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Abstract—According to the uniqueness theorem, the far field
radiation pattern of radiators such as antennas can be determined from
the measured tangential electric or magnetic field components over an
arbitrary Huygens’ surface enclosing the radiator. In this paper, a
method using the spherical electric field measurement is developed
to calculate the far field radiation. Following the Schelkunoff’s field
equivalence principle, a spherical region surrounding the radiator is
assumed and its internal space is filled up with the perfect electric
conductor (PEC). The radiated field from the Huygens’ equivalent
electric current is zero. Referring to the Ohm-Rayleigh method and
the scattering wave superposition, the dyadic Green’s function (DGF)
with the presence of a PEC sphere is expanded by a series of spherical
vector wave functions. Based on the DGF and the measured tangential
electric field, the radiation behavior of the radiator can be directly
predicted without involving the uncertainty from the inverse process.
The robustness and accuracy of the proposed method are verified
through several canonical antenna benchmarks.

1. INTRODUCTION

Followed by the near field data post processing, advanced near field
measurement techniques are broadly employed today to characterize
antenna related issues such as antenna diagnostics [1], far field (FF)
predictions, and radiation pattern synthesis, etc.. For antennas with
large aperture size or working at low frequencies, the direct far field
measurement is expensive and difficult due to the space requirement for
the anechoic chamber. Besides, the near field data contains very useful
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information for antenna diagnostics [2]. Traditional near-field far-field
transformation (NF-FF) algorithms employ a set of equivalent sources
that could be electric/magnetic dipoles, electric/magnetic current
sources, or plane waves, etc..

In [3, 4], the equivalent magnetic current source over an infinite
fictitious PEC plane in front of the antenna aperture is determined by
the planar electric near field scanning, in which the resultant magnetic
current is approximated by 2D pulse basis functions. A similar idea
is proposed in [5], where the equivalent source is represented by a set
of planar electric currents over a perfect magnetic conductor (PMC)
plane. The effect of the PMC plane is considered through the image
theory. The unknown equivalent sources are thereby solved by singular
value decomposition. However, these ideas have a common deficiency:
they only work for the half space radiation in front of the equivalent
source plane. Plus, an inverse process is needed before the far field
radiation calculation.

To overcome the aforementioned deficiency, researchers developed
another method in which equivalent sources are distributed over a
surface enclosing the radiator. In [6, 7], equivalent current sources
are reconstructed over a spherical surface enclosing the antenna or on
the surface of the antenna itself. The resultant equivalent current
source can be used to characterize the full 3D radiation pattern.
In [8], magnetic and electric dipoles are used as equivalent sources
to approximate the original field. Both radiated fields from the
reconstructed dipoles and measured near fields over a sphere are
expanded into spherical harmonic functions. The expansion coefficients
are solved by the mode matching method.

Although the above methods are eligible for the far field radiation,
there is a significant discrepancy between the reconstructed current and
the Love’s equivalence current. This fact was first noticed by Persson
and Gustafsson [9] and a more detailed treatment was proposed by
Quijano and Vecchi [10–12] and Jorgensen et al. [13], etc. To obtain the
correct Love’s equivalent current, the field radiated by the equivalent
source inside the Huygens’ surface must be enforced to zero.

Another method for the NF-FF transformation is proposed to
consider the full probe correction through the diagonal translation
operator [15]. The equivalent currents are not calculated explicitly.
Instead, they are expanded by plane waves. A further step in [16] is to
discretize the equivalent currents by RWG basis functions and compute
their coefficients through the fast multipole method.

In general, all above mentioned methods require the inverse
scattering process, which solves equivalent sources before calculating
the far field radiation. This usually suffers the loss of the evanescent
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wave information and hence there is the uncertainty issue in the
recovered equivalent sources.

