
Progress In Electromagnetics Research M, Vol. 22, 205–218, 2012

BEAM PROPAGATION FACTOR OF PARTIALLY CO-
HERENT LAGUERRE-GAUSSIAN BEAMS IN NON-
KOLMOGOROV TURBULENCE

H. Luo, H. F. Xu, Z. F. Cui, and J. Qu*

Department of Physics, Anhui Normal University, Wuhu 241000, China

Abstract—In order to study beam-propagation factor (M2-factor)
of partially coherent Laguerre-Gaussian (PCLG) beams in non-
Kolmogorov turbulence, a generalized exponent and a generalized
amplitude factor are introduced. Based on the extended Huygens-
Fresnel principle and second-order moments of the Wigner distribution
function (WDF), the analytical formula of M2-factor for PCLG
beams in non-Kolmogorov turbulence is derived. The corresponding
numerical results are also calculated. Results show that for PCLG
beams propagating in non-Kolmogorov turbulence, the bigger the
beam order or outer scale is, or the smaller the correlation length,
C̃2

n, or inner scale is, the smaller the value of the normalized M2-factor
is. Furthermore, the normalized M2-factor of PCLG beams increases
with the increasing of α until it reaches the maximum point, then it
gradually decreases the increasing of α.

1. INTRODUCTION

For a long time, Kolmogorov’s power spectrum of refractive index
fluctuations has been widely accepted and shown good agreement with
experimental results [1]. However, the Kolmogorov spectrum is only
effective in inertial subrange. In last several decades, it has been
experimentally indicated that turbulence in the upper troposphere and
stratosphere deviates from predictions of the Kolmogorov model [2, 3],
and in the case of laser propagation along the vertical direction, the
turbulence is no longer homogeneous in three dimensions, since the
vertical component is suppressed [4]. Taking into account the slope
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variation of the atmospheric power spectrum, Toselli et al. introduced a
non-Kolmogorov power spectrum [5, 6] by using a generalized exponent
and a generalized amplitude factor instead of a constant standard
exponent value 11/3 and a constant value 0.033 associated with the
conventional Kolmogorov power spectrum. The parameter “α” is the
power-law for the spectrum of the index of refraction fluctuations,
and the generalized power spectrum reduces to the conventional
Kolmogorov spectrum when the exponent value α = 11/3 [5, 6].
Based on this model, average spreading of a Gaussian beam array,
spreading and direction of Gaussian–Schell model beam and second-
order statistics of stochastic electromagnetic beams in non-Kolmogorov
turbulence have been studied [3, 7, 8]. However, to our knowledge, the
propagation of other types of beams in non-Kolmogorov turbulence
have rarely been taken into account, even though the propagation
properties of various types of laser beams in Kolmogorov turbulence
have been widely studied [9–12].

Parameter properties of laser beams (such as the kurtosis
parameter, M2-factor, polarization characteristics and scintillation,
etc.) have been discussed in many publications [13–16]. Recently, the
M2-factor is a very useful beam parameter for characterizing laser
beams and can be regarded as a beam quality factor in many practical
applications [17]. The M2-factor of partially coherent beams in free
space has been studied by Gori, et al. [18, 19]. Amarande [13], Zhou
and Zheng [14], Baida and Luo [20] have studied beam propagation
factor of flattened Gaussian beams, higher-order cosh-Gaussian beam
and hard-edge diffracted cosh-Gaussian beams. Dan and Zhang have
studied M2-factor of partially coherent flat-topped beams [21]. Yuan et
al. have calculated coherent and partially coherent hollow beam
propagation in Kolmogorov turbulent atmosphere [22]. Especially,
Chu has investigated the Hermite-Gaussian beam quality and its beam
shape under some conditions in non-Kolmogorov turbulence [23].

In this paper, the main aim is to study the propagation properties
of M2-factor for PCLG beams in non-Kolmogorov turbulence by using
the extended Huygens-Fresnel principle and second-order moments of
the WDF. The analytical expression in non-Kolmogorov is derived.
Some numerical examples have been discussed.
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2. THEORETICAL MODEL

2.1. WDF of PCLG Beams in a Turbulent Atmosphere

The electric field distribution of LG beams at the source plane (z = 0)
is given by [24]

E0(ρ′, 0) =
(−1)n

22n+m · n!
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where ρ ≡ (x, y) is the two-dimensional position vector in the source
plane. H2t+m−s(·) and H2n−2t+s(·) are Hermite polynomials. w0 is the
waist width of the fundamental Gaussian beam. For the case of the
beam orders m = n = 0, Eq. (1) is reduced to a fundamental Gaussian
beam.

