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Abstract—Planar waveguide gratings have shown great potential
for the application of the wavelength division multiplexing (WDM)
functionality in optical communications due to their compactness
and high spectral finesse. Planar gratings based on silicon nanowire
technology have high light confinements and consequently very high
integration density, which is 1–2 orders of magnitude smaller than
conventional silica based devices. In the present paper, we will
simulate the silicon nanowire based planar grating multiplexer with
total-internal-reflection facets using a boundary integral method. The
polarization dependent characteristics of the device are analyzed. In
addition, the planar grating multiplexer with 1 nm spacing is fabricated
and characterized. Compared with measured values, the numerical
results show that the sidewall roughness in the grating facets can result
in a large insertion loss for the device.

1. INTRODUCTION

Fiber-optic communication is growing extensively in recent years [1–
3]. Nowadays a great number of optical fibers have been laid on all
parts of the world, which dramatically increases the capacity and the
quality of telecommunications. However, traditional optical fibers are
still inadequate to carry the heavy traffic resulted from the exponential
increase of the bandwidth demand. Fortunately, the wavelength
division multiplexing (WDM) technique [4–6] provides an effective and
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low-cost way to increase the capacity tens or hundreds of times in an
optical transmission system.

Optical multiplexers are the key components in a WDM fiber-
optical communication system. A cost-effective scheme for carrying
more information can be implemented by inserting them on both
sides of a fiber link. Many technologies can be used for multiplexers.
Multiplexers based on planar integrated optical waveguides [7, 8]
take the advantages of mature semiconductor manufacturing process
and can offer more than 40 channels of dense wavelength division
multiplexing (DWDM) with a relatively low loss. Among them,
the arrayed waveguide grating (AWG) [9] is the most famous one.
Compared with an AWG, a planar grating multiplexer [10] is more
compact and potentially has a higher spectral finesse since it can
accommodate a larger number of grating facets. These characteristics
make the planar grating multiplexer more suitable for communication
systems of high channel density.

Different technologies based on different materials have been
introduced to support planar optical devices. Silica-on-silicon
technology has been widely adopted for fabrications of WDM devices in
commercial systems. However, a common drawback of the silica-based
photonic integrated devices is the overall size of components, mostly
limited by the large bending radius. To increase the integration density
for future WDM systems a considerable size reduction is necessary. To
stay with silicon, as it is the most popular material for modern micro-
electronics, silicon based nanowire waveguides were introduced, formed
as silicon strips on a silica layer. A very high contrast of refractive index
in all directions allows for high light confinement and consequently very
high integration density [11–14].

Due to its simplicity in obtaining, e.g., the passband width, a
scalar diffraction method based on the Huygens principle of secondary
wavelets has become a popular technique for the simulation of a planar
grating multiplexer [15]. We have designed and fabricated the grating
multiplexers based on both echelle [16] and total internal reflection
(TIR) facets [17] using the silicon nanowire technology. However, there
always exists a large performance difference between numerical results
with the scalar analysis and measurements. For planar gratings using
silicon nanowire platform, the grating facets are relatively so small
(close to the wavelength) that the accuracy of the scalar diffraction
method is limited in the analysis of the diffraction efficiency. Moreover,
the essential polarization dependent characteristics of the diffraction
grating cannot be treated with the scalar method. Therefore, one needs
a more accurate simulation tool which can take the polarization effects
into consideration.
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In principle, the finite difference time domain (FDTD)
method [18–22] can be used for an accurate simulation. However, it is
too time-consuming for simulating a planar grating multiplexer device.
On the other hand, the rigorous coupled-wave analysis (RCWA) [23, 24]
is an effective numerical method for simulating the polarization-
dependent diffraction property from a planar grating. However, RCWA
cannot be used to simulate the imaging of a concave grating in the
large free propagation region.

In the present paper, we present the first rigorous treatment (using
the full electromagnetic theory of light) of planar grating multiplexers.
As an example, the polarization dependent characteristics of a planar
grating multiplexer are analyzed using the boundary integral method
for a dielectric grating with TIR facets. Using the numerical method,
main specifications of the device (e.g., loss, polarization dependent
loss (PDL), and chromatic dispersion) are analyzed in detail and an
insightful physical explanation for the numerical results is also given.
In addition, a planar grating multiplexer with TIR facets is also
fabricated and characterized.

