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Abstract—A transient quasi-analytic method is improved to analyze
the offset reflector for impulse radiating antenna (IRA) applications.
Physical optic (PO) approximation and analytic time transform
(ATT) are utilized to investigate the time domain (TD) radiating
characteristics of the offset reflector. With the appropriate coordinate
transformation, the TD far-field integral problem can be simplified to
one dimensional angular integral which is independent of the reflector’s
size. In addition, the Fast Fourier Transform (FFT) of impulse
responses is compared to the direct frequency domain result, and good
agreement is obtained.

1. INTRODUCTION

The impulse radiating antenna (IRA) firstly proposed by Baum et al.
is a promising issue for antenna engineers for the past decades [1–3].
Due to its frequency independent characteristics, parabolic reflectors
are good candidates for IRA applications. However, the blocking effects
caused by the feed are inevitable in the centered IRAs. To avoid
this problem, the offset design is used in [4]. In order to analyze the
time domain (TD) radiation characteristics, direct transient analysis
of offset IRAs is essential.

Among several methodologies developed for transient analysis,
the most widely used are full-wave methods and high-frequency
approximation approaches. For full-wave methods, finite-difference
time-domain (FDTD) [5] and time domain integral equation (TDIE) [6]
are always employed. A polarimetric scattering from two-dimensional
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rough surface is presented by FDTD algorithm in [5], and wire
structures are analyzed using TDIE in [6]. These methods provide
a controlled accuracy, but they are time-consuming and require
enormous memory for offset reflector analysis. Nevertheless, these
shortcomings can be avoided with high frequency approximation
approaches such as time domain physical optics (TD-PO) [7], time
domain physical theory of diffraction (TD-PTD) [8], time domain
uniform geometrical theory of diffraction (TD-UTD) [9] and ray tracing
methods [10]. While the main problem of TD-PO is that the two-
dimension TD far-field numerical integral is still time-consuming. A
quasi-analytical solution for parabolas of revolution based on TD-PO
can reduce the computation time dramatically. However, it cannot be
directly used in offset reflector analysis [11–12].

In this paper, the method in [11] is further improved to calculate
the offset reflector with a planar edge. Time domain Gaussian
beam (TD-GB) is chosen as the feed. The offset reflector can be
approximated by a second order surface. PO approximation and
analytic time transform (ATT) are utilized to investigate TD radiating
characteristics of the offset reflector. With the appropriate coordinate
transformation, the TD far-field integral problem can be simplified to
one dimensional angular integral which is independent of the reflector’s
size. This quasi-analysis method is highly efficient and can avoid the
ray-caustic problem encountered in ray tracing methods. Finally, the
Fast Fourier Transform (FFT) of impulse responses are also compared
to the direct frequency domain (FD) result and good agreement is
achieved. It is a promising approach for the transient analysis of offset
IRAs.

2. DESCRIPTION OF TD-GB IN FREE SPACE

According to [11] the analytical step response of TD-GB in free space
is expressed as

~hu
+(~ri, t) = ~Hδ

i (0)

√
Det[Qi(zi)]
Det[Qi(0)]

U+

[
t− q(~ri)

v

]
(1)

where ~Hδ
i (0) is the GB’s value at (0, 0, 0), Qi(zi) is the GB’s complex

curvature matrix at (0, 0, zi), Det[A] stands for the determinant of a
matrix A, and v is the speed of light, U+[t] can be expressed as [13]

U+[t] = 1 +
j

π
(ln t + γ) (2)

and γ = 0.5772 is Euler’s constant.

q(~ri) = zi +
1
2

[ξi]
T Qi(zi) [ξi] ; [ξi] = [xi, yi]T (3)



Progress In Electromagnetics Research M, Vol. 22, 2012 235

g
y

g
x

g
z

i
z

g
O

O

z

x

iy
D

d

F

Figure 1. The offset reflector in
the global coordinates system.

z 2
z

y

2
y

x

bx

2
x

O

Figure 2. The reflecting surface
containing a planar edge.

where (xi, yi, zi) is the TD-GB incident coordinates system as shown
in Fig. 1. More specifically as stated in [11].