In this paper, a technique based on the uniqueness theorem [14]
is developed and verified. It avoids the conventional inverse scattering
process but involves the explicit formulation of DGF. Only the
tangential field measured on a spherical surface is employed to calculate
the radiation directly through the analytical DGF of a PEC sphere [17].
Since the whole process is analytically rigorous except the field
measurement, this method can precisely characterize the radiation
from DUTs. It is necessary to clarify that our method is different from
the modal expansion approach that expands the electric or magnetic
field directly by a set of spherical wave functions while Green’s function
is never needed. However, adding the full probe correction into our
approach is no trivial and further studies are needed. Hence, to avoid
its influence, the probe shall be small enough and the measurement
distance shall not be too close to the DUT to reduce the mutual
coupling.

The organization of this paper is as follows: in Section 2,
the proposed method is described with the analytical formula of
DGF considering the presence of a PEC sphere. In Section 3, the
proposed approach is applied to characterize the radiation of several
representative antennas. Conclusions and discussions are presented at
the end of the paper.

2. THEORY

One primary attraction of the conventional NF-FF transformation
method is the employment of the free space DGF. But the uniqueness
theorem indicates that only the tangential electric field or the
tangential magnetic field on a closed boundary is needed to characterize
the radiated field. It means that the measured tangential field on a
closed surface can be used to calculate the radiation directly. But
the corresponding DGF is difficult to find when it is not for the
homogeneous free space. For many problems, the closed form DGF
does not even exist. To avoid this issue and be general to most practical
applications, we select a spherical surface as the measurement area to
completely enclose the radiating sources.

As shown in Figure 1(a), the equivalence theorem [14] allows
the field outside the measurement sphere calculated by the following
expression [18]

Ē(r̄)=
∫∫
©

s′

{
iωµG(r̄, r̄′)·[n̂×H̄(r̄′)

]
+∇×G(r̄, r̄′)·[n̂×Ē(r̄′)

]}
ds′ (1)



246 Li and Jiang

S '

(a) (b)

Figure 1. (a) Apply the equivalence theorem to the region outside
the measurement spherical surface. (b) Following the Schelkunoff’s
equivalence principle, the region inside the measurement spherical
surface is filled with PEC. Hence, only the magnetic current contributes
to the radiated field outside the measurement sphere.

H̄(r̄)=
∫∫
©

s′

{
iωεG(r̄, r̄′)·[Ē(r̄′)×n̂

]
+∇×G(r̄, r̄′)·[n̂×H̄(r̄′)

]}
ds′ (2)

where

G(r̄, r̄′) =
(

I +
1
k2
∇∇

)
eik|r̄−r̄′|

4π |r̄ − r̄′| (3)

is the dyadic Green’s function in the free space; n̂ is the unit normal
vector; n̂ × H̄(r̄′) and Ē(r̄′) × n̂ represent the equivalent tangential
electric current and equivalent tangential magnetic current over the
measurement sphere, respectively.

2.1. Dyadic Green’s Function for a PEC Sphere

Since either electric field or magnetic field is needed to characterize
the radiation based on the uniqueness theorem, only the tangential
electric field is utilized in this paper. Following the Love’s equivalence
principle and Schelkunoff’s equivalence principle [14], the field inside
the measurement sphere is assumed to be zero. In this case, PEC is
applied to fill the internal region of the measurement sphere, as shown
in Figure 1(b). The contribution from the equivalent electric current
in (1) becomes zero. Similarly, the second term on the right in (2) is
equal to zero. However, the dyadic Green’s function in (3) is altered
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to consider the existence of the PEC sphere. The new formulae are
written as

Ē(r̄) =
∫∫
©

s′

{
∇×GPEC(r̄, r̄′) · [n̂× Ē(r̄′)

]}
dS′ (4)

H̄(r̄) =
∫∫
©

s′

{
iωεGPEC(r̄, r̄′) · [Ē(r̄′)× n̂

]}
dS′ (5)

where, GPEC(r̄, r̄′) is the DGF with the presence of a PEC sphere
enclosing the DUT at the origin. By the Ohm-Rayleigh method and
the scattering wave superposition, GPEC(r̄, r̄′) can be formulated by
two terms

GPEC(r̄, r̄′) = G(r̄, r̄′) + Gs(r, r̄′) (6)