2. SIMULATION METHOD

A planar grating multiplexer based on a Rowland mounting is
illustrated in Figure 1. The field propagating from an input waveguide
to the free propagation region (FPR) is diffracted by each grating
facet. It is then refocused onto an imaging curve and guided into the
corresponding output waveguides according to the wavelengths. The
grating of a planar grating multiplexer is usually coated with a metal
(e.g., Au) at the backside in order to enhance the reflection efficiency
(see Figure 2(a)). In order to reduce the reflection loss without the
additional processing steps required for coating the backside of the
grating facets with a reflecting metal, a TIR facet was used at each
grating tooth (see Figure 2(b)). In this design light hits each grating
facet at about 45◦ incidences producing total internal reflection. Due

Figure 1. Schematic diagram of a planar grating multiplexer.
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(a)

(b)

Figure 2. Schematic diagram of (a) an echelle grating and (b) a TIR
grating.

to the simple fabrication, we only consider the TIR case in the present
paper.

Planar grating multiplexers using silicon nanowire platform
typically have sub-wavelength-size grating facets (i.e., ∼ 1 micrometer
grating period). For an accurate analysis with polarization
characteristics solved, we consider the polarization dependent analysis
of a finite aperiodic concave grating by using a boundary integral
method (BIM) [25–30]. The BIM represents the integral form of the
wave equation for each polarization case in terms of the corresponding
field distributions on the boundary of the planar grating. Re-radiation
field from the surface distributions in turn generates a diffracted field
that can be determined anywhere in space. Boundary conditions at a
dielectric interface are employed to simplify the resulting equations so
that the field distribution can be determined at the dielectric interface
using the computer adapted boundary element method. Using the
present method, many important performances (such as the PDL, the
insertion loss and the chromatic dispersion) for the TIR gratings can
be accurately analyzed.

The BIM simulation method can be divided into the following
parts:

a) Calculation of the incident field at the grating surface. Since
the FPR is homogeneous, the Kirchhoff-Huygens diffraction formula
can be used to simulate accurately the propagation of the incident
light field in the FPR. Thus, the incident field at a point Pg (x, z) on
a grating facet can be calculated with the following integral over the
cross-sectional line where the end of the input waveguide is positioned
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(hereafter referred as the input plane),

Eg(x, z) =
1
2

(neff

λ

) 1
2

∫

input

Ein(x′, z′)√∣∣PinPg

∣∣
(1 + cos θd)e−jk|PinPg|dl (1)

where neff and k are the effective refractive index and wave number in
the FPR, respectively, λ is the wavelength in vacuum, Ein [representing
the electric (or magnetic) field component perpendicular to the chip
for the TM (or TE) mode] denotes the fundamental mode field of the
input waveguide at the input plane, |PinPg| is the distance between
point Pg (x, z) and a point Pin (x′, z′) on the input plane, and θd is
the diffraction angle with respect to the normal of the input plane
(see Figure 1). Note that TE and TM polarizations are considered
separately since different boundary conditions are imposed for different
polarizations.

b) Calculation of the re-radiation field (which, in turn, generates a
diffracted field) from the surface distribution of the etched grating with
a BIM. For the TE (or TM) case, Green’s second identity can be used to
solve the dielectric boundary problem for the corresponding Helmholtz
equation. The solution space is divided into two homogeneous regions:
region 1, which is the FPR, and region 2, which contains the planar
grating. Thus, one has the following boundary integral equation (which
describes the coupling between the scattered field on the grating surface
and those in the FPR) for the TE case,
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where Hg(~r) is the incident magnetic field at point ~r, k1 = 2πneff /λ
and k2 = 2πng/λ, ng is the refractive index in the etched grating
region, ~r, ~r′ are position vectors of two arbitrary points located on
the boundary C, H

(2)
1 and H

(2)
0 is the first order and the zero order

Hankel function of the second kind, respectively, H = Hg + Hs, Hs is
the re-radiation magnetic field and ~r = (~r − ~r′)/|~r − ~r′|.
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Since the Hankel functions are singular at boundary points where
~r = ~r′, the singularities are treated by considering a small circular
contour. When the small argument approximations for the relevant
Hankel functions are used, Equations (2) and (3) can be expressed as,
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where θ is the angle exterior to region 1.
The boundary condition (Hy1 = Hy2 = Hy and 1

n2
eff

∂Hy1

∂n =
1
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g
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∂n = ∂Hy

∂n ) for Equations (4) and (5) can be used, and the integral
equations can be expressed as,
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A boundary element method is applied to Equations (6) and (7)
by dividing the integral boundary into N small straight-line segments
and the length of the nth segment is Sn. Then, the point co-location
method can be used at the same time, which couples every point on the
etched grating surface with all the other points on the surface through
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the Hankel functions and their normal derivatives.