3. FORMULATIONS OF THE STEP RESPONSE

In this section, the method in [11] is further improved to predict the
characteristics of offset reflector. Step response formulations of offset
reflector (or offset IRA) illuminated by TD-GB are presented. The
coordinate transformation is used to simplify the step response to one
dimensional angular integral which is independent of the reflector’s
size. These formulations are also available for parabolas of revolution.

The offset parabolic reflector, as shown in Fig. 1, is described in
the global coordinates system (xg, yg, zg) as

zg =
x2

g + y2
g

4F
(4)

where F is the focal length of the reflector. Within amplitude taper
distribution of TD-GB, the reflector can be approximated by a second
order surface origin at O [14], where the TD-GB axis intersects the
reflector. The second order surface expressed in the surface coordinates
system (x, y, z) is

z(x, y) = −1
2

(
x2

R1
+

y2

R2

)
(5)

where R1 and R2 are principal radius along x and y coordinates, as
shown in Fig. 1.
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The relationship between surfaces coordinates and incident TD-
GB coordinates (xi, yi, zi) can be expressed as [15]

[
xi

yi

zi

]
=

[
c11 c12 c13

c21 c22 c23

c31 c32 c33

][
x
y
z

]
(6)

To evaluate the surface integral which will be mentioned next,
edge coordinates system is introduced. It is assumed that the x-axis of
the edge coordinates system (x2, y2, z2) is perpendicular to the plane
containing the edge. The x-axis intersects the plane at x2 = xb, as
shown in Fig. 2. The relationship between the surface coordinates
system and edge coordinates system is expressed in matrix form [15]

[
x2

y2

z2

]
=

[
b11 b12 b13

b21 b22 b23

b31 b32 b33

][
x
y
z

]
(7)

It should be noted that the three coordinates systems have the
same origin at O where the incident TD-GB axis intersects the
reflector.

As in [15], the projected area of the local parabolic surface Sa on
the z = 0 plane in the surface coordinates system is shown in Fig. 3(a)
and can be expressed as

(x− x0)2

A2
+

(y − y0)2

B2
= d2 (8)

(a) (b)

Figure 3. (a) The projected area of the local parabolic surface Sa

on the z = 0 plane and (b) the local parabolic surface mapped to the
(ρ, ϕ) coordinates system.
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where

(x0, y0)=
(

b11R1

b13
,
b12R2

b13

)
(9)

A2=
∣∣∣∣−

2R1

b13

∣∣∣∣ ; B2=
∣∣∣∣−

2R2

b13

∣∣∣∣ ; d2=
∣∣∣∣xb − b2

11R1

2b13
− b2

12R2

2b13

∣∣∣∣ (10)

Using the mapping {
x = x0 + Aρ cosϕ

y = y0 + Bρ sinϕ
(11)

The integral area can be transformed from Cartesian coordinates
to polar coordinates as show in Fig. 3(b).

Next, the PO integral will be evaluated. As state in [11], the
analytical step response is given as

~Eu
+(~r, t) ≈ Z0

2πvr
r̂ × r̂ ×

∫∫

Sa

n̂δ+

[
t +

f(x′, y′)
v

]
dS′ × ~Hδ

i (0) (12)

where Z0 = 120π is the impedance of free space, Sa represents the
reflector surface, ~r = (x, y, z) is the observation point and ~r ′ =
(x′, y′, z′) is the source point, n̂ is the unit vector normal to the surface
at the source point ~r ′, ~Hδ

i (0) is the value of GB at O, the complex
phase term f(x′, y′) is given in [15]

f(x′, y′) = R + q(~ri) = f(xs, ys)− a0(x′ − xs)2 − a1(y′ − ys)2

−2c(x′ − xs)(y′ − ys) (13)

Let ~P+(~r, t) represents the integral in (12)

~P+(~r, t) =
1
v

∫∫

Sa

n̂δ+

[
t +

f(x′, y′)
v

]
dS′ (14)

The calculation of this integral will be discussed in Appendix
A. Actual physical responses are obtained by taking the real parts
of these analytical responses. Impulse responses can be achieved by
differentiating the step responses numerically.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, TD scattered field of offset reflector is investigated and
the FFT of the offset reflector’s impulse responses are compared to the
direct FD result.



