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Abstract—Stability and dispersion analysis for the three-dimensional
(3-D) leapfrog alternate direction implicit finite difