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Abstract—This paper deals with adaptive array beamforming in the
presence of errors due to steering vector mismatch and finite sample
effect. Diagonal loading (DL) is one of the widely used techniques
for dealing with these errors. However, the main drawback of DL
techniques is that there is not an easy and reliable manner to determine
the required loading factor. Recently, serval DL approaches proposed
the so-called automatic scheme on computing the required loading
factor. In this paper, we propose a fully data-dependent loading to
overcome the difficulties. The novelty is that the proposed method
does not require any additional sophisticated scheme to choose the
required loading. The loading factor can be completely obtained
from the received array data. Analytical formulas for evaluating the
performance of the proposed method under random steering vector
error are further derived. Simulation results are provided to confirm
the validity of the proposed method and make comparison with the
existing DL methods.

1. INTRODUCTION

For the well-known Capon beamformer or minimum power distortion-
less response (MPDR) beamformer, the adaptive weights are calculated
by minimizing the beamformer’s output power subject to the constraint
that forces the array to make a constant response in the steering di-
rection [1–3]. When the ensemble data correlation matrix and the
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actual steering vector of desired signal are available, the solution to
the constrained minimization problem is the optimal one that maxi-
mizes the array output signal-to-interference-plus-noise ratio (SINR).
In practice, the ensemble correlation matrix is unavailable, we resort
to using a sample matrix inversion (SMI) approach which solves the
constrained minimization problem using a sample correlation matrix
instead of the ensemble one. However, the sample correlation matrix
may be inaccurately estimated or even ill-conditioned due to finite
data samples [4, 5]. This leads to performance degradation of the SMI.
Moreover, the SMI is very sensitive to the accuracy of the steering
vector of the desired signal. It has been shown that even a small mis-
match between the presumed steering vector and the actual one causes
significant performance degradation [6, 7]. Therefore, adaptive beam-
forming with robustness against the errors mentioned above becomes
popular.

Diagonal loading (DL) is one of the widely used techniques to
improve robustness of the SMI against the errors [4, 8–12], where
a scaled identity matrix is added to the sample correlation matrix.
Although the DL is effective, the main drawback is that choosing the
required loading factor is not an easy task. For example, in [10], the
loading factor is found by using particle filters. The particle who has
the highest posterior probability is chosen as the optimal loading factor.
In [11], the loading factor is obtained by controlling the peak location
of the main beam. However, the loading factors of those methods
cannot be obtained analytically and have to be solved numerically.
Furthermore, in [12], an analytical expression of the optimal loading
factor is derived by maximizing the output SINR in the presence
of random steering vector error, the main disadvantage is that the
obtained negative loading factor may lead to a rank-deficient problem
if it equals an eigenvalue of the correlation matrix. On the other hand,
it follows from [13–15] that the loading factor can be calculated based
on the uncertainty set of the steering vector. However, one still needs
to specify the parameter related to the size of the uncertainty set,
and it may be difficult to choose the parameter in practice. Unlike
the conventional DL, an approach called the variable loading (VL)
has been considered in [16, 17], and has shown its advantage over the
conventional DL due to using the variable loading, where different
loading factor is added to each eigenvalue of the sample correlation
matrix instead of a fixed loading factor for all of the eigenvalues.
However, one still needs to determine the variable loading and the
optimal choice of this loading seems improbable. Recently, serval
novel loading techniques were interested in automatically computing
the required loading [18–20]. For instance, a ridge regression based
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method named HKB is proposed by [18] and the required loading is
automatically computed by the available data. However, it has been
shown in [19] that the HKB may have an inherent problem in choosing
the required loading factor, which may be very large for a relatively
large data snapshots. Then, an alternative parameter-free method
is presented by [19]. This method uses a general linear combination
(GLC) shrinkage-based correlation matrix instead of the original one.
The required loading factor is automatically chosen by minimizing the
mean squared error (MSE) of the shrinkage-based correlation matrix.
However, the loading factor decreases or the effect of the robustness
diminishes as the number of data snapshots increases. This may
incur some problems in the presence of steering vector error. Note
that both HKB and GLC are only efficient in the situation of small
data snapshots. To generalize the concept of the HKB and GLC,
an automatic generalized loading (AGL) method is presented in [20]
by using a generalized Hermitian matrix which can be automatically
computed by minimizing the MSE of a generalized sidelobe canceler
(GSC) reparameterizatied vector. The AGL has been shown to be
more robust to steering vector error over GLC and HKB. However,
the computational complexity of the AGL is normally increased due
to using a generalized loading matrix. Besides, theoretical analysis
for each of the above methods is not available in the literature.
Moreover, a comprehensive review of several parameter-free robust
adaptive beamforming algorithms is provided by [21].