The first term G(r̄, r̄′) is the free space DGF and the second
term Gs(r̄, r̄′) represents the scattering from the PEC sphere. Next,
spherical vector wave functions are employed to expand the free space
DGF. It is well known that the vector wave functions L̄mn, M̄mn and
N̄mn make up a group of complete orthogonal basis. The divergence
free electromagnetic fields can be expressed by the linear combination
of M̄mn and N̄mn while L̄mn represents the curl free field. In the
spherical coordinate, M̄mn and N̄mn are solved as follows

M̄mn = êθ
im

sin θ
Bn(kr)Pm

n (cos θ)eimφ − êφBn(kr)
∂Pm

n (cos θ)
∂θ

eimφ (7)

N̄mn = êr
n(n + 1)

kr
Bn(kr)Pm

n (cos θ)eimφ

+
1
kr

∂(krBn(kr))
∂(kr)

eimφ

[
êθ

∂Pm
n (cos θ)

∂θ
+êφ

im

sin θ
Pm

n (cos θ)
]

(8)

The vector wave functions are then used to represent the G(r̄, r̄′)
and Gs(r̄, r̄′) in (6) as follows [17, 19]

G(r̄, r̄′) = −1
k
r̂r̂δ(r̄ − r̄′) +

ik

4π

∞∑

n=1

n∑
m=−n

Cnm

·





[
M̄

(1)
mn(k, r̄)M̄ ′

mn(k, r̄′) + N̄
(1)
mn(k, r̄)N̄ ′

mn(k, r̄′)
]
,

r > r′[
M̄mn(k, r̄)M̄ ′(1)

mn(k, r̄′) + N̄mn(k, r̄)N̄ ′(1)
mn(k, r̄′)

]
,

r < r′

(9)
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Gs(r̄, r̄′) =
ik

4π

∞∑

n=1

n∑
m=−n

Cnm

[
anM̄ (1)

mn(k, r̄)M̄ ′(1)
mn(k, r̄′)

+bnN̄ (1)
mn(k, r̄)N̄ ′(1)

mn(k, r̄′)
]

(10)

where r̄ and r̄′ are defined as the observation and current source
position vectors. The coefficient Cmn is

Cmn =
2n + 1

n(n + 1)
× (n−m)!

(n + m)!
(11)

The coefficients an and bn in (10) are determined by applying the
dyadic Dirichlet boundary condition on the PEC spherical surface
which is

r̂ ×GPEC(r̄, r̄′) |r=r′ = 0 (12)

It yields

an = − jn(ρ)

h
(2)
n (ρ)

(13a)

bn = −
∂
∂ρ [ρjn(ρ)]

∂
∂ρ

[
ρh

(2)
n (ρ)

] , ρ = kr′ (13b)

where r′ is the radius of the PEC sphere. jn(ρ) and h
(2)
n (ρ) are the

first kind spherical Bessel function and second kind spherical Hankel
function, respectively. The superscript (1) in (9) and (10) denotes that
in (7) and (8) Bn(kr) = h

(2)
n (kr), which represents outgoing waves;

otherwise, Bn(kr) = jn(kr) for standing waves when r → 0. In the far
field region, approximations can be made as follows [20]

h(2)
n (kr)≈ jn+1 e−jkr

kr
(14a)

1
kr

∂
[
h

(2)
n (kr)kr

]

∂(kr)
≈ jn e−jkr

kr
(14b)

However, when the observation point and/or the source point are
located at the north or south poles (θ = 0, π), the proposed method
will suffer singularity problems due to the two terms in (15) contained
in spherical wave functions. The detailed treatment is presented in the
Appendix.

Q1 =
Pm

n (cos θ)
sin θ

, and Q2 =
∂Pm

n (cos θ)
∂θ

(15)
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Figure 2. DUT placed on an infinite PEC ground. The electric field
measurement is conducted over the upper hemisphere. The ground
plane is removed by applying the image theorem.

