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Abstract—Concentric ring antenna arrays with the ability to produce
dual pattern have many applications in communications and radar
engineering. In this paper, we represent a new method for design
of an optimized reconfigurable concentric ring array with dual pattern
of desired specifications. Here, our goal is to find a suitable common
element excitation amplitude distribution and two different element
excitation phase distributions for two desired radiation patterns. For
this purpose, we have proposed a novel objective function which is
completely different from the traditional objective functions usually
used in antenna design problems. For the optimization procedure,
we have developed a modified Differential Evolution (DE) algorithm,
denoted as DE rBM 2SX, which employs new kinds of crossover and
mutation operators to overcome some drawbacks of the classical DE
on single-objective fitness landscapes. We consider three types of dual
pattern — pencil beam+pencil beam, pencil beam+flat-top beam,
flat-top beam+flat-top beam. The simulation results obtained by
applying our proposed method clearly indicate that our method is very
convenient to obtain radiation patterns of desired specifications. We
compare results of the modified DE algorithm with those of another
state-of-the-art improved variant of DE, called JADE and a state-of-
the-art variant of the Particle Swarm Optimization (PSO) algorithm
called Comprehensive Learning Particle Swarm Optimizer (CLPSO).
Such comparisons reflect that the proposed algorithm is more efficient
than JADE or CLPSO in finding optimum configuration of the dual
pattern concentric ring array antenna.
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1. INTRODUCTION

In the field of communication and radar applications, it is often
required to generate multiple radiation patterns from a single antenna
array. A very common approach to generate multiple radiation
patterns from one single antenna array is to switch between excitation
phase distributions of the array elements while sharing common
amplitude distributions. This approach simplifies the hardware
implementation of the feed network because it is technically easier to
design a feed network if element excitations for different patterns differ
only in phase than if they differ both in phase and amplitude. Several
approaches of generating phase-only multiple pattern antenna arrays
have been described in [1–4].

Diaz et al. [1] proposed a method to design phase-differentiated
multiple pattern antenna arrays based on simulated annealing
algorithm. Durr et al. proposed a modified Woodward-Lawson
technique based phase only pattern synthesis method to generate
multiple radiations of fixed amplitude distribution [2]. A method
of projection to synthesize reconfigurable array antennas with
asymmetrical pencil and flat-top beam patterns using common
amplitude and varying phase distributions was proposed by Bucci
et al. [3]. Vaitheeswaran [4] proposed a non-uniformly spaced array
approach for multiple beam generation.

Electromagnetic design optimization problems usually involve
several parameters that are non-linearly related to the objective
functions [1–8]. In order to solve these problems efficiently,
Evolutionary Algorithms (EAs) [9–11] have been considered and
successfully applied to such problems [12–22]. Differential Evolution
(DE) [9, 10, 23, 24] has emerged as one of the most powerful real
parameter optimizers of current interest. In this article, we propose to
apply a modified version of DE to design a concentric ring array [25–
30] which will produce desired dual pattern. Actually the optimization
algorithm is used to find the optimum values of the element excitation
amplitudes and phases so that the desired patterns are produced.
In most of antenna array design problems, the objective function is
defined using a Heaviside step function. This method inhibits the
optimization algorithm to obtain better results than the desired one.
For example, if we use a Heaviside step function with the side lobe
levels (SLL) then the optimization algorithm will be unable to find
a configuration for which the SLL is less than the maximum allowed
level. To overcome this problem, we also propose a completely different
method for defining the objective function. We compare our results
with the results obtained using two state-of-the-art real parameter
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optimizers — JADE [10] and CLPSO [11]. The results clearly reveal
that our method of designing the concentric ring array is superior to
the other two methods.