Hy(r′) =
N∑

n=1
Hyn = 1/2
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(8)

where xn, xn+1, zn and zn+1 represent adjacent sample points on the
etched grating boundary, and x̂n and ŷn is the coordinate values at
the sample point. By applying the BEM, Equations (6) and (7) can
be put in the following form through a 2N × 2N matrix,
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Similarly, for the case of TM polarization, a 2N × 2N matrix can
be obtained,

[
Z1n,m Y 1n,m

Z2n,m −Y 2n,m

] [
Esm

Qsm

]
=

[
Egm

0

]
(10)

where Qsm = ∂Esm/∂n.
c) Diffraction from the grating to the image plane (along the

Rowland circle) according to the wavelength. Once Equations (9)
and (10) are solved for Hs and Es, the diffracted field (produced by
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the re-radiation field) at point Pout (x′′, z′′) on the image plane can be
calculated with the following explicit formulas,

Hd (~rd) =
{

k exp [−j (krd + 3π/4)]√
8πkrd

}

N∑

n=1

SnHsn cosΦn exp[jk (xn sinαdiff,0+zn cosαdiff,0)](11)

for the TE case, or
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}
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for the TM case. Here rd is the distance from the origin to the
output waveguide and αdiff,0 is the diffraction angle. The length of
the ith segment is Si and its center is at point (xi, yi). For both
polarizations, the field distribution Eimage (x′, z′) at the image plane
can be obtained by scanning over the surface of the output waveguide
using Equations (11) and (12). When the output waveguide is of
single-mode, the spectral response for a certain output channel can
be approximated with the following overlap integral,

I(f0 + ∆f) =

∣∣∣
∫

Ẽimage(x′ − (x′0 + Da∆f))Ẽ∗
outwg(x

′)dx′
∣∣∣
2
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∫ |Einwg(x)|2 dx

(13)

where Eoutwg is the mode profile of the output waveguide, and the
superscript ∗ denotes a complex conjugate, f0 and x0 are the central
frequency and the corresponding focusing position, respectively.

The spectral response describes the amplitude response of the
device, while the phase response of the device is represented by the
chromatic dispersion. Since the group delay [31] can be given by
τ = − λ2

2πc
∂Φ
∂λ , the chromatic dispersion can be calculated by,

D =
dτ

dλ
= − 1

2πc

[
2λ

∂Φ
∂λ

+ λ2 ∂2Φ
∂λ2

]
(14)

where c is the velocity of the light in vacuum, and Φ is the phase
response determined by the overlap integral

∫
Eout(λ, x′)E∗

0(λ, x′)dx′.
The dispersions can broaden and distort the signal bits (pulses) and
ultimately lead to transmission errors. Applying finite differences
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(a) (b)

Figure 3. Sketch of (a) α-silicon nanowire waveguide and (b) the
simulated intensity profile of the light in the silicon waveguide.

to Equation (14), the chromatic dispersion D can be calculated
numerically as,

Di =

(
2λ∆λ + λ2

)
Φι+1 − 2λ (∆λ + λ)Φι + λ2Φι−1

−2πc
(

∆λ
λ

)2 (15)

3. DESIGN AND FABRICATION

The typical structure of a silicon nanowire waveguide based on a silicon
substrate is shown in Figure 3(a). The silica buffer layer should be thick
enough (∼ 5µm) to ensure a low leaky loss. For a typical photonics
application, the thickness h = 250 nm is fixed here, and the width
w = 500 nm is chosen, which lies in the single mode region. The
intensity profile of the propagating electric field is simulated for the
channel wire waveguides (see Figure 3(b)).

