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Abstract—In this paper, a theoretical investigation of electromag-
netic field transmission through dielectric plano convex lens placed in
chiral medium is analyzed. The chiral medium is described electro-
magnetically by the constitutive relations D = ε(E + γ∇ × E) and
B = µ(H + γ∇ ×H). Transmission’s coefficients for chiral-dielectric
and dielectric-chiral interfaces are derived analytically. The analytical
field expressions for right circularly polarized (RCP) and left circularly
polarized (LCP) waves are obtained using Maslov’s method. Numerical
computations are made for the field patterns around the caustic region
using Mathcad software to observe the effect of chirality parameter.

1. INTRODUCTION

In 19th century the chiral medium was first explored due to its optical
rotation phenomenon. After this discovery, it was experimentally and
theoretically proved that the right circularly polarized (RCP) and the
left circularly polarized (LCP) waves in chiral medium have different
refraction indices due to different phase velocities [1]. Their different
polarization rotations give different mode of propagations [2]. Many
researchers have studied the interaction of electromagnetic waves with
chiral slabs and other possible structures of chiral materials [3–17].

Focussing of electromagnetic waves from focussing systems into
dielectric media is a subject of considerable current interest due to
its applications in hyperthermia, microscopy, and optical data storage.
The focussing of dielectric focussing systems into chiral medium has
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attained great attention from last decade by many researchers. In this
study, analysis of focussing of electromagnetic waves from dielectric
plano convex lens placed in chiral medium is discussed in detail.
Specifically, transmission coefficients of chiral- dielectric and dielectric-
chiral are obtained using boundary conditions. The analytical field
expressions in the caustic region are obtained using Maslov’s method.
The analytical expressions are computed and presented for the normal
incidence, different lens and different chirality parameters. According
to Maslov’s method, the field expression near the caustic can be
constructed by using the geometrical optics information, though we
must perform the integration in the spectrum domain in order to
predict the field in the space domain [18].

The physical interpretation of the mathematics of Maslov’s
method and its relation to other asymptotic ray theory methods have
been discussed by Ziolkowski and Dechamps [19]. This method has
been successfully applied to predict the field in the focal region of
spherical dielectric interface, plano-convex antenna, inhomogeneous
slab and focussing of lens into uniaxial crystal by Hongo, Ghaffar and
co-workers [20–23].

2. GEOMETRICAL OPTICS APPROXIMATION AND
MASLOV’S METHOD IN DIELECTRIC MEDIUM

Geometrical-optics field expression is given by [20–23]

Er(x, y, z) = ET (ξ, η) [J(t)]−
1
2 exp

[
−jk

(
S0(ξ, η) + t

)]
(1)

In above expressions ET (ξ, η) is initial value of amplitude and J(t) =
D(t)/D(0). where D(t) = ∂(x,y,z)

∂(ξ,η,t) is the Jacobian of coordinate
transformation from ray coordinates (ξ, η, t) to rectangular coordinates
(x, y, z), S0(ξ, η) is initial phase and t is parameter along the ray. GO
approximation for waveform modelling is attractive in electromagnetics
because it provides insight into how a wave front responds to a given
structure. In this technique, user can monitor the phase of the
electromagnetic wave as it propagates through the medium. GO is
concerned only with the relatively high frequency component of the
waveform, provided the ray tube does not vanish. However, there
exist regions J(t) = 0 where ray tube shrinks to zero, called caustics
and GO fails there [9]. This drawback of GO is overcome by Maslov’s
method. It uses a combination of spatial domain and wave vector
domain and gives rise to a hybrid space. This eliminates the possibility
of occurrence of singularity around the caustic. General expression of
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Maslov’s method for field calculation is given as [21–23]:

Er(r) =

√
k

j2π

∫ ∞

−∞

∫ ∞

−∞
ET (ξ, η)

[
D(t)
D(0)

∂(qx, qy)
∂(x, y)

]− 1
2

exp
{
−jk

[
S0+t−x(qx, qy, z)qx−y(qx, qy, z)qy+qxx+qyy

]}
dqxdqy (2)