238 Wu et al.

The complex curvature matrix Qi(zi) in (1) is assumed to be

Qi(zi) =

[
1

zi+jb11
0

0 1
zi+jb22

]
(15)

For simplicity, ~Hδ
i (0) = 1 and the collimated distance b11 = b22 = b =

1.0m are chosen. The diameter D of the offset reflector is 2.54 m, the
focal length F = 1.778m, and the offset distance d which measures
from the z-axis of the global coordinates to the center of the offset
reflector is 1.27 m, as shown in Fig. 1. The TD-GB waist is located
at the focus point of offset reflector. The point where the beam axis
intersects the surface is (0, D

2 , D2

16F ) in the global coordinates system.
The scattered field is observed at (r sin θ cosϕ, r sin θ sinϕ, r cos θ) with
r = 100 m in the global coordinates system.

Figure 4 shows step responses of the offset reflector for different
observation angle θ with (a) for ϕ = 0deg and (b) for ϕ = 90 deg. The
peak values of the step responses are decreasing as the observation
angle θ increased, because the reflector focuses the energy in its
boresight direction. Compared with Fig. 4(a), step responses in
Fig. 4(b) are moved forward as the observation angle increased, due
to the unsymmetrical characteristics of the reflector in the ϕ = 90 deg
plane.

Corresponding impulse responses are depicted in Figs. 5(a) and
(b). It is shown that the TD impulse response just exhibits an
impulsive behavior in the boresight direction, none in other directions.
Peak values of these pulses decreased as the observation angle
increased, which also implies the reflector focuses the energy in its
boresight direction.

(a) (b)

Figure 4. Step responses of offset parabolic reflector illuminated by
a TD-GB (a) ϕ = 0 deg; (b) ϕ = 90 deg.
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(a) (b)

Figure 5. Impulse responses of offset parabolic reflector illuminated
by a TD-GB (a) ϕ = 0 deg; (b) ϕ = 90 deg.

(a) (b)

Figure 6. TD characteristics of offset parabolic reflector for various
b. (a) Step responses; (b) Impulse responses.

To investigate the influence of parameter b on TD characteristics
of the offset reflector, step responses at boresight direction with
b changing from 0.1 m, to 100 m, are presented in Fig. 6(a).
Corresponding impulse responses are shown in Fig. 6(b). For all values
of b, an impulse is observed at 332.6 ns. Two impulsive pulses for
b = 100 m are due to the fast decaying and rising of the rectangular
pulse.

The FFT of impulse responses and direct FD result at 3.0GHz are
compared to validate this approach. The method state in [15] is chosen
as FD method. The observation angle is ranging from−35 deg to 35 deg
in θ direction with angular resolution of 1 deg. Both ϕ = 0deg and
ϕ = 90 deg are considered. Radiation patterns are listed in Fig. 7(a) for
ϕ = 0 deg, and (b) for ϕ = 90deg. The FFT of impulsive responses and
direct FD result agree very well in the main beam. The discrepancy in
wide angle is attributed to numerical errors in evaluating the angular
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(a) (b)

Figure 7. Comparison of TD and FD method at 3.0 GHz (a) ϕ =
0deg; (b) ϕ = 90 deg.

integral. The effects of the numerical errors in this problem can be
ignored since fields in Fig. 7 are about −100 dB less than the peak
value, respectively. The unsymmetrical pattern in Fig. 7(b) contributes
to the unsymmetrical characteristics of the offset reflector in ϕ = 90 deg
plane.

5. CONCLUSION

In this paper, an improved transient quasi-analysis method for offset
reflector is presented. Coordinate transformation is introduced to
simplify the TD far-field integral to one dimensional angular integral.
An investigation of the influences of observation angle as well as TD-
GB collimated distance b on the step and impulse responses is also
discussed. The FFT of impulse responses is compared with direct FD
result, and good agreement is obtained. This method can also be easily
extended to analyze radiation characteristics of offset IRAs illuminated
by a variety of TD feed models, whose radiation field can be expanded
to a set of TD-GBs.