In this paper, we propose a fully data-dependent approach to
deal with steering vector error and finite sample effect. The proposed
method generates a novel loaded sample correlation matrix. Instead
of determining the optimal loading matrix, we compute the loading
matrix directly from the sample correlation matrix of the received
array data. This leads to that the resulting loading factors are related
only to the eigenvalues of the sample correlation matrix. Moreover,
we show that the influence of the least significant eigenvalues which
are due to noise can be effectively diminished, whereas the influence
of the significant eigenvalues which are mainly contributed by signal
sources can remain almost the same. As a result, the proposed method
automatically provides large loading factors for the least significant
eigenvalues and small ones for the significant eigenvalues. This is a
significant advantage over the conventional DL techniques and achieves
significant robustness against steering vector error and finite sample
effect because of using a different loading for a different eigenvalue. To
evaluate the performance of the proposed method, analytical formulas
for the array output SINR under random steering vector error are
derived. Finally, we provide several simulation examples to confirm
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the validity of the proposed method and make comparison with the
existing methods.

This paper is organized as follows. In Section 2, we briefly
describe the performance degradation due to finite sample effect and
the principle of the conventional DL techniques. Section 3 presents
the fully data-dependent loading method. Analytical formulas of
array output SINR for the proposed method are derived in Section 4.
Simulation examples for confirming the validity and effectiveness of the
proposed method are provided in Section 5. Finally, we conclude the
paper in Section 6.

2. PROBLEM FORMULATION

Consider that there are K far-field signal sources including a desired
signal and K−1 interferers impinging on an M -element antenna array.
The received data vector x(t) can be expressed as

x(t) = a0s0(t) +
K−1∑

k=1

aksk(t) + n(t) (1)

where x(t) = [x1(t) x2(t) . . . xM (t)]T ∈ CM×1, xm(t), m =
1, 2, . . . , M , is the output of the mth antenna element; sk(t)
denotes the kth signal with zero mean and variance σ2

k; ak =
[a1(φk) a2(φk) . . . aM (φk)]T ∈ CM×1 represents the M × 1 steering
vector from angle φk off array broadside; n(t) ∈ CM×1 is an additive
white Gaussian noise vector with zero mean and covariance matrix σ2

nI.
In the paper, we consider the case that each of antenna elements within
the array has an isotropic response. For the case of an antenna array
with non-isotropic elements, synthesis of a desirable beam pattern is
more complicated, however the techniques presented by [25, 26] are
applicable.

Based on the Capon beamformer, the optimal weight vector is
obtained by minimizing the array output power subject to the main-
beam constraint [1, 2].

min
w

wHRxxw subject to wHa0 = 1. (2)

The solution to (2) is given by

wo =
R−1

xx a0

aH
0 R−1

xx a0

(3)

where Rxx = E{x(t)xH(t)} is the ensemble correlation matrix of
x(t). In practice, Rxx is unavailable and the knowledge of a0 may be
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inaccurate. A sample matrix inversion (SMI) approach is commonly
used to solve the constrained minimization problem of (2) by using
a sample correlation matrix instead of the ensemble one. Under the
actual steering vector a, the solution of (2) can be expressed as

wsmi =
R̂−1

xx a

aHR̂−1
xx a

. (4)

where a 6= a0 due to steering vector error. The sample correlation
matrix R̂xx is computed from the received data vector x(t) as follows:

R̂xx =
1
N

N∑

n=1

x(tn)xH(tn) (5)

where N denotes the number of data snapshots and tn the nth time
instant. Without steering vector error, wsmi converges to wo as N
increases. To see the effect due to finite samples, we let R̂xx be
decomposed as

R̂xx =
M∑

i=1

λ̂iêiêH
i (6)

where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂M are the eigenvalues, êi, i = 1, 2, . . . , M , are
the corresponding eigenvectors. The eigenvalues of (6) can be written
as [2]

λ̂i =





λ̂s
i + λ̂min, i = 1, 2, . . . , K

λ̂ε
i + λ̂min, i = K + 1, K + 2, . . . ,M − 1

λ̂min, i = M.