2.2. Dyadic Green’s Function for a PEC Hemisphere on an
Infinite PEC Ground

Sometimes DUTs are placed on the PEC ground. For instance, the
EMC/EMI evaluations of vehicles and aircrafts are often conducted in
semi-anechoic chambers or at the open area test sites (OATS). Then
only the hemispherical electric field scanning is needed. The influence
of the PEC ground is counted by applying the image theory, as shown
in Figure 2. The DGF in (6) is used for the field radiated by the current
on the upper hemisphere. As for the radiation of the image source, the
coordinate (r′, θ′, φ′) is redefined as (r′′, θ′′, φ′′) to represent the image
current source position

{
r′′ = r′
θ′′ = π − θ′
φ′′ = φ′

(16)

2.3. Characterization of the Radiated Field by the
Tangential Electric Field

The aforementioned DGF is applied to characterize electromagnetic
emissions from antennas, PCBs and electronic devices, etc.. The
compact form of DGF is as follows

GPEC =





G(r̄, r̄′) + Gs(r̄, r̄′), for original source

G(r̄, r̄′′) + Gs(r̄, r̄′′), for image source
(17)
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The tangential electric field is acquired on a fictitious PEC sphere
with regular measurement intervals ∆θ and ∆φ. The impressed
tangential magnetic current can be calculated by

M̄θ′i,j = −r̂′i,j × Ēφ′(a, θ′i, φ
′
j) (18)

M̄φ′i,j = −r̂′i,j × Ēθ′(a, θ′i, φ
′
j) (19)

where (a, θ′i, φ′j) is the spherical coordinate of the measurement
position. a is the radius of the sphere,and the angles are defined as

θ′i =
(

i− 1
2

)
∆θ, i = 1, 2, . . . , Nθ (20a)

φ′j =
(

j − 1
2

)
∆φ, j = 1, 2, . . . , Nφ (20b)

where Nθ and Nφ are numbers of sampling points. Then, the magnetic
current components M̄θ and M̄φ are represented by the pulse basis
functions

M̄θ =
Nθ∑

i=1

Nφ∑

j=1

J̄θ′i,jΠi,j(a, θ′, φ′) (21a)

M̄φ =
Nθ∑

i=1

Nφ∑

j=1

J̄φ′i,jΠi,j(a, θ′, φ′) (21b)

where Πi,j(a, θ′, φ′) is the pulse function defined as

Πi,j(a, θ′, φ′) =





1, if
{

θi − ∆θ
2 ≤ θ′ ≤ θi + ∆θ

2

φi − ∆φ
2 ≤ φ′ ≤ φi + ∆φ

2
0 otherwise

(22)

For DUTs placed on an infinite ground, the image magnetic
currents are directly given by

M̄θ′′ = −
Nθ∑

i=1

Nφ∑

j=1

J̄θ′i,jΠi,j(a, π − θ′, φ′) (23a)

M̄φ′′ =
Nθ∑

i=1

Nφ∑

j=1

J̄φ′i,jΠi,j(a, π − θ′, φ′) (23b)

3. NUMERICAL RESULTS

Several benchmarks are used to investigate the applicability of the
proposed methodology for the antenna radiation characterization.
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3.1. The Pyramid Horn Antenna in the Free Space

A horn antenna [21] in Figure 3 operating at 1.645 GHz is studied. Its
aperture size is 55 by 42.8 cm2. For methodology validation purposes,
the measured tangential electric field data over a spherical surface with
radius equal to 2m is obtained by the numerical calculation of an
commercial full-wave simulation software FEKO [21]. 2592 field points
are acquired with 5 degrees angular resolution in both theta and phi
directions. Comparing the far field data Ēref ,n directly simulated from
FEKO with the calculated far field Ētrans,n based on the proposed
method, we have the following far field error definition

σMSE = 10 log10

N∑
n=1

∥∥∣∣Ētrans,n

∣∣− ∣∣Ēref ,n

∣∣∥∥2

N∑
n=1

∥∥Ēref ,n

∥∥2
(24)

where N is the number of measurements. ‖ ‖ represents the induced
norm and ∣∣Ē∣∣ =