2. FORMULATION OF THE ANTENNA DESIGN
PROBLEM

As we have mentioned already that, in case of phase differentiated
dual pattern antenna array, both of the patterns share the same
element excitation amplitude. So, we have to search for a common
amplitude distribution for both the patterns. Then we have to find
two optimum phase distributions for the two desired patterns. The
desired dual patterns are generated by switching between two optimum
phase distributions. In this paper, we have considered three different
dual pattern configurations — pencil+pencil beam pair, pencil+flat-
top beam pair and flat-top+flat-top beam pair. Each configuration
has different desired specifications such as SLL, First Null Beam
Width (FNBW). Now, let us consider the general characteristics of
a concentric ring array antenna as shown in Figure 1.

Now, let us consider the general characteristics of a concentric ring
array antenna as shown in Figure 1.

The normalized array factor for the above shown concentric ring

Figure 1. Concentric ring array antenna in X-Y plane.
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array can be expressed as follows:

AF (θ, ϕ) =
1

AFmax

M∑

m=1

Nm∑

n=1

Imej[krm sin θ cos(ϕ−ϕmn)+φm] (1)

The normalized absolute power pattern P (θ, ϕ) in dB can be
expressed as follows:

P (θ, ϕ) = 10 log10 |AF (θ, ϕ)|2 = 20 log10 |AF (θ, ϕ)| (2)

where AFmax is the maximum value of the magnitude of the array
factor, M = number of concentric rings, Nm = number of isotropic
elements in the m-th ring, Im = amplitude of excitation of all the
elements in the m-th ring, dm = inter element arc spacing of m-th
ring, rm = Nmdm/2π is the radius of the m-th ring, ϕmn = 2nπ/Nm is
the angular position of the mn-th element (1 ≤ n ≤ Nm), θ, ϕ = polar,
azimuth angle, k = 2π/λ is wave number, φm = excitation phase of
elements on m-th ring.

3. DESIGN OBJECTIVES

In this article, we have represented a unique method for defining the
objective function. As mentioned earlier, our method is quite different
from the conventional methods used for antenna design optimization
problems. The conventional methods generally use the following
difference:

T = (ChO − ChD) (3)

where ChO is the obtained characteristic and ChD is the desired
characteristic.

The objective is to:
Minimize: F =

∑
TnH(T ) where the summation means

consideration of all the characteristics to be optimized. Usually, n
is kept 1 or 2. The Heaviside step function H(T ) can be expressed as
follows:

H(T ) =
{

0 if T < 0
1 if T ≥ 0 (4)

As can be seen, if the obtained characteristic becomes less than the
desired one then T becomes 0. So, we can not obtain a characteristic
which is less than the desired one. This is disadvantageous in some
cases such as for minimizing SLL and Ripple. Since for all values of
T < 0 the contribution to the fitness function is 0, this method is also
inappropriate for obtaining the perfect desired FNBW.
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Our method can be represented as follows:

Let T1 = SLLO − SLLM , T2 = FNBWO − FNBWD,

T3 = RippleO −RippleM

where subscript O means obtained, D means desired and M means
maximum allowed. However, we need to calculate the ripple deviation
only in case of flat-top beam within a predefined range of θ (θmin ≤
θ ≤ θmax). The pseudocode for calculating the fitness function is given
below:

2

3

2

21

2

1 )()()()( iiii

i TTTHTTemp F ++=  // where }2,1{ i ; 1 for first beam and 2 for the second 

beam. As mentioned previously, in case of pencil beam we have to consider only 21 & TT . // 

if  01 <iT

)()( 1

2

1

ii

i THTF −−=

else   

ii TempFF =

end 

if  M

i
RippleT  3 i  // for pencil beam+pencil beam configuration this step is omitted// 

 if   max  iTempF i  // where max is summation of square of both maximum tolerable       

            deviation of FNBW  and MRipple  (we set it to 1) // 
2)( += i

Oi RippleFFitness

      else   

= iTempFFitness
end

else

= 2)( i

ORippleCFitness // where C is a large constant (we set it to 10^6) // 

end

∈

≤

≤ ζ ζ

Σ

Σ

Σ×

Psuedo-code for objective function calculation:

Our objective is to minimize this fitness function. As can be seen
from the pseudocode, FNBW is strictly forced to lie in some tolerable
range from the desired value, SLL and Ripple are tried to minimize as
farther as possible even beyond the maximum allowed value.