(7)

We note that the significant eigenvalues λ̂i, i = 1, . . . ,K, are mainly
contributed by the signal sources and the M − K least significant
eigenvalues are contributed by noise. λ̂min denotes the minimum
eigenvalue and λ̂s

i represent the estimated eigenvalues due to the signal
sources. λ̂ε

i denote the differences between the other M −K − 1 noise
eigenvalues and λ̂min. The inverse of R̂xx can be written as

R̂−1
xx =

M∑
i=1

1

λ̂i

êiê
H
i =

K∑
i=1

1

λ̂s
i + λ̂min

êiê
H
i +

M−1∑

k=K+1

1

λ̂ε
i + λ̂min

êiê
H
i +

1

λ̂min

êM êH
M . (8)

In general, the noise eigenvalues (least significant ones) are relative
small and thus the inverses of the noise eigenvalues are dominant in (8)
as compared to the inverses of λ̂s

i , i = 1, 2, . . . , K, especially the inverse
of λ̂min when N is very small. In the presence of steering vector error,
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the inverses of the noise eigenvalues would result in a wsmi with large
norm or a high level of sidelobe.

In the literature, diagonal loading (DL) is the well-known
technique to overcome the drawback. The principle of DL techniques
is to add a scaled identity matrix to the sample correlation matrix to
obtain

Rdl = R̂xx + γI (9)

and the corresponding weight vector is given by

wdl =
R−1

dl a
aHR−1

dl a
=

(R̂xx + γI)−1a

aH(R̂xx + γI)−1a
. (10)

The inverse of R dl can be expressed as

R−1
dl =

K∑
i=1

1

λ̂s
i +λ̂min + γ

êiê
H
i +

M−1∑

k=K+1

1

λ̂ε
i + λ̂min + γ

êiê
H
i +

1

λ̂min + γ
êM êH

M (11)

where γ denotes the loading factor which should be appropriately
determined. I is the identity matrix with an appropriate size. Since
the inverse of (λ̂ε

i + λ̂min + γ) or (λ̂min + γ) is not larger than 1/γ, the
influence of the noise eigenvalues is restricted and the norm of wdl will
not tend to be large. Although the DL can effectively cure the problem
due to noise eigenvalue, the main shortcoming is that there is no easy
and reliable scheme for choosing an appropriate γ.

3. PROPOSED METHOD

In this section, we propose a novel method with a fully data-dependent
loading to tackle finite sample effect and steering vector error. Consider
the following loading added to the sample correlation matrix R̂xx

Rgl = R̂xx + Q (12)

where Q is a loading matrix to be determined. The optimal weight
vector based on R gl is therefore given by

wgl =
R−1

gl a

aHR−1
gl a

=
(R̂xx + Q)−1a

aH(R̂xx + Q)−1a
. (13)

In the literature, several techniques require a priori information for
choosing Q. In the AGL of [20], Q is set to a Hermitian matrix related
to GSC parameterization of wsmi. On the other hand, [22] chooses Q
according to the covariance matrix of steering vector error. Moreover,
theoretical analyses on the performance of array beamformers using
these techniques are not available.
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3.1. Concept of Fully Data-dependent Loading

Here, we present a novel method for determining the loading matrix
Q. First, consider the case of Q = R̂−1

xx . (12) becomes

R̃gl = R̂xx + R̂−1
xx . (14)

Accordingly, wgl of (13) is given by

wpr,1 =
R̃−1

gl a

aHR̃−1
gl a

=
(R̂xx + R̂−1

xx )−1a

aH(R̂xx + R̂−1
xx )−1a

. (15)

The inverse of R̃gl can be expressed as

R̃−1
gl =

K∑
i=1

1

λ̂s
i +λ̂min+αi

êiê
H
i +

M−1∑
i=K+1

1

λ̂ε
i +λ̂min+αi

êiê
H
i +

1

λ̂min+αM

êM êH
M (16)

with

αi =
1

λ̂i

=





1
λ̂s

i +λ̂min
, i = 1, 2, . . . ,K

1
λ̂ε

i+λ̂min
, i = K + 1,K + 2, . . . , M − 1

1
λ̂min

, i = M.