Equation (2) is derived by applying the stationary phase method to
the conventional Fourier-transform representation for Er(r). Thus
the integrand of the inverse Fourier transform of the wave function
is derived through the information of the GO solution. In above
equation [11]

J(t)
∂(qx, qy)
∂(x, y)

=
1

D(0)
∂(qx, qy, z)
∂(x, y, t)

=
1

D(0)

(
∂qx

∂ξ

∂qy

∂η
− ∂qy

∂ξ

∂qx

∂η

)
∂z

∂t

The ray expression of the refracted field is derived from the solutions
for Hamiltons equations [18] as

x(qx, qy, z) = ξ + qxt, y(qx, qy, z) = η + qyt, z(qx, qy, z) = ζ + qzt

It may be noted that (qx, qy, qz) are components of ray.

3. GO FIELD OF PLANO CONVEX LENS PLACED IN
CHIRAL MEDIUM

Consider the geometry which contains a plano convex lens placed in
chiral medium as shown in Figure 1. Profile of the plano convex lens

Figure 1. Plano convex lens placed in chiral medium.
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is defined as [21]

ζ = g(ρ) =
n

n + 1
f − 1√

n2 − 1

√
ρ2 +

n− 1
n + 1

f2, ρ =
√

ξ2 + η2 (3)

where (ξ, η, ζ) are the Cartesian coordinates of the point on the plano
convex lens and n is the refractive index of plano-convex lens and f
is the focal length. The chiral medium is defined by the following
relations [4–6]

D = ε(E + γ∇×E) (4)
B = µ(H + γ∇×H) (5)

where γ is the chirality parameter which is assumed to be positive in
this paper, ε and µ are the permittivity and permeability of the chiral
medium, respectively. Some natural and optically chiral media can be
considered as a homogeneous medium.

Let us denote the incident fields propagating in the chiral medium
in the RC polarization by E1 and H1 and in the LC polarization by
E2 and H2. Let us denote the reflected fields propagating downwards
in the chiral medium in the RC polarization by E3 and H3 and in the
LC polarization by E4 and H4. Let us also denote the transmitted
fields propagating upwards in the dielectric medium with an elliptic
polarization by E5 and H5. The various fields are given as follows [5]

E1 = E1ix exp (jn1kz) (6)
H1 = −jZ−1E1 (7)
E2 = E2ix exp (jn2kz) (8)
H2 = jZ−1E2 (9)
E3 = −E3ix exp (−jn1kz) (10)
H3 = −jZ−1E3 (11)
E4 = −E4ix exp (−jn2kz) (12)
H4 = −jZ−1E4 (13)
E5 = E5ix exp (jkζ) (14)
H5 = −jη−1E5ix exp (jkζ) (15)

where η =
√

(µ1/ε1), Z =
√

(µ/ε)/
√

(1 + (µ/ε)γ2) and ε1, µ1 are the
permittivity and permeability of the dielectric medium. The RCP and
LCP with reflective indices n1, and n2 are given by [3].

n1 =
1

1− kγ
, n2 =

1
1 + kγ

(16)

where k2 = ω2µε. For γ > 0 the right-circularly polarized wave is the
slower mode, whereas for γ < 0 the left-circularly polarized wave is the
slower mode.
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4. TRANSMISSION COEFFICIENTS AT CHIRAL-
DIELECTRIC INTERFACE

The transmissions coefficients for chiral-dielectric interface are derived
analytically [3]

(E1 + E2 + E3 + E4)× iz = E5 × iz (17a)
(H1 + H2 + H3 + H4)× iz = H5 × iz (17b)

We consider perfect transmission which occurs at η = Z. This
condition of totally transmission occurs for µ = µ1 when ε1 = ε +
µγ2. We neglect the reflection coefficients and obtained transmissions
coefficients using above conditions as

E5‖ =
2η

η + Z
(E1 + E2), E5⊥ =

2η

η + Z
(E1 + E2) (18)

This transmitted wave into dielectric lens propagate towards the curved
surface of lens at z = ζ. We apply again boundary conditions at
dielectric-chiral interface.