4. CLASSICAL DIFFERENTIAL EVOLUTION
ALGORITHM

An iteration of the classical DE algorithm consists of the four basic
steps — initialization of a population of search variable vectors,
mutation, crossover or recombination, and finally selection. The last
three steps are repeated generation after generation until a stopping
criterion is satisfied.

1) Initialization of the Population: If DE searches for the
global optima within the continuous search space of dimensionality
D then it begins with an initial population of target vectors ~Xi =
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{x1
i , x

2
i , . . . , x

D
i } where i = 1, 2, 3. . .NP (NP is the population size).

The individuals of the initial population are randomly generated from
a uniform distribution within the search space which has maximum
& minimum bounds as follows: ~Xmax = {x1

max, x
2
max, . . . , x

D
max}

and ~Xmin = {x1
min, x

2
min, . . . , x

D
min}. The jth component of the ith

individual is initialized as follows:

xj
i,0 = xj

min + randj
i (0, 1)

(
xj

max − xj
min

)
; j ∈ [1, D] (5)

Here randj
i (0, 1) is a uniformly distributed random number in (0, 1)

and it is instantiated independently for the j-th component of the i-th
individual.

2) Mutation of Operation: After the initialization, DE evolves the
population by three operations: mutation, crossover & selection. This
process is usually labeled as DE/x/y/z, where x denotes the method
of selection of base vectors for mutation, y denotes the number of
differential vectors used to construct the mutant vector, and z denotes
the crossover type (bin: for binomial, exp: for exponential).

In each generation DE creates a mutant vector (also known as
donor vector) corresponding to each individual or target vector of
the current population. Three very common mutation strategies are
described as follows:

a) DE/rand/1 : ~Vi,G = ~Xr1,G + F ·
(

~Xr1,G − ~Xr3,G

)
(6)

b) DE/best/1 : ~Vi,G = ~Xbest,G + F ·
(

~Xr1,G − ~Xr2,G

)
(7)

c) DE/current-to-best/1 : ~Vi,G = ~Xi,G + Fbest ·
(

~Xbest,G − ~Xi,G

)

+F ·
(

~Xr1,G − ~Xr2,G

)
(8)

The indices r1, r2 and r3 are mutually exclusive random integers
in the range [1, NP ], they are also different from i. These indices
are generated once for each mutant vector. ~Xbest,G is the target vector
which has the best fitness value in the population at generation G. The
scaling factor F and Fbest control the amplification of the corresponding
differentiation vector.

3) Crossover Operation: To enhance the potential diversity of
the population, a crossover operation comes into play after generating
the donor vector through mutation. The donor vector mixes its
components with the target vector ~Xi,G under this operation to form
the trial vector ~Ui,G = {u1

i,G, u2
i,G, . . . , uD

i,G}. The DE family of
algorithms uses mainly two kinds of crossover methods — exponential
(or two-point modulo) and binomial (or uniform). Here we shall
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briefly outline the binomial crossover scheme that has been used in
the proposed algorithm. Under this scheme the trial vector is created
as follows:

uj
i,G =

{
vj
i,G, if rand(0, 1) ≤ CR or j = jrand,

xj
i,G, otherwise,

(9)

where CR is a user-specified parameter (Crossover Rate) in the range
[0, 1) and jrand ∈ [1, 2, . . . , D] is a randomly chosen index which ensures
that the trial vector ~Ui,G will differ from its corresponding target vector
~Xi,G by at least one component.

4) Selection Operation: To keep the population size constant
over subsequent generations, the next step of the algorithm calls for
selection to determine whether the target or the trial vector survives
to the next generation, i.e., at G = G + 1. For maximization problem,
if the objective function value of the trial vector is not less than that
of the corresponding target vector, then the trial vector is selected
for the next generation; and if it is not so, then the trial vector is
selected for the next generation. Obviously, for minimization problem
the condition for selection is just the opposite.