(17)

Comparing (11) and (16), we note that this method belongs to a DL
with the loading factor equal to αi. However, the main advantage
of (16) is that it dose not need to choose αi since αi are completely
obtained by the inverses of the eigenvalues of R̂xx as shown by (6).
In the presence of a very small λ̂min, αM tends to be very large and
the influence of (λ̂min + αM ) significantly diminishes. For a very large
λ̂s

i , αi is relatively small and the influence of (λ̂s
i + αi) is almost the

same as that of λ̂s
i . This implies that αi becomes large for the least

significant eigenvalues and small for the significant ones automatically.
Comparing (16) with (8), we can see that R̃−1

gl of (16) is less sensitive
to the noise eigenvalues than R̂−1

xx of (8). Hence, we would expect that
wpr,1 can achieve better robustness than wsmi. As compared with R−1

dl

of (11), we observe that 1/(λ̂i+αi) is closer to 1/λ̂i than 1/(λ̂i+γ) when
λ̂i ≥ γ. 1/(λ̂i +αi) is less than 1/(λ̂i + γ) when λ̂i < γ. Therefore, the
inverses of the significant eigenvalues will be more accurate than those
of the DL techniques. Moreover, the inverses of the least significant
eigenvalues will be condensed by the proposed method. Consequently,
using wpr,1 of (15) leads to some advantages over using wdl of (10).

Finally, we note that wpr,1 is equivalent to the solution of the
variable loading (VL) method of [16] or [17] when the loading factor δ
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of the VL is equal to one. The VL has shown its better performance
over the DL due to using a variable loading for each of the eigenvalues
instead of a fixed γ for all of the eigenvalues as shown by (9). However,
further endeavor on determining an appropriate δ is required.

3.2. General Formulation of Fully Data-dependent Loading

Based on the theoretical achievement of Section 3.1, we further consider
a general loading matrix Q =

∑p
k=1 R̂−k

xx and define a matrix R̄gl =
Rgl|Q=

∑p
k=1 R̂−k

xx
as follows:

R̄gl = R̂xx +
p∑

k=1

R̂−k
xx . (18)

The corresponding weight vector is given by

wpr =
R̄−1

gl a

aHR̄−1
gl a

=
(R̂xx +

p∑
k=1

R̂−k
xx )−1a

aH(R̂xx +
p∑

k=1

R̂−k
xx )−1a

. (19)

We note that wpr is the same as wsmi of (4) when p = 0. Otherwise,
it follows from (6) and (18) that αi can now be expressed as

αi =
p∑

k=1

1

λ̂k
i

=

{
p, if λ̂i = 1
1−λ̂−p

i

λ̂i−1
, if λ̂i 6= 1.

(20)

It is clear that αi provides a fixed loading factor when the eigenvalue λ̂i

is equal to one. In contrast, αi is determined by λ̂i when λ̂i 6= 1. In the
presence of small eigenvalues λ̂i, αi increases its effect as p increases.
On the other hand, αi decreases its effect for large λ̂i. This property
provides some advantages over the conventional DL techniques with a
fixed loading factor for each of the eigenvalues. Moreover, using (18)
preserves the advantage of using (14) with more degrees of freedom in
loading.

Since αi is fully dependent on λ̂i, the only assumption of the
proposed method is that the eigenvalues related to the signal sources
are required to be greater than one, i.e., λ̂i > 1 for i = 1, 2, . . . , K, and
the eigenvalues related to noise are required to be not greater than
one, i.e., λ̂i ≤ 1 for i = K + 1,K + 2, . . . , M . Under this assumption,
we can have that

wpr ∝
K∑

i=1

eH
i a

λ̂i + ∆λ̂i

ei (21)
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when p approaches infinity, where ∆λ̂i = 1
λ̂i−1

. We note that the
components corresponding to the noise eigenvalues are completely
eliminated by using αi. Moreover, the summation term of (21) can
be approximated by

K∑

i=1

eH
i a

λ̂i

ei (22)

when ∆λ̂i is small enough as compared with λ̂i. We note that (22)
is the solution of the eigenspace-based beamformer (ESB) [7, 23].
Hence, the proposed method of (19) is similar to the ESB when λ̂i,
i = 1, . . . , K, are significantly large. The ESB has been widely realized
as one of the most powerful robust methods against arbitrary steering
vector error [7]. Nevertheless, the proposed method dose not require
any information regarding the signal subspace or noise subspace of
R̂xx. In the next section, we analyze the performance of the proposed
method in the presence of random steering vector error.

4. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the proposed method
in terms of array output SINR. For simplicity, we consider an M -
element uniform linear array (ULA) excited by a desired signal and an
interferer. The output SINR is defined as follows:

SINR =
Pd

Po − Pd
=

wHRdw
wHRxxw −wHRdw

(23)

where Pd = wHRdw denotes the output power of the desired signal
with Rd = σ2

s0
a0aH

0 , Po = wHRxxw represents the array output
power. In the presence of random steering vector error, the actual
steering vector a is defined as

a = a0 + σe∆ (24)
where ∆ is a random error vector and σe is a proportional factor.
Without loss of generality, we assume that the elements of ∆ are
independent complex Gaussian with zero mean and unit variance,
i.e., E{∆∆H} = I. Without considering finite-sample effect, we
decompose the ensemble correlation matrix Rxx as follows:

Rxx =
M−1∑

i=0

λieieH
i = EsΛsEH

s + EnΛnEH
n (25)

where λ0 ≥ λ1 ≥ . . . ≥ λM−1 are the eigenvalues, ei, i = 0, 1, . . . ,M−1,
are the corresponding eigenvectors; Λs = diag{λ0 λ1}; Λn = σ2

nI;
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Es = [e0 e1] is a basis matrix which spans the signal subspace of Rxx;
En = [e2 . . . eM−1] is a basis matrix which spans the noise subspace.
Based on (25), we let the inverse of the matrix R̄−1

gl of (18) be expressed
as

R̄−1
gl = EsΛ̄−1

s EH
s︸ ︷︷ ︸

Ps

+EnΛ̄−1
n EH

n︸ ︷︷ ︸
Pn

(26)

where Λ̄s = diag{λ̄0, λ̄1} with λ̄i = λi +αi and αi = 1−λ−p
i

λi−1 for i = 0, 1,

and Λ̄n = (σ2
n +β)I with β = 1−σ−2p

n
σ2

n−1
. Then, we can rewrite the weight

vector wpr of (19) as

wpr = µpr(Ps + Pn)(a0 + σe∆) (27)

where µpr = 1/aHR̄−1
gl a. Due to the fact that EsEH

s + EnEH
n = I,

we have EsEH
s ∆ + EnEH

n ∆ = ∆, where EsEH
s ∆ = η0e0 + η1e1 with

ηi = eH
i ∆, i = 0, 1. Furthermore, since the range space of Es = [e0 e1]

is the same as that of A = [a0 a1], i.e., span{Es} = span{A}, we have
η0e0 +η1e1 = h0a0 +h1a1. Hence, the error vector ∆ can be rewritten
as

∆ = h0a0 + h1a1 + EnEH
n ∆. (28)

Then, we have that aH
0 Ps∆ ≈ aH

0 Psa0 and (A1) of Appendix A.1 can
be expressed as

Pd ≈ σ2
s0
|µpr|2|1 + h0σe|2

(
aH

0 Psa0

)2
(29)

On the other hand, using (28), we have an approximation of (A2) as
follows:

Po ≈ |µpr|2
(|1+h0σe|2aH

0 P̄sa0+σ2
e |h1|2aH

1 P̄sa1+σ2
e∆

HP̄n∆
)

(30)

with the fact that aH
i P̄saj ≈ 0 when i 6= j and aH

i P̄naj = 0 for
all i, j. Consider the case that there exists only a desired signal and
background noise; it is easy to show from (25) that Es = e0 ∝ a0/

√
M

and Λs = ξ0 = Mσ2
s0

+ σ2
n. Hence, we have that Λ̄s = ξ̄0 = ξ0 + α̃0

and then aH
0 Psa0 ≈ Mξ̄−1

0 , where α̃0 = 1−ξ−p
0

ξ0−1 plays the same role
as α0. When there exists an additional interferer, we note that
aH