5. TRANSMISSION COEFFICIENTS AT DIELECTRIC-
CHIRAL INTERFACE

When a plane wave again incident on curved dielectric-chiral interface,
it is partially transmitted into chiral medium and partially reflected
as shown in Figure 3. We ignore the reflection, the transmitted wave
into chiral medium will split into two waves designated as RCP and
LCP waves making angles of α1 and α2 with the normal, respectively.
The transmission’s coefficients for dielectric-chiral interface are derived
analytically as [4]

(
ER

EL

)
=

(
Tc11 Tc12

Tc21 Tc22

)(
E5⊥
E5‖

)
(19)

where

Tc11 =
Ai

A1

−2j cosα(g cosα + cosα2)
(1 + g2) cos α(g cosα1 + cos α2)+2g(cosα1 cosα2+cos2 α)

Tc12 =
Ai

A1

2 cos α(cosα + g cosα2)
(1 + g2) cos α(g cosα1 + cos α2)+2g(cosα1 cosα2+cos2 α)

Tc21 =
Ai

A2

2j cosα(g cosα + cosα1)
(1 + g2) cos α(g cosα1 + cos α2)+2g(cosα1 cosα2+cos2 α)

Tc22 =
Ai

A2

2 cos α(cosα + g cosα1)
(1 + g2) cos α(g cosα1 + cos α2)+2g(cosα1 cosα2+cos2 α)
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Ai = exp (jkζ)
A2 = exp (jn1kζ)
A3 = exp (jn2kζ)

g =
√

(µ1/ε1)γ2 + (εµ1/µε1)

GO field expressions for plano convex lens placed in chiral medium may
be obtained in similar manner as in dielectric medium by combining
the contributions of both RCP and LCP waves. Unit normal N of the
surface is given by [20]

N = sin α cosβix + sinα sinβiy + cosαiz (20)

where (α, β) are angular polar coordinates of the point (ξ, η, ζ) defined
by

ξ = ρ cosβ

η = ρ sinβ

ζ = g(ρ)

ρ =
(n− 1)f tanα√

1− (n2 − 1) tan2 α

sinα = − ǵ(ρ)√
1 + (ǵ(ρ))2

cosα =
1√

1 + (ǵ(ρ))2

tan β =
η

ξ

The ray vector of the refracted ray by plano convex lens may be
obtained using the relation q = npi +

√
n2

1 − n2 + n2(p ·N)2N−n(p ·
N)N, which is derived from Snell’s law with n is the refractive indices
of the lens. The ray vectors of the rays refracted by the plano convex
lens are given by

n1q = K1(α) sin α cosβix + K1(α) sinα sinβiy + (n + K1(α) cos α)iz
= Q1t cosβix + Q1t sinβiy + Q1ziz (21a)

n2q = K2(α) sin α cosβix + K2(α) sinα sinβiy + (n + K2(α) cos α)iz
= Q2t cosβix + Q2t sinβiy + Q2ziz (21b)

where

K1(α) =
√

n2
1−n2 sin2 α−n cosα, K2(α) =

√
n2

2−n2 sin2 α−n cosα

The plano convex lens will refract into chiral medium consist of two
wave, RCP and LCP, each making an angle α1 and α2 with normal to
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lens surface, where

α1 = sin−1

(
k1

n1
sinα

)
, α2 = sin−1

(
k1

n2
sinα

)

Geometrical-optics solution for RCP and LCP are derived as

ER(x, y, z) = Et
R(ξ, η) [J1(t1)]

− 1
2 exp

[
jn1k

(
S0(ξ, η) + t

)]
(22)

EL(x, y, z) = Et
L(ξ, η) [J2(t2)]

− 1
2 exp

[
jn2k

(
S0(ξ, η) + t

)]
(23)

where J1(t1) and J2(t2) are the Jacobian of coordinate transformation
from ray coordinates (ξ, η, t1) and (ξ, η, t2) to rectangular coordinates
(x, y, z) for RCP and LCP fields

J1(t1) =
D(t1)
D(0)