To design a planar grating multiplexer, the incident angle and the
diffraction order should carefully be selected. The grating center point
Pi, the input position I and the center output position O are chosen
to be on a circle (called the Rowland circle). The center points Pi+k

of the other facets on the grating are chosen to be on the second circle
(twice the radius of the Rowland circle and tangent to the Rowland
circle at point Pi). The fields “reflected” by all grating facets should
add in phase so that they are “focused” at one focal point for a
designed wavelength λ0. The center point Pi+k is thus determined
by the following light path equation,

IPi+k + Pi+kO − (IPi + PiO) = kmλ0/neff (16)

With the central points for all the facets determined, the etched grating
is constructed by adding the facets at the obtained central points (the
k-th facet is the reflective surface for the incident ray IPk and the
reflective ray PkO).
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Figure 4. Pictures of the fabricated planar grating multiplexer with
TIR facets using silicon nanowire technology.

As an example, a planar grating multiplexer with TIR facets will
be designed using the following parameters: the central wavelength is
1550 nm; the refractive indexes of silica buffer layer and α-Si : H core
laye are 1.46 and 3.58, respectively; the incident angle is 45 degrees;
the diffraction order is 6; channel interval is 1 nm; and the internal of
output waveguides is 5µm.

As the beginning step of the whole device fabrication, a 5µm silica
buffer layer (i.e., SiO2) and a 220 nm α-Si : H core layer are successively
deposited on a silicon wafer. Then a process of pattern generation
will be carried out using lithography technology with high resolution
and accuracy. In the paper, the electron beam lithography based on
negative resists is employed due to its low running cost and ability to
push the resolution further down to 50 nm. To increase the coupling
efficiency, the width of each input and output waveguide was tapered
from 500 nm to 2µm through a 25µm long linear taper.

Figure 4 shows one of the fabricated planar grating multiplexers.
The roughness of the sidewall (i.e., the side facet of the waveguides and
gratings) is ∼ 20 nm, which was directly measured from the scanning
electron microscopy (SEM) pictures. From this figure, one can see
that the dimension of the device is around half millimeter, which is 1–
2 orders of magnitude smaller than conventional silica based devices.

4. SIMULATION AND DISCUSSION

Using the same parameters in Section 3, we designed and fabricated
an 8-channel planar grating multiplexer. In this work, we employed
an end-fire characterization setup to test our devices. An amplified
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Figure 5. The comparison of the insertion loss of the 8-channel planar
grating multiplexer with TIR facets for different wavelength channels
(a) for a TE polarization, (b) for a TM polarization.

spontaneous emission source gives a broadband unpolarized light with
spectral range 1530 nm–1580 nm. This unpolarized light is butt-
coupled to the input waveguide of a component through a focusing
gradient index lens. The output light is collected with a microscope
objective and split into two beams, one to an infrared camera, and
the other to an optical spectrum analyzer through a multi-mode fiber.
Polarizers are inserted in front of the infrared camera and the multi-
mode fiber in order to separate the two polarizations.

Figure 5 shows the comparison of the insertion loss between
measurements and numerical results based on the boundary integral
method for both polarizations. From the figure, one can see that the
loss of the fabricated device is much higher than that of numerical
calculations. We attribute this to the phase error induced in the
grating etching, i.e., the grating-facet variation in short range (sidewall
roughness) and long range (stability of the E-beam during the pattern
writing).

The insertion loss difference between the two polarizations is one
of the main reasons for the PDL of the device. To some extent, the
fabrication errors have similar influence on the device with different
polarizations. Figure 6 shows the comparison of the PDL between
measurements and numerical results based on the boundary integral
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Figure 6. The comparison of the PDL of the 8-channel planar grating
multiplexer with TIR facets for different wavelength channels.

method. From this figure, one can see that the measured values
agree well in those from numerical calculations. Therefore, the
boundary integral method can be accurately used for the analysis of
the polarization characteristics of the planar grating multiplexer.