0 Psa0 ≈ Mξ̄−1
0 is also valid if |aH

0 ai| ¿ M for i 6= 0. As to aH
i P̄sai of

(30), similarly, we can have aH
i P̄sai ≈ Mξiξ̄

−2
i , where ξi = Mσ2

si
+ σ2

n

and ξ̄i = ξi + α̃i with α̃i = 1−ξ−p
i

ξi−1 , i = 0, 1. Accordingly, (29) and (30)
can be further rewritten as

Pd ≈ σ2
s0
|µpr|2|1 + h0σe|2M2ξ̄−2

0 (31)
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and

Po ≈ |µpr|2
(|1 + h0σe|2Mξ0ξ̄

−2
0 + σ2

e |h1|2Mξ1ξ̄
−2
1 + σ2

e∆
HP̄n∆

)
(32)

respectively. Then, the difference of (32) and (31) is given by

Po−Pd≈|µpr|2


|1+h0σe|2

(
ξ0−Mσ2

s0

)
︸ ︷︷ ︸

σ2
n

Mξ̄−2
0 +σ2

e |h1|2Mξ1ξ̄
−2
1 +σ2

e∆
HP̄n∆


 . (33)

Hence, the output SINR of the proposed method is given by

SINRpr ≈ |1 + h0σe|2M · SNRξ̄−2
0

|1 + h0σe|2ξ̄−2
0 + σ2

e |h1|2(1 + M · INR)ξ̄−2
1 +

σ2
e

Mσ2
n
∆HP̄n∆

(34)

where SNR = σ2
s0

/σ2
n and INR = σ2

s1
/σ2

n denote the signal-to-
noise power ratio (SNR) and interference-to-noise power ratio (INR),
respectively.

Since ∆ is a random vector, we next evaluate the statistical
expectation of SINRpr. Using (A4) and (A5) of Appendix A.2, we
can have from (34) that

E
{|1 + h0σe|2

}
= 1 +

σ2
e

M
. (35)

Furthermore, the statistical expectation of ∆HP̄n∆ can be expressed
as

E{∆HP̄n∆} = tr{P̄n} = σ2
n(σ2

n + β)−2(M − 2). (36)

Accordingly, the statistical expectation of SINRpr can be approxi-
mately expressed as [24]

E{SINRpr}≈

(
1+

σ2
e

M

)
M · SNRξ̄−2

0

(
1+

σ2
e

M

)
ξ̄−2
0 +

σ2
e

M
(1+M · INR) ξ̄−2

0 +
σ2
e

Mσ4
n

(
1+ β

σ2
n

)−2

(M−2)
. (37)

We note from (37) that the last term in denominator is more significant
than the other two terms. This implies that the steering vector error
is more significant in the noise components. Consider two extreme
situations, namely p = 0 and p = ∞. For p = 0, we have that α̃i = 0
and β = 0, then ξ̄i = ξi (recall that ξ̄i = ξi + α̃i). Thus, (37) can be
written as

E{SINRpr}|p=0 ≈ M · SNR

1 + σ2
e

M+σ2
e

(1+M ·INR)−1+(M−2)
(1+M ·SNR)−2

. (38)

We observe that the term M − 2 in the denominator is dominant and
it significantly degrades the output SINR due to the steering vector
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error. For p = ∞, we have that α̃i = 1/(ξi − 1) and β = ∞. Then,
(37) becomes

E{SINRpr}|p=∞ ≈ M · SNR

1 + σ2
e

M+σ2
e

(1+M ·INR)(ξ0+α̃0)2

(ξ1+α̃1)2

. (39)

Further, we can approximate α̃i by taking the first two terms of its
Taylor series expression to obtain

α̃i ≈ 1
ξi

(
1 +

1
ξi

)
, i = 0, 1, (40)

when 1/ξi is small enough. Substituting α̃i of (40) into (39), we obtain

E{SINRpr}|p=∞ ≈ M · SNR

1 + σ2
e

M+σ2
e

(1+M ·SNR)2

1+M ·INR ρ
(41)

where ρ = (1+ξ−2
0 +ξ−3

0 )2

(1+ξ−2
1 +ξ−3

1 )2
. Since ξ0 and ξ1 are related to the desired

signal and the interferer, respectively, we can have

ρ > 1 when SNR < INR, (42)
ρ = 1 when SNR = INR, (43)
ρ < 1 when SNR > INR, (44)