The selection operation works as follows (for maximization
problem):

~Xi,G+1 =

{
~Ui,G, if f

(
~Ui,G

)
≥ f

(
~Xi,G

)
,

~Xi,G, otherwise,
(10)

where f(·) is the objective function to be optimized.

5. THE DE RBM 2SX ALGORITHM

In our algorithm, denoted by DE rBM 2SX, we have done two
modifications over the classical DE — a random best mutation strategy
and a new crossover strategy involving two parent vectors of similar
fitness values. The comparison of the results represented later will
show that these modifications significantly improve the performance
of DE.

1) Random Best Mutation Strategy: Among several mutation
strategies in DE, strategies like “DE/current-to-best” and “DE/best”
are greedy in nature, i.e., they converge vey quickly by guiding the
algorithm to the best position so far discovered. But, as a result of
such exploitative tendency, in many cases, the population may lose
its diversity and global exploration abilities within a relatively small
number of generations, thereafter getting trapped to some locally
optimal point in the search space [24]. Taking into consideration



170 Mandal and Das

these facts and to overcome the limitations of fast but less reliable
convergence performance of DE/current-to-best/1 scheme, in this
article, we propose a less greedy and more explorative variant of the
DE/current-to-best/1 mutation strategy by using randomly selected
individual from M top ranking individuals for each target vector. The
new scheme can be expressed as:

~Vi,G = ~Xi,G + Fbest ·
(

~XMrand,i,G − ~Xi,G

)
+ F ·

(
~Xr1,G − ~Xr2,G

)
(11)

where ~XMrand,i,G is the randomly selected individual from the M top
ranking individuals for the i-th individual. Other notations bear the
same meaning as mentioned previously in Section 4 (2). Under this
scheme, the target solutions are not always attracted towards the same
best position found so far by the entire population and this feature is
helpful in avoiding premature convergence at local optima.

2) New Crossover Scheme: Crossover operation is very important
for any Evolutionary Algorithm because by this procedure, information
gathered by the current generation is transferred to the next
generation. In the classic crossover operation, the mutant vector
exchanges its components with the current individual to produce the
trial vector. In our new crossover scheme, the mutant vector exchanges
its component with two parent vectors to produce the trial vector.
One of the parent vectors is the current vector and the other one is
the vector whose fitness value is the closest one to the current vector.
This process allows different components transfer of different vectors
of same fitness value to the next generation vector. As a consequence
the exploration efficiency of the algorithm increases. As there are two
parent vectors, there are also two crossover probabilities (CR). The
pseudocode of the proposed crossover scheme is given below.

Let 
iX be the current individual and closeX is the vector whose fitness value is the closest 

one to iX . The mutant vector is mutV  and the trial vector is iU . 

Let CR1 and CR2 be two crossover probabilities set by user. Usually CR1 is in the range 

(0,0.5] and CR2 is in the range (0.5,1).

Randomval=rand(0,1) 

if  Randomval<CR1 & randjj then

    jiji XU ,, =

elseif   Randomval>CR2  & randjj then

      jcloseji XU ,, =

else
      jmutji VU ,, =

end

Here subscript j means the jth component of the corresponding vector. All other notations 

bear the same meaning as mentioned in the classical crossover operation (Section 3.3).

≠

≠

Psuedo-code for proposed crossover scheme:
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Figure 2. Flow chart of the algorithm.

The flow chart of the algorithm is presented in Figure 2.

6. DESIGN EXAMPLES

For the design examples, we consider a 10 ring concentric circular array
and in each ring, the number of elements is 4× ring number, i.e., the
number of elements in m-th ring is 4m. The inter element spacing
dm is taken as λ/2. We have considered the radiation patterns only
in ϕ = 0◦ plane. For the flat-top beams, we calculated the ripple
over −15◦ ≤ θ ≤ 15◦ range. For the optimization process, we set the
number of population to 60 and executed the optimization algorithm
for 300 iterations.