=
1

D(0)
∂(x, y, z)
∂(ξ, η, t1)

=
(

P
U1

E1
t1 + 1

)(
Q1t(α)

ρ
t1 + 1

)

J2(t2) =
D(t2)
D(0)

=
1

D(0)
∂(x, y, z)
∂(ξ, η, t2)

=
(

P
U2

E2
t2 + 1

)(
Q2t(α)

ρ
t2 + 1

)

where

P =

(√
n2 − 1

)
n−1
n+1f2

[n2ξ2 + (n2 − 1)2f2]
[
ξ2 + n2−1

n+1 f2
] 1

2

ρ =
(n− 1)f tanα√

1− (n2 − 1) tan2 α

U1 = Q1t
∂Q1z

∂α
−Q1z

∂Q1t(α)
∂α

E1 = Q1z + Q1t tanα

U2 = Q2t
∂Q2z

∂α
−Q2z

∂Q2t

∂α
E2 = Q2z + Q2t tanα

∂Q1z

∂α
=
− sinα

(
n2

1 + n2 cos 2α
)

√
n2

1 − n2 sin2 α
+ n sin2 α

∂Q1t

∂α
=

(
n2

1 − 2n2 sin2 α
)
cosα√

n2
1 − n2 sin2 α

− n cos 2α

∂Q2z

∂α
=
− sinα

(
n2

2 + n2 cos 2α
)

√
n2

2 − n2 sin2 α
+ n sin2 α
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∂Q2t

∂α
=

(
n2

2 − 2n2 sin2 α
)
cosα√

n2
2 − n2 sin2 α

− n cos 2α

and Et
R and Et

L are the vector amplitudes of the refracted rays at
the refraction points. It is readily seen that the GO field expression
becomes infinity at the points F1 and F2 as are expected. According
to Maslov’s method, the expressions for the field that is valid near the
caustic for RCP and LCP fields are given by [10, 11].

ER(x, y, z) =
n1k

2π

∫ T

0

∫ 2π

0
Et

R(ξ, η)
[
∂Q1t(α)

∂α

U1Q1t

PQ1z

] 1
2

exp
[
jn1k

(
K1(α)r sinα sin θ0 cos(φ0 − β)

)]

exp
[
jn1k

(
(n+K1(α) cos α)z−K1(α)(ρ sinα+ζ cosα)

)]
dαdβ (24a)

EL(x, y, z) =
n2k

2π

∫ T

0

∫ 2π

0
Et

L(ξ, η)
[
∂Q2t(α)

∂α

U2Q2t

PQ2z

] 1
2

exp
[
jn2k

(
K2(α)r sinα sin θ0 cos(φ0 − β)

)]

exp
[
jn2k

(
(n + K2(α) cos α)z −K2(α)(ρ sinα + ζ cosα)

)]
dαdβ (24b)

Subtended angle T of lens is given by

T = arctan

(
1√

n− 1
a√

(n + 1)a2 + (n− 1)f2

)

The transmitted field for RCP field by lens at dielectric-chiral interface
is related with the incident field by the relation [21].

Et
R = T̃ ·E1 =

[
TR‖it‖i

i
‖ + TR⊥it⊥ii⊥

]
·E1 (25)

where T̃ denotes the dyadic transmission coefficients. The subscripts
‖,⊥ denotes components with respect to the plane of incidence, and
subscripts t, i represents transmitted and incident waves, respectively

Et
R =

(
TR⊥ sin2 β +

[
n sin2 α + cos α

√
n2

1 − n2 sin2 α

]
TR‖ cos2 β

)
ix

− sinβ cosβ

[
TR⊥ +

(
n sin2 α + cosα

√
n2

1 − n2 sin2 α

)
TR‖

]
iy

+TR‖
(
n cosα−

√
n2

1 − n2 sin2 α
)

sinα cosβiz (26)
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where

TR‖ =
2n(E1 −E2)

η + Z
Tc11, TR⊥ =

2n(E1 + E2)
η + Z

Tc12

The integration with respect to β may be carried out using the integral
representation of Bessel function. The results are expressed as