It follows from (44) that ρ decreases when SNR increases and
SNR > INR. However, (41) reveals that increasing SNR enhances the
effect of the steering vector error because SNR is more dominant in
the denominator of (41) than ρ. Although we do not prefer the case of
ρ > 1, a small SNR will diminish the effect of the steering vector error.
Nevertheless, when ξ0 and ξ1 are large, ρ is close to one no matter what
the SNR and INR are. Thus, (41) has the following approximation

E{SINRpr}|p=∞ ≈ M · SNR

1 + σ2
e

M+σ2
e

(1+M ·SNR)2

(1+M ·INR)

. (45)

We observe from (41) or (45) that the denominator does not have the
M − 2 term. Hence, the degradation due to the steering vector error
can be efficiently alleviated by increasing p. Comparing (45) with (38),
we can conclude that

E{SINRpr}|p=∞ > E{SINRpr}|p=0. (46)

As a result, the output SINR of the proposed method is larger than
that of the SMI which is the special case of the proposed method with
p = 0.
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5. SIMULATION EXAMPLES

In this section, we present several simulation examples by using the
SMI [2], the DL [8], the HKB [18], the GLC [19], the AGL [20], and the
proposed method for comparison. For all simulations, we use a ULA
of M = 10 array elements with inter-element spacing equal to half-
wavelength. We note that the ULA with inter-element spacing equal to
half-wavelength is referred to as a standard linear array (SLA) [2, p.51].
We use the SLA to steer the angles between −90◦ and 90◦. In general,
the resolution of an antenna array increases as the array dimension or
the inter-element spacing increases. High array resolution enhances
the maximum output SINR [3, p.34]. The desired signal and the
interference are binary phase-shift-keying (BPSK) signals. The desired
signal impinges on the array from 0◦ off array broadside with SNR
equal to 10 dB. Two interferes with INR equal to 20 dB impinge on the
array from 30◦ and 60◦ off array broadside, respectively. The loading
factor γ for the DL is set to 10σ2

n, where the noise variance σ2
n = 0.4.

Moreover, all the simulation results are obtained by averaging 100
independent runs.

Example 1: Here, we present the output SINR versus the value of
p for different N data snapshots when σ2

e = 0.2. We observe from Fig. 1
that the performance of the proposed method improves as p increases
and achieves a steady state when p is larger than 5 for all N . Hence,
we use p = 5 for the following simulations. Fig. 2 depicts the output
SINR versus the number of data snapshots without steering vector
error. We observe that the DL, the AGL, and the proposed method
converge to the optimal SINR faster than the other methods. The
SMI converges to the optimal SINR very slowly. The GLC provides
the second best performance. However, the loading factor of the GLC
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Figure 1. The output SINR versus p for Example 1, σ2
e = 0.2.
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versus N for Example 1, σ2
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Figure 3. The output SINR
versus N for Example 1, σ2

e = 0.2.

decreases when N increases. This indicates that the GLC converges
to the SMI when N is large enough. On the other hand, although the
HKB gives good performance for small N , it suffers from performance
degradation when N increases. This is because the loading factors of
the HKB may be very large when N is large. Fig. 3 plots the output
SINR versus the number of data snapshots with σ2

e = 0.2. We observe
that all of the methods suffer from performance degradation in this
case. Moreover, the GLC degrades significantly due to the loading
factor decreases when N increases. As in the case of σ2

e = 0, the
HKB performs well when N is small and degrades when N increases.
The AGL has the capability against the difficulty due to the steering
vector error. However, the proposed method outperforms all of the
other methods.