Rough grating sidewalls can be produced in the process of the
grating etching, which could result in most of the difference of the
loss between calculations and measurements. Now, we will use the
boundary integral method to give an analysis for the effect of surface
roughness on the loss. One-dimensional Gaussian rough surfaces with
Gaussian spectrum [32] are used to model the rough facets of the
gratings. The total number of the sampling points on each rough
facet is 64. Since Gaussian rough surfaces are independently produced
for all grating facets with the same roughness, the numerical results
can statistically approach the experimental results. Twenty-one data
points for the sidewall roughness (from 0 to 40 nm) and eight data
points for λ (from 1548.5 nm to 1555.5 nm) have been used in the
following contour plots. The results have not been smoothed in the
numerical calculations.

Figure 7 shows the contour plot of the loss for both polarizations
as the roughness and the wavelength vary. One can see from this figure
that the loss monotonically increases with the sidewall roughness of the
facets for both polarizations. Note that the sidewall roughness of the
measured device in Figures 5 and 6 is ∼ 20 nm (directly measured
from the SEM pictures). From Figure 7, we know that the ∼ 20 nm
roughness can produce about 1.6 dB excess losses for both polarizations
in the operating wavelength range, which is very close to the difference
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Figure 7. Contour plot of the loss as the sidewall roughness and λ vary
for a planar grating multiplexer for (a) TE and (b) TM polarizations.

between numerical results and measured values shown in Figure 5 (i.e.,
∼ 1.9 dB). The extra loss (e.g., ∼ 0.3 dB) could result from the unstable
fabrication process of the E-beam during the pattern writing.

The dispersions can broaden and distort the signal bits (pulses)
and ultimately lead to transmission errors. When a TIR occurs, a
phase distortion occurs because the reflection coefficient is a complex
number. Since the boundary integral method takes into account all
phase changes, it can also be used to calculate the chromatic dispersion
based on Equation (14). Figure 8 shows the calculated chromatic
dispersion near the central channel for the planar grating multiplexer
with a TIR groove type. From this figure one can see that the TM
polarization has a larger dispersion than the TE polarization within the
passband. The polarization dependent chromatic dispersion is mainly
due to the difference in the type and magnitude of the re-radiation
fields on the surface of the planar TIR grating. The re-radiation
fields are of electric and magnetic types for the TE and TM cases,
respectively.

For a TIR type planar grating multiplexer, the TIR occurs twice
when the incident light impinges on an illuminated facet. Though
intuitively no loss can be produced when a TIR occurs, our numerical
calculations have shown that the loss of a TIR type device is still very
large for the silicon nanowire device (cf., Figure 5). An important
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Figure 8. Chromatic dispersion characteristics near the central
channel of the designed planar grating multiplexer.

phenomenon related to the total internal reflection is the Goos-
Hänchen shift. Physically the Goos-Hänchen shift results from the
phase change of the electromagnetic field. We consider that the shift
results in the large loss of the TIR-device. From Figure 2(b), one
can know that for any incident light impinging on the first facet of a
TIR grating; it can not be reflected by the second facet if the distance
between its incident point and the right-angle trough point is less than
its corresponding Goos-Hänchen shift. For a given incident angle, the
Goos-Hänchen shift is a fixed value. Therefore, if the grating period
is much larger than the value of the Goos-Hänchen shift, the GH shift
will have little effect on the loss of the device. However, the grating
period is close to 1 micrometer for the present silicon nanowire device,
and then a large loss is inevitable.

For a straight periodic blazed grating, the grating period can be
expressed as,

Λ ≈ mλ/ (2neff sinαin) (17)

For the planar grating multiplexer, by selecting a large diffraction
order one can acquire larger grating facets, which are advantageous in
reducing the loss from the shift. In addition, large grating facets can
reduce the manufacturing difficulty. However, a large diffraction order
can also increase the chip size, obviously. Therefore, one has to select
an appropriate diffraction order in the design process, in order to make
a compromise between the physical size and the insertion loss.
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5. CONCLUSION

In the present paper, we have applied a boundary integral method to
the simulation of a planar grating multiplexer based on silicon nanowire
platform and gave a semi-vectorial analysis of the finite and aperiodic
device. Using the present method, many important characteristics
(such as the PDL, the insertion loss and the chromatic dispersion) for
the planar grating multiplexer can be accurately analyzed. Numerical
results have shown that the sidewall roughness can result in a large loss
for the device. Moreover, some physical insights have been discussed
on the origin of the diffraction loss in the TIR facets. The designed
device is fabricated using a silicon nanowire technology. Measurements
agreed well with numerical results.
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