√
|Eθ|2 + |Eφ|2 (25)

represents the magnitude of tangential electric components.
Figure 4 shows the computational time and the calculation error

versus the truncation order. It can be observed that the minimum
error happens around N = 20 while there is a slight increase for larger
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Figure 3. The geometry of the
horn antenna and its measure-
ment scenario.
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N . The increasing error can be explained by the modal expansion and
the finite discretization of the integral equation in (4). The equivalent
magnetic current r̂′ × Ē(r̄′) implicitly contains eigen modes that can
also be expanded by spherical vector wave functions:

r̂′×Ē(r̄′)= r̂′×
∞∑

n′=1

n∑

m′=−n

(
Q1m′n′M̄

(1)
m′n′(r̄

′) + Q2m′n′N̄
(1)
m′n′(r̄

′)
)

(26)
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By substituting (26), (10) and (9) in (4), due to orthogonal properties
of spherical vector wave functions, magnetic current contributions from
each mode is computed and summed to form the total scattered field.
For any radiator, its energy is focused on limited number of eigen
modes. Because of the finite discretization and limited sampling, the
modes with very weak magnitude will be overwhelmed by the noise
introduced by the discretization. Hence, if a proper representation of
the equivalent magnetic current can be approximated by NJ modes,
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Equation (26) becomes

r̂′ × Ē(r̄′) = r̂′ ×
[ NJ∑

n′=1

n∑

m′=−n

(
Q1m′n′M̄

(1)
m′n′(r̄

′) + Q2m′n′N̄
(1)
m′n′(r̄

′)
)

+Ēerror(r̄′)
]

(27)

where r̂′ × Ēerror(r̄′) is the term containing weak eigen modes and
discretization error. Then suppose the truncation number of the dyadic
Green’s function is set to N . When N < NJ , the overall error will
decrease with increasing N . But when N > NJ , the error introduced
by the discretization will introduce new residual errors that cannot
be canceled by the orthogonal property. And this error will increase
further with bigger N . But this increasing rate will become gradually
slower because the magnitude of the higher order spherical vector wave
functions decreases. The above statement is proved by employing
Hertzian dipole that is a special case with NJ = 1. It can be seen
that increasing N will cause error increase after N = 1. Raising the
sampling rate will decrease the error significantly.

The far field radiation patterns from the proposed method are
compared with the direct simulation by FEKO and shown in Figure 5.
The differences between them are also presented. They agree with each
other very well in both the vertical and horizontal planes. The cross
polarization patterns also get very good agreements even though they
are very weak.

To have an quantitative understanding of the effects of the
spherical wave function truncation order, Figure 6 presents the results
with the truncation order N = 10. Significant discrepancies can be
observed. It reminds us that the truncation order of spherical wave
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functions must be picked up properly. For most practical purposes, a
proper truncation number for acceptable error is given by the empirical
rule [22]

N = [kr0] + n0 (28)

where k is the wave number, r0 is radius of the minimum sphere
enclosing the antenna, the square bracket indicates the largest integer
smaller than or equal to kr0, the integer n0 depends on the accuracy
required. For example, in our benchmark, we took N = 20 with n0 = 5
that is very close to the prediction in (28).

The imperfections in the real measurement environment, such as
cable influences, positioning errors, reflections from absorbing walls,
and probe errors could affect the accuracy of the radiated field
evaluation. Hence, noise contaminated electric field data is employed
to study this issue. Uncorrelated complex white Gaussian noise
regularized by the signal-to-noise ratio (SNR) is stochastically added
to the simulated noise free data. To have a better understanding of the
influence, the MSE in dB defined in (24) is employed as an indicator
again.

In Figure 7, the MSEs obtained by embedding different noise levels
into the simulated data are presented. It shows that the influence of
noises with SNR higher than 20 dB is negligible, while errors become
more significant when the SNR of the measured field reaches 10 dB or
below.

Figure 8 shows the transformed far field radiation pattern using
the noise polluted data. The results explicitly indicate that the noise
30 dB lower than the original field data has negligible influence on
the co-polarized far field pattern, whereas the cross polarization is
distorted. The reason for this can be attributed to the weak cross-
polarization which is more sensitive to numerical errors.