Reference [25] introduces a Gaussian term of the spectral degree
of coherence. The fully coherent beam can be extended to the partially
coherent one, and this type of partially coherent beam can be produced
by the fully coherent beam passing through a random phase plate or
a liquid crystal [21, 26]. In rectangular coordinate system, a partially
coherent beam at the plane z = 0 is characterized by the cross-spectral
density, which is expressed as [21, 27].
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where 〈·〉m denotes average over the field ensemble, and ρ′1 and ρ′2 are
two different point vectors in the source plane. σ0 is the correlation
length of the source, and H(·) is Hermite polynomial. If m = n = 0,
Eq. (2) is reduced to the cross-spectral density function of Gaussian-
Schell model beams and σ0 →∞, and PLG beams reduce to a coherent
LG beams.

By using the paraxial form of the extended Huygens-Fresnel
principle [3, 7], the cross-spectral density of PCLG beams through the
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turbulence can be expressed as [21, 22].

W (ρ,ρd, z) =
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2πz
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×exp
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ik
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where k = 2π/λ is the wave number, λ the wavelength, and term
exp[−H(ρd, ρ

′
d, z)] the effect of the turbulence. H can be written as

[21, 22].
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where J0 is the Bessel function of zero order, κ the magnitude of
the spatial wave number, and Φn the spatial power spectrum of the
refractive index fluctuations of the turbulent atmosphere. To include
both inner- and outer-scale effects, we use non-Kolmogorov spectrum
expressed in the following form to model the atmospheric turbulence
[7, 28].

Φn(κ) = A(α)C̃2
n

exp
[−κ2/κ2

m

]
(
κ2 + κ2

0

)α/2
0 ≤ κ < ∞ − 3 < α < 4 (5)

where κ0 = 2π
L0

and κm = c(α)
l0

with L0 and l0 are the turbulence outer-
and inner-scale parameters, and α is the power law. In the present
paper, it is supposed that α holds unchanged along the propagation
path. And c(α) =

[
Γ(5− α

2 )A (α) 2
3π

]1/(α−5), the term C̃2
n in Eq. (5) is

generalized refractive-index structure parameter with units m3−α, and
Γ denotes the gamma function. A (α) = 1

4π2 Γ(α − 1) cos
(

απ
2

)
. The

spectrum expressed in Eq. (5) is reduced to conventional Kolmogorov
spectrum when α = 11/3, A(α) = 0.033, L0 = ∞, l0 = 0 and C̃2

n = C2
n.

To evaluate Eq. (3), it is convenient to introduce new variables of
integration

ρ′ = (ρ′1 + ρ′2)/2, ρ′d = ρ′1 − ρ′2
ρ = (ρ1 + ρ2)/2, ρd= ρ1 − ρ2

where ρ1, ρ2 are two arbitrary point vectors in the receiver plane,
perpendicular to the direction of propagation of the beam, and the
cross-spectral density at the source plane can be expressed as

W (ρ′,ρ′d, 0) = Γ(ρ′1, ρ
′
2, 0) = Γ

(
ρ′ +

ρ′d
2

, ρ′ − ρ′d
2

, 0
)

(6)

It is well known that the WDF can characterize partially coherent
beams in space and in spatial frequency domain simultaneously and
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can be expressed in terms of the cross-spectral density W (ρ, ρd, z)
as [29, 30].
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where vector θ = (θx, θy) denotes an angle of propagation, and kθx

and kθy are the wave vector components along the x-axis and y-axis,
respectively.

On the basis of inverse Fourier transform of the Dirac delta
function and its property of even function [21], we obtain
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with 1
ε2 = 1
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.