The desired characteristics and the obtained characteristics are
represented in Table 1 for pencil beam+pencil beam, Table 2 for
pencil beam+flat-top beam and Table 3 for flat-top beam+flat-top
beam. These tables also represent the comparison of results obtained
by optimizing with JADE and CLPSO. One thing to be noted here
is that for the pencil beam+pencil beam and pencil beam+flat-top
beam configuration, the element excitation phase distribution for
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Table 1. Desired and obtained characteristics for pencil beam+pencil
beam configuration.

Beam Type Method
Directivity

(dB)

SLL (dB) FNBW (degree)

Obtained
Max.

Allowed
Obtained Desired

Pencil beam 1

DE rBM 2SX 31.38 −38.0600

−30

30

30JADE 27.19 −31.7640 28.8606

CLPSO 26.55 −30.4070 28.2017

Pencil beam 2

DE rBM 2SX 30.26 −37.7417

−35

30

30JADE 29.13 −35.4973 30

CLPSO 27.61 −34.9654 29

Table 2. Desired and obtained characteristics for pencil beam+flat-
top beam configuration.

Beam Type  Method  
Directivity 

(dB)

SLL (dB) FNBW (degree) Ripple (dB) 

Obtained 
Max. 

Allowed 
Obtained Desired Obtained

Max. 

Allowed 

Pencil beam 

DE_rBM_2SX 24.56 −25.8661 

−25 

28 

28 

- 

- JADE 24.37 −25.6242 28 - 

CLPSO 24.49 −25.7731 28 - 

Flattop beam 

DE_rBM_2SX 22.47 −37.1051 

−25 

60 

60 

0.2447 

1 JADE 17.22 −24.3493 58 0.4936 

CLPSO 18.28 −25.9573 56 0.7009 

Table 3. Desired and obtained characteristics for flat-top beam+flat-
top beam configuration.

Beam

Type
Method  

Directivity 

(dB)

SLL(dB) FNBW(degree) Ripple(dB ) 

Obtained 
Max. 

Allowed 
Obtained Desired Obtained 

Max. 

Allowed 

Flattop 

beam1 

DE_rBM_2SX 21.07 −33.2002 

−20 

50 

50 

0.2985 

1 JADE 15.33 −19.8655 50 0.3364 

CLPSO 16.53 −21.0372 48 0.5681 

Flattop 

beam2 

DE_rBM_2SX 20.24 −28.3807 

−25 

50 

50 

0.4731 

1 JADE 18.01 −25.3697 50 0.5031 

PSO 17.86 −25.1934 48.7863 0.7025 

the first beam is set to 0 for all the elements for the ease of the
optimization procedure because it easy to generate desired pattern
by only optimizing the element excitation amplitudes in case of pencil
beam.

Now we have represented the element excitation amplitude values
and element excitation phase values obtained from DE rBM 2SX for
the above mentioned three configurations respectively in Table 4,
Table 5 and Table 6.
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Table 4. Element excitation amplitude and phase distribution for
pencil beam+pencil beam.

Ring Number
Pencil Beam 1 Pencil Beam 2

Amplitude Phase (degree) Amplitude Phase (degree)

1 0.9241 0 0.9241 17.1503

2 0.9506 0 0.9506 57.7023

3 0.7903 0 0.7903 9.0855

4 0.6338 0 0.6338 60.8599

5 0.7243 0 0.7243 15.0863

6 0.4018 0 0.4018 60.8409

7 0.3983 0 0.3983 15.3023

8 0.3447 0 0.3447 49.6725

9 0.0899 0 0.0899 −17.5906

10 0.2693 0 0.2693 42.0468

Table 5. Element excitation amplitude and phase distribution for
pencil beam+flat-top beam.