PEC Plane
Patch Antenna

Measurement

Hemisphere

Figure 9. Measurement setup for a patch antenna over a PEC ground.
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3.2. Effects of the Infinite Ground Plane

To investigate the case with the infinite PEC ground plane, a coaxially-
fed microstrip patch antenna (Figure 9) [21] working at 2.85 GHz is
studied. The simulated tangential electric field is obtained over a
hemisphere with radius equal to 1 m. 1296 points are measured over
the upper-hemisphere. The influence of the PEC ground is considered
by the image theory in the proposed approach.

Normalized far field patterns over the upper hemisphere are
calculated from the proposed approach and compared with the FEKO’s
direct simulation. The results are presented in Figure 10. Excellent
agreements have been achieved. To clearly illustrate the PEC ground
plane effect on the radiation pattern, the radiated electric field at
10meters away from the origin without normalization is given in
Figure 11. It shows that the ground plane has larger impact when
the observation point is closer to the horizontal plane, as shown in
Figure 11(c). The maximum error is about 6 dB.
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Figure 10. Transformed far-field pattern as well as FEKO reference.
(a) Vertical cut in XOZ plane. (b) Vertical cut in Y OZ plane. (c)
Horizontal cut in XOY plane.
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Figure 11. Amplitude of electric-field (dB) at r = 10 meters. (a)
Vertical cut in XOZ plane. (b) Vertical cut in Y OZ plane. (c)
Horizontal cut in XOY plane.

4. CONCLUSION

A novel method based on the spherical electric field measurements is
presented to model the radiated field from antennas and electronic
devices. The explicit dyadic Green’s function considering the
presence of a PEC sphere is employed to avoid the conventional
inverse scattering process. The accuracy of the proposed method is
benchmarked for antenna problems. The robustness of the algorithm
against possible measurement errors is carefully investigated and
discussed. This method avoids the null space accuracy distortion of
conventional inverse scattering based methods and works for general
complex radiators.
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APPENDIX A.

To solve the singularity issue in (15) when θ = 0 or π, let x = cos θ.
Then

Pm
n (x) =

1
2nn!

(1− x2)m/2 ∂n+m

∂xn+m
(x2 − 1)n (A1)

When m ≥ 2,
Pm

n (x)
sin θ

=
1

2nn!
(sin θ)m−1 ∂n+m

∂xn+m
(x2 − 1)n = 0 (A2)

For m = 0, the associated Legendre polynomial becomes the
general Legendre polynomial. The singularity seems very difficult to
be removed. However we notice that only the product of m with the
singular term in (15a) is needed for Equations (11)–(14). Hence, for
m = 0

m · Pm
n (x)
sin θ

= 0 (A3)

for m = 1,
Pm

n (x)
sin θ

=
1

2nn!
∂n+m

∂xn+m
(x2 − 1)n

=
1
2n

bn/2c∑

k=0

(−1)k (2n− 2k)!(n− 2k)
k!(n− k)!(n− 2k)!

xn−2k−1 (A4)

As to the singular term in (15b), by referring the property of the
general Legendre polynomial, the circumstance m = 0 is described as

∂Pn(x)
∂θ

= − sin θ
∂Pn(x)

∂x
= 0 (A5)

Then, for m ≥ 1,
∂Pm

n (x)
∂θ

= − sin θ
∂Pm

n (x)
∂x

= −(n + 1)
Pm

n (x)
sin θ

x

+(n−m + 1)
Pm

n+1(x)
sin θ

(A6)

Based on the results shown in (A2), the result in (A6) equal to
zero when m ≥ 2. For m = 1, we can refer to the formula in (A4)

∂Pm
n (cos θ)

∂θ

= −(n + 1) cos θ
1
2n
×
bn/2c∑

k=0

(−1)k (2n− 2k)!(n− 2k)!
k!(n− k)!(n− 2k)!

(cos θ)n−2k−1

+
n

2n+1
×
bn/2c∑

k=0

(−1)k [2(n + 1)− 2k]!
k!(n + 1− k)!(n− 2k)!

(cos θ)n−2k (A7)
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