Example 2: The beampatterns of using the aforementioned
methods for N = 500 are shown in Figs. 4 and 5 without and with
steering vector error, respectively. From Fig. 4, we note that all of the
methods are capable of preserving the desired signal and suppressing
the interference. However, the GLC has higher sidelobe levels than the
other methods due to large N , whereas the HKB has lower sidelobe
levels but it can not properly deal with interference because the
required loading factor is quite large due to large N . In contrast,
the proposed method works satisfactorily and has the performance
similar to that of the AGL. From Fig. 5, it is observed that the GLC
suppresses the desired signal due to its inherent drawback when N is
large. As to the HKB, using a large loading factor reduces its capability
in interference cancelation. Although the AGL works satisfactorily, the
proposed method again outperforms all of the other methods.
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Example 3: First, the output SINR versus σ2
e is plotted in Fig. 6,

where the parameters are the same as those used by Example 2. We
observe that the performance degradation of each method is more
pronounced as σ2

e increases. However, the proposed method provides
more robustness against steering vector error than each of the other
methods. Next, we present the output SINR versus the input SNR
for comparison, where σ2

e = 0.2. The input SNR varies from −10 dB
to 10 dB with an increment equal to 2 dB. From the results shown
in Fig. 7, we see that the performance of the proposed method is
more acceptable under various values of SNR. Finally, to evaluate
the influence of interference on the proposed method, a figure for
the output SINR versus signal-to-interference ratio (SIR) is depicted
in Fig. 8, where SNR is fixed and set to 0 dB and INR varies from
0dB to 20 dB. From Fig. 8, the output SINR of the proposed method
remains almost the same when σ2

e = 0. For the case of σ2
e = 0.2, the

output SINR of the proposed method degrades as SIR increases or INR
decreases. This can be expected from (45) in which the value of output
SINR decreases as INR decreases when σ2

e 6= 0 and remains the same
when σ2

e = 0.
Example 4: We present this example to confirm the validity of

the theoretical results shown by (37), (38), and (45). Fig. 9 shows the
simulation results with only one interferer from 30◦ and the ensemble
correlation matrix Rxx. We can see that the theoretical results are
very close to the simulation results. We also note from Fig. 9 that the
results of using the SMI are almost the same as those of the theoretical
results shown by (37) or (38) when p = 0. Hence, the validity of the
theoretical results is confirmed. Moreover, we observe from Fig. 9 that
the proposed method with p = 5 is capable of providing performance
almost close to (45).
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Figure 4. The beampattern for
Example 2, σ2

e = 0 and N = 500.
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500.
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6. CONCLUSION

An efficient method has been presented to deal with the performance
deterioration under finite sample effect and steering vector error. The
proposed method utilizes a fully data-dependent loading to overcome
the difficulties due to these errors. Unlike the existing diagonal loading
(DL) techniques, the proposed method does not require any additional
sophisticated scheme to choose the required loading. The loading factor
can be completely obtained from the received array data. Analytical
formulas for evaluating the performance of the proposed method under
random steering vector error have been derived. Simulation results
have confirmed the validity of the proposed method and shown the
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effectiveness of the proposed method as compared with the existing
DL techniques.
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APPENDIX A.

A.1.

From (23)–(27), the output power of the desired signal is given by

Pd =σ2
s0
|µpr(a0+σe∆)H(Ps+Pn)a0|2

= σ2
s0
|µpr|2

[(
aH

0 Psa0

)2
+2<{

σeaH
0 Psa0aH

0 Ps∆
}]

+σ2
e

∣∣aH
0 Ps∆

∣∣2(A1)

where <{x} denotes the real part of a complex value x. On the other
hand, the corresponding output power can be written as

Po = wH
prEsΛsEH

s wpr + σ2
nw

H
prEnEH

n wpr

= |µpr|2
(
aH

0 P̄sa0 + 2<{
σeaH

0 P̄s∆
}

+ σ2
e∆

HP̄s∆ + σ2
e∆

HP̄n∆
)
(A2)

where P̄s = EsΛ̄−1
s ΛsΛ̄−1

s EH
s and P̄n = σ2

nEnΛ̄−2
s En.

A.2.

Assume that |aH
i aj | ¿ M for i 6= j in which aH

i ai = M , hi of (28) can
be obtained as

hi ≈ aH
i ∆
M

, i = 0, 1. (A3)

Then, we have that

E{hi} = 0 (A4)

due to E{∆} = 0 and

E
{|hi|2

}≈E
{∣∣aH

i e
∣∣2

}
/M2 = tr

{
aiaH

i E
{
∆∆H

}}
/M2 =1/M (A5)

where tr{A} denotes the trace of the square matrix A.
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