APPENDIX A. EVALUATION OF ~P+(~R,T ) IN (14)

The unit vector n̂ normal to the offset reflector surface can be expressed
as

n̂ =
ẑ + x′

R1
x̂ + y′

R2
ŷ√

1 + ( x′
R1

)2 + ( y′
R2

)2
(A1)
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Using the mapping (11), the integral can be transformed from
Cartesian coordinates to polar coordinates.

dS′ =

√
1 +

(
x′

R1

)2

+
(

y′

R2

)2

ABρdρdϕ (A2)

Using (A1) and (A2), (13) can be expressed as

~P+ (~r, t) =
1
v

∫ 2π

0

∫ d

0

(
ẑ +

x′

R1
x̂ +

y′

R2
ŷ

)
δ+

[
t +

f(x′, y′)
v

]
ABρdρdϕ

(A3)
Using the mapping (11), f(x′, y′) is expressed

f(x′, y′) = Uρ2 + V ρ + W (A4)

where
U =−A2a0 cos2(ϕ)− 2ABc cos(ϕ) sin(ϕ)− a1B

2 sin2(ϕ)
V =− 2Aa0x0 cos(ϕ) + 2Aa0xs cos(ϕ)− 2Acy0 cos(ϕ)

+ 2Acys cos(ϕ)− 2Bcx0 sin(ϕ) + 2Bcxs sin(ϕ)
− 2a1By0 sin(ϕ) + 2a1Bys sin(ϕ)

W =f(xs, ys)− a0x
2
0 + 2a0x0xs − a0x

2
s − 2cx0y0 + 2cxsy0

− a1y
2
0 + 2cx0ys − 2cxsys + 2a1y0ys − a1y

2
s

(A5)

Assuming ρ1,2 are the two roots of f(x′, y′) + vt = 0, then

ρ1,2 = −(ρt ±Q); ρt =
V

2U
; Q =

√
V 2 − 4U(W + vt)

2U
(A6)

So

δ+

[
t +

f(x′, y′)
v

]
=

jv

Uπ(ρ− ρ1)(ρ− ρ2)
(A7)

Using (A7), (A3) can be expressed as

~P+(~r, t) =
∫ 2π

0

∫ d

0

(
ẑ +

x′

R1
x̂ +

y′

R2
ŷ

)
j

Uπ(ρ− ρ1)(ρ− ρ2)
ABρdρdϕ

(A8)
Let

~P+(ϕ) =
∫ d

0

(
ẑ +

x′

R1
x̂ +

y′

R2
ŷ

)
j

Uπ(ρ− ρ1)(ρ− ρ2)
ABρdρ (A9)

Express ~P+(ϕ) in x, y and z components, we can get

~P+(ϕ) = x̂P x
+(ϕ) + ŷP y

+(ϕ) + ẑP z
+(ϕ) (A10)
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where

~P x
+(ϕ) =

jAB

UπR1[
x0

∫ d

0

ρ

(ρ− ρ1)(ρ− ρ2)
dρ+A cos(ϕ)

∫ d

0

ρ2

(ρ− ρ1)(ρ− ρ2)
dρ

]
(A11)

~P y
+(ϕ) =

jAB

UπR1[
y0

∫ d

0

ρ

(ρ− ρ1)(ρ− ρ2)
dρ+B sin(ϕ)

∫ d

0

ρ2

(ρ− ρ1)(ρ− ρ2)
dρ

]
(A12)

~P z
+(ϕ) =

jAB

Uπ

∫ d

0

ρ

(ρ− ρ1)(ρ− ρ2)
dρ (A13)

The integral with ρ can be calculated with the following relationships
∫ d

0

ρ

(ρ− ρ1)(ρ− ρ2)
dρ =

1
2Q

[
−ρ1 ln

ρ1 − d

ρ1
+ ρ2 ln

ρ2 − d

ρ2

]
(A14)

∫ d

0

ρ2

(ρ− ρ1)(ρ− ρ2)
dρ=

1
2Q

[
2Qd−ρ2

1 ln
ρ1 − d

ρ1
+ρ2

2 ln
ρ2−d

ρ2

]
(A15)

The integral of ρ in (A3) is calculated in closed form and the integral of
ϕ which is independent of the reflector size is calculated in numerical
form.
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