Substituting Eq. (10) into Eq. (7), using Eq. (11), and performing
the integration with respect to ρ′′, we obtain
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2.2. The Angular Width and M2-factor of PCLG Beams in
Non-kolmogorov Turbulence

Based on the second-order moments of WDF, the M2-factor of beams
can be defined as [21, 22, 30].
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where
P =
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Substituting Eq. (20), Eq. (21) and Eq. (22) into Eq. (14), the
expression of M2-factor for PCLG beams in the received plane can be
expressed as
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Equation (26) is the main result of this paper, which presents a
powerful tool to study the M2-factor of PCLG in the receiving plane.
One can find that when σ0 → ∞, Eq. (26) reduces to coherent M2-
factor of LG beams, and when Φn (κ) = 0, Eq. (26) can also turn into
M2-factor of PCLG beams in the free space.

3. NUMERICAL EXAMPLES

Now we study the numerical results of the M2-factor for PCLG beams
on propagation by using the formula derived in above section.

Figure 1 gives the variation of the M2-factor and the normalized
M2-factor of PCLG beams on propagation in turbulent atmosphere
for different α. From Fig. 1, one can see that the M2-factor and
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Figure 1. M2-factor and normalized M2-factor of PCLG beams
versus propagation in non-Kolmogorov turbulence for different α. The
calculation parameters are m = 2, n = 1, L0 = 1m, l0 = 0.01m,
λ = 8.50× 10−7 m, C̃2

n = 10−15 m3−α, σ0 = 0.02m.
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Figure 2. Normalized M2-factor of PCLG beams versus propagation
in non-Kolmogorov turbulence for different L0. The calculation
parameters are m = 2, n = 1, α = 3.8, λ = 8.50 × 10−7 m,
C̃2

n = 10−15 m3−α, σ0 = 0.02m. (a) L0 = 1m. (b) l0 = 0.01m.
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normalized M2-factor of PCLG beams obviously increase with the
increasing propagation distance z. In other words, the beam quality
decreases as the propagation distance increases. But it firstly grows
and then decreases for a fixed propagation distance z with increasing
on the value of α.

Figure 2 plots the normalized M2-factor of PCLG beams
propagating in non-Kolmogorov turbulence for different inner scale l0
and outer scale L0. It is seen from Fig. 2 that the normalized M2-
factor of PCLG beams decreases with increasing inner scale l0 when
the propagation distance z is fixed(see Fig. 2(a)). And the normalized
M2-factor increases with increasing outer scale L0 (see Fig. 2(b)).
The inner scale l0, which forms the lower limit of the inertial range,
has a smaller value for strong turbulence and a larger value for weak
turbulence. The outer scale L0 forms the upper limit of the inertial
range and increases with the increasing strength of turbulence. The
decreasing of inner scale l0 or increasing of outer scale L0 is equivalent
to increasing the strength of the turbulence. In these cases, the laser
beam will meet more turbulence cells along its propagation paths, and
as a result, M2-factor of the beam maybe have higher value.

Figure 3 gives the normalized M2-factor of PCLG beams versus
propagation in non-Kolmogorov turbulence for different C̃2

n. From
Fig. 3, one can see that the normalized M2-factor of PCLG beam
increases with increasing of propagation distance. And it is clearly
seen that for a given propagation distance the normalized M2-factor
is smaller for PCLG beam with weaker turbulence.

Figure 3. Normalized M2-
factor of PCLG beams versus
propagation in non-Kolmogorov
turbulence for different C̃2

n. The
calculation parameters are m = 2,
n = 1, w = 0.02m, σ0 = 0.01m,
L0 = 1 m, l0 = 0.01m, λ =
8.50× 10−7 m, α = 3.36.

Figure 4. Normalized M2-
factor of PCLG beams versus
α in non-Kolmogorov turbulence
for different σ0. The calculation
parameters are m = 2, n = 1,
l0 = 0.01m, λ = 8.50 × 10−7 m,
z = 1 km, C̃2

n = 10−15 m3−α.
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Figure 5. Normalized M2-factor of PCLG beams versus propagation
in non-Kolmogorov turbulence for different m, n. The calculation
parameters are L0 = 1 m, l0 = 0.01m, λ = 8.50 × 10−7 m, C̃2

n =
10−15 m3−α, σ0 = 0.02m.