ERx =
n1k

2

[
PR (r, θ0)−RR(r, θ0) cos 2φ0)

]
(27)

ERy =
n1k

2
[QR(r, θ0) sin 2φ0] (28)

ERz = jn1k[RR(r, θ0) sin φ0 (29)

where

PR(r, θ0) =
∫ T

0

[
TR⊥ +

(
n sin2 α + cosα

√
n2

1 − n2 sin2 α

)
TR‖

]

J0(n1kK1(α)r sin θ0 sinα)
[
∂Q1t(α)

∂α

U1Q1t

PQ1z

] 1
2

exp
[
jn1k

(
(n+K(α) cos α)z−K1(α)(ρ sinα+ζ cosα)

)]
dα

QR(r, θ0) =
∫ T

0

[(
TR‖(n cosα−

√
n2

1 − n2 sin2 α)
)

sinα

]

J1(n1kK1(α)r sin θ0 sinα)
[
∂Q1t(α)

∂α

U1Q1t

PQ1z

] 1
2

exp
[
jn1k

(
(n+K1(α) cos α)z −K1(α)(ρ sinα+ζ cosα)

)]
dα

RR(r, θ0) =
∫ T

0

[(
−TR⊥ + (n sin2 α + cos α

√
n2

1 − n2 sin2 α)TR‖
)

J2(n1kK1(α)r sin θ0 sinα)
[
∂Q1t(α)

∂α

U1Q1t

PQ1z

] 1
2

exp
[
jn1k

(
(n+K1(α) cos α)z−K1(α)(ρ sinα+ζ cosα)

)]
dα

The transmitted field for LCP field by lens at dielectric-chiral interface
is related with the incident field by the relation [21]

Et
L = T̃ ·E2 =

[
TR‖it‖i

i
‖ + TR⊥it⊥ii⊥

]
·E2 (30a)
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Et
L =

(
TL⊥ sin2 β +

[
n sin2 α + cosα

√
n2

1 − n2 sin2 α

]
TL‖ cos2 β

)
ix

− sinβ cosβ

[
TL⊥ +

(
n sin2 α + cosα

√
n2

1 − n2 sin2 α

)
TL‖

]
iy

+TL‖
(
n cosα−

√
n2

1 − n2 sin2 α
)

sinα cosβiz (30b)

where

TL‖ =
2n(E1 −E2)

η + Z
Tc21, TL⊥ =

2n(E1 + E2)
η + Z

Tc22

The integration with respect to β again carried out and the results are

ELx =
n2k

2

[
PL(r, θ0)−RL(r, θ0) cos 2φ0)

]
(31)

ELy =
n2k

2
[QL(r, θ0) sin 2φ0] (32)

ELz = jn2k[RL(r, θ0) sinφ0 (33)

where

PL(r, θ0) =
∫ T

0

[
TL⊥ +

(
n sin2 α + cos α

√
n2

2 − n2 sin2 α

)
TL‖

]

J0(n2kK2(α)r sin θ0 sinα)
[
∂Q2t(α)

∂α

U2Q2t

PQ2z

] 1
2

exp
[
jn2k

(
(n+K2(α) cosα)z−K2(α)(ρ sinα+ζ cosα)

)]
dα

QL(r, θ0) =
∫ T

0

[(
TL‖

(
n cosα−

√
n2

2 − n2 sin2 α

))
sinα

]

J1(n2kK2(α)r sin θ0 sinα)
[
∂Q2t(α)

∂α

U2Q2t

PQ2z

] 1
2

exp
[
jn2k

(
(n+K2(α) cosα)z−K2(α)(ρ sinα+ζ cosα)

)]
dα

RL(r, θ0) =
∫ T

0

[(
−TL⊥ +

(
n sin2 α + cosα

√
1− n2 sin2 α

)
TL‖

)

J2(n2kK2(α)r sin θ0 sinα)
[
∂Q2t(α)

∂α

U2Q2t

PQ2z

] 1
2

exp
[
jn2k

(
(n+K2(α) cos α)z−K2(α)(ρ sinα+ ζ cosα)

)]
dα



Progress In Electromagnetics Research, Vol. 123, 2012 77

 

Figure 2. Field intensity around
focal point along z-axis for RCP at
ka = 10, kf = 10.

