in the shadow region at these levels is notoriously difficult even with
analytic solution techniques. Fortunately, the contribution to the
radiation integral, Eq. (20), is mostly from the dominant current in
the illuminated region and the scattered field derived will be little
affected by errors in these exceedingly small shadow region currents.
This turns out to be particularly the case along the principal scattering
directions.
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Figure 3. Time-varying cylinder with instantaneous radius 3λ0 + ∆.
The solid line represents the solution using the proposed perturbation
method, whereas the dashed line represents the ‘exact’ series solution.
(a) ∆ = 0.5λ0. (b) ∆ = −0.5λ0. (c) ∆ = λ0. (d) ∆ = −λ0.
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Figure 4. Time-varying cylinder with instantaneous radius 9λ0 + ∆.
The solid line represents the solution using the proposed perturbation
method, whereas the dashed line represents the ‘exact’ series solution.
(a) ∆ = λ0. (b) ∆ = −λ0. (c) ∆ = 2λ0. (d) ∆ = −2λ0.

Furthermore, it follows directly from Eq. (27), that the relative
magnitude of the perturbation term J1 + J2, compared with the
leading term in Eq. (11), varies linearly with ∆ as 2∆/(a0|J0|). The
significance of these two correction terms is illustrated numerically in
Fig. 5. As is clearly evident in the results, the significance of the PO
approximation becomes more important as the degree of perturbation
increases. Moreover, Figs. 3 and 4 show that the accuracy of the
method tends to improve as the radius of curvature increases. This is
consistent with the behaviour of the PO approximation which improves
in accuracy as the surface becomes more planar.

It is of interest to increase ∆ to the point where the method
completely breaks down. Fig. 6 illustrates this situation for a0 = 3λ0

and ∆ = 3λ0,−2λ0. At this point the perturbation method gives
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Figure 5. The effect of “switching off” the perturbation correction
terms J1 + J2. The solid line represents the leading term in the
perturbation solution alone, whereas the dashed line represents the
full perturbation solution. (a) a0 = 3λ0 and ∆ = λ0. (b) a0 = 9λ0 and
∆ = 2λ0.
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Figure 6. Time-varying cylinder with instantaneous radius 3λ0 + ∆.
The solid line represents the solution using the proposed perturbation
method, whereas the dashed line represents the ‘exact’ series solution.
(a) ∆ = 3λ0. (b) ∆ = −2λ0.

poor results, even in the illuminated region. However, this is an
extreme example, since at this point the radius has undergone a 100%
increase or 66% decrease. In the latter case the PO approximation has
completely broken down for a cylinder of radius λ0. In general it may
be concluded that the technique is reliable out to radius of curvature
changes of ∼ 20%. Beyond this point, shadow region predictions start
to become unreliable. It should also be remarked that the canonical
solution given by Eq. (23) is very slow to converge, requiring 78
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summation terms for the 9λ0 radius cylinder. In contrast, once J0

is determined, Eq. (27) is trivial to compute.

4. CONCLUSION

A novel perturbation technique is formulated that enables the efficient
calculation of current on surfaces undergoing time varying mechanical
deformations. The technique computes the current on the time varying
surface using as its starting point the solution for a related static case,
which is derived using a standard analytical or numerical technique.
The approach is made more computationally efficient by explicitly
accounting for the effect of surface translation so that the remaining
perturbation/correction terms need only account for the effect of
surface deformation. Moreover, only an initial computationally
expensive EM characterisation of the static problem is required. The
perturbation in surface currents (and hence the radiated fields) is
then directly computed from the static problem with a very low
computational overhead.

The efficacy of the technique is demonstrated by computing the
induced surface current on a perfectly conducting circular cylinder,
whose radius is varying harmonically. The surface current distribution
obtained via the perturbation analysis is compared with that obtained
using repeated application of the analytical static solution technique.
Good agreement is observed both in terms of amplitude and phase,
especially in the illuminated region, even for physical perturbations in
excess of a wavelength.
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