Figure 4 shows the normalized M2-factor of PLG beams as
a function of α on propagation in non-Kolmogorov turbulence for
different correlation lengths σ0. It can be shown in Fig. 4 that the
normalized M2-factor of LG beams increases with the increasing of
α until it reaches the maximum point. After the maximum point,
the normalized M2-factor decreases with the increasing of α. The
normalized M2-factor of fully coherent LG beams is worse than that
of PCLG beams in atmospheric turbulent. We assume that when the
power law approaches the limiting value α = 3, the function A(α)
approaches zero. Consequently, the refractive-index power spectral
density vanishes in this limiting case. The explanation for alpha
approaching 4 is that the power spectrum contains fewer eddies of
high wave numbers, i.e., the wavefront tilt is the primary aberrations.
So the M2-factor first grows and then decreases with the change of the
parameter α.

Figure 5 shows the normalized M2-factor of PCLG beams on
propagation in non-Kolmogorov turbulence for different beam orders
m, n. From Fig. 5, one can see that the normalized M2-factor in
atmospheric turbulent becomes worse for PCLG beams with lower
beam orders as propagation distance z increases, i.e., the influence of
a higher beam order on M2-factor is less affected by turbulence than
that of the lower beam order.

4. CONCLUSIONS

In conclusion, the analytical formulas for the M2-factor of PCLG
beams in non-Kolmogorov turbulence has been derived by using the
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extended Huygens-Fresnel principle and second-order moments of the
WDF. It is found that the propagation properties of the relative M2-
factor for PCLG beams depend on beam orders, correlation length
σ0, inner scale l0 and outer scale L0. The value of the normalized
M2-factor of PCLG beams is smaller for higher beam order, smaller
correlation length, smaller C̃2

n, smaller inner scale and bigger outer
scale. And the normalized M2-factor of PCLG beams increases
with the increasing of α until it reaches the maximum point. After
the maximum point, the normalized M2-factor decreases with the
increasing of α. These results may be useful in the practical beam
propagation.

ACKNOWLEDGMENT

Jun Qu acknowledges the support by AnHui Provincial Natural Science
Foundation of China under Grant No. 11040606M154 and Foundation
of AnHui Educational Committee under Grant No. KJ2010A155.

REFERENCES

1. Hona, J., E. N. Nyobe, and E. Pemha, “Experimental
technique using an interference pattern for measuring directional
fluctuations of a laser beam created by a strong thermal
turbulence,” Progress In Electromagnetics Research, Vol. 84, 289–
306, 2008.

2. Rao, C., W. Jiang, and N. Ling, “Spatial and temporal charac-
terization of phase fluctuations in non-Kolmogorov atmospheric
turbulence,” J. Mod. Opt., Vol. 47, Nos. 6, 1111–1126, 2000.

3. Wu, G. H., H. Guo, S. Yu, and B. Luo, “Spreading and direction
of Gaussian-Schell model beam through a non-Kolmogorov
turbulence,” Opt. Lett., Vol. 35, Nos. 5, 715–717, 2010.

4. Zilberman, A., E. Golbraikh, and N. S. Kopeika, “Propagation
of electromagnetic waves in Kolmogorov and non-Kolmogorov
atmospheric turbulence: Three-layer altitude model,” Appl. Opt.,
Vol. 47, Nos. 34, 6385–6391, 2008.

5. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of
arrival fluctuations for free space laser beam propagation through
non-Kolmogorov turbulence,” Proc. SPIE, Vol. 6551, Nos. 65510E,
1–12, 2007.

6. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-
space optical system performance for laser beam propagation
through non-Kolmogorov turbulence,” Opt. Engineering, Vol. 47,
026003, 2008.



Progress In Electromagnetics Research M, Vol. 22, 2012 217

7. Zhou, P., Y. X. Ma, X. L. Wang, H. C. Zhao, and Z. J. Liu,
“Average spreading of a gaussian beam array in non-Kolmogorov
turbulence,” Opt. Lett., Vol. 35, Nos. 7, 1043–1045, 2010.

8. Shchepakina, E. and O. Korotkova, “Second-order statistics
of stochastic electromagnetic beams propagating through non-
Kolmogorov turbulence,” Opt. Express, Vol. 18, Nos. 10, 10650–
10658, 2010.
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