Figure 3. Field intensity around
focal point along z-axis for RCP
at ka = 100, kf = 100.

6. RESULTS AND DISCUSSION

In this section, above analytical Expressions (27)–(29) and (31)–(33)
are used in calculating refracted electromagnetic field of dielectric plano
convex lens placed in chiral medium for RCP and LCP by solving
numerically. All the equations give similar results but we will present
here results obtained from Equations (27)and (31). This problem
has been studied by Hongo using Maslov’s method for focussing of
plano convex lens placed in free space [21]. Our expressions reduces
to Hongo results at γ = 0 which verify validity of our expressions.
Incident electric fields are assumed to be plane waves RCP and LCP.
The dielectric lens has refractive index 2.5. Field intensity of LCP and
RCP waves are obtained for different chirality parameters γ = 0.0,
0.005, 0.02 and 0.1.

Figure 2 represents the response for case of field intensity
distribution around focal region of RCP field along z-axis at ka = 10
and kf = 10, γ = 0 (solid line), γ = 0.005 (dadot line), γ = 0.02
(dashed line) and γ = 0.1 (dotted line). Figure 3 represents the
response for case of field intensity distribution around focal point of
RCP along z-axis at γ = 0 (solid line), γ = 0.005 (dadot line), γ = 0.02
(dashed line) and γ = 0.1 (dotted line), ka = 100 and kf = 100.
Figure 4 represents the response for case of field intensity distribution
around focal region of RCP field along z-axis at γ = 0 (solid line),
γ = 0.005 (dadot line), γ = 0.02 (dashed line) and γ = 0.1 (dotted
line), ka = 100 and kf = 200. Figure 5 represents the response for case
of field intensity distribution around focal region of RCP field along
z-axis at γ = 0 (solid line), γ = 0.005 (dadot line), γ = 0.02 (dashed
line) and γ = 0.1 (dotted line), ka = 100 and kf = 100.
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Figure 4. Field intensity around
focal point along z-axis for RCP
at ka = 100, kf = 200.

Figure 5. Field intensity around
focal point along z-axis for LCP
waves at ka = 100, kf = 100.

Figure 6. Comparison of field intensity around focal point at ka =
100, kf = 100 between RCP (Solid) and LCP (dotted) waves.

Figure 6 represents the response for cases of comparison field
intensity distribution around focal region of LCP wave (dadot line)
and RCP wave (solid line) along z-axis with variations of chirality
parameters γ = 0.005, γ = 0.02 and γ = 0.1, ka = 100 and kf = 100
respectively.

We have imposed the condition for impedance matching for η = Z.
At this condition there are no reflected waves in chiral medium, and all
the field is transmitted into dielectric plano convex lens. This occurs
for µ = µ1 when ε1 = ε + µ1γ

2. It is concluded from Figure 3
to Figure 6. that field intensity decreases as chirality parameters
increase.The variation in field behaviors also observed by replacing
different dielectric lens. The comparison of LCP wave and RCP wave
show that focal region of RCP wave is displaced toward lens and focal
region of LCP wave is displaced away from lens. It is also observed
that field intensity of LCP wave is smaller than RCP wave.
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7. CONCLUSION

Explicit analytical expressions have been obtained around the caustic
region of plano convex lens placed in chiral medium. Effect of
chiral-dielectric and dielectric-chiral interfaces have been studied using
Maslov’s method in the focal region of plano convex lens. The effect
of chirality on the amplitude of transmitted field by lens in caustic
region are shown and discussed. It is observed that field intensity in
the caustic region of a plano convex lens decreases by increasing the
chirality parameter. This study is helpful for remote sensing as a sensor
and its practical interest is emerging from an engineering applications
viewpoint. In remote sensing, the vegetation layer can be design as
chiral lens. These results obtained can be used to analyze radar data
from such vegetation layers and to obtain the physical properties of
the layers.
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