Ring Number
Pencil Beam Flattop Beam

Amplitude Phase (degree) Amplitude Phase (degree)

1 0.9960 0 0.9960 −149.3854

2 0.8112 0 0.8112 −123.9871

3 0.6425 0 0.6425 −147.8514

4 0.4603 0 0.4603 −62.5924

5 0.4870 0 0.4870 −129.3249

6 0.5252 0 0.5252 7.2593

7 0.3486 0 0.3486 −111.0005

8 0.4299 0 0.4299 41.2533

9 0.1464 0 0.1464 −95.8414

10 0.1768 0 0.1768 69.0968

The radiation patterns obtained from DE rBM 2SX, JADE and
CLPSO is represented in Figure 3 for pencil beam+pencil beam
configuration, Figure 4 for pencil beam+flat-top beam configuration
and Figure 5 for flat-top beam+flat-top beam configuration.

To give an idea of runtime of the simulation process, we
have represented the comparison of average CPU time required per
run in DE rBM 2SX, JADE and CLPSO based design methods in
Table 7. We performed the simulation in the following experimental
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Table 6. Element excitation amplitude and phase distribution for
flat-top beam+flat-top beam.

Ring Number
Flattop Beam 1 Flattop Beam 2

Amplitude Phase (degree) Amplitude Phase (degree)

1 0.9586 134.3824 0.9586 63.2547

2 0.9892 145.1088 0.9892 53.3510

3 0.4390 97.9985 0.4390 17.4993

4 0.7356 150.2150 0.7356 71.9028

5 0.4156 13.1893 0.4156 −48.5748

6 0.3139 135.7605 0.3139 96.4516

7 0.3414 −12.5025 0.3414 −53.4456

8 0.1186 28.1845 0.1186 −128.8574

9 0.0944 −15.1713 0.0944 −38.7117

10 0.1313 −2.7354 0.1313 −100.9348

Table 7. Comparison of average CPU time required per run.

Problem

Average CPU Time Required

Per Run (in Seconds)

DE rBM 2SX JADE CLPSO

Pencil beam+Pencil beam 5.72 9.29 12.31

Pencil beam+Flat-top beam 6.29 8.49 13.02

Flat-top beam+Flat-top beam 6.88 9.53 16.57

Figure 3. Normalized power
patterns in dB for pencil
beam+pencil beam configu-
ration.

Figure 4. Normalized power pat-
terns in dB for pencil beam+flat-
top beam configuration.
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Figure 5. Normalized power patterns in dB for flat-top beam+flat-top
beam configuration.

environment:
• CPU: 2.4GHz Intel R©CoreTM2
• RAM: 2GB DDR2
• Language: MATLAB 7

7. CONCLUSIONS

In this paper, we have discussed the designing of a dual pattern
concentric ring array antenna so that the array can produce the desired
beam pairs satisfying the required specifications. To produce the
desired beam pairs, we have considered a common element excitation
amplitude distribution and two different phase distributions for two
beam pairs of different specifications. Hence the beam pairs are
generated by altering the phase distributions only. This process makes
the hardware implementations easy. We have proposed a novel fitness
function approach for the evaluation of design configurations. As we
can see from the simulation results, this approach helps the design
optimization process to achieve far better results than the desired
one. For the optimization purpose, we have developed a modified
DE, denoted by DE rBM 2SX, which overcomes some drawbacks of
classical DE. A new mutation strategy and a new crossover strategy are
incorporated in this modified DE to make it more efficient than classical
DE. We have compared the results obtained from DE rBM 2SX with
the results obtained from JADE and CLPSO. The comparison shows
that our method of designing is more promising than JADE and
CLPSO in case of dual pattern concentric ring array design. However,
we have only optimized the radiation patterns in ϕ = 0◦ plane. But in
some practical applications, we have to optimize the radiation pattern
for the full range of ϕ, i.e., [0◦–360◦]. To avoid the extra computational
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burden and represent the process in a simple manner, we have not
performed such simulation. Such tasks will be addressed in our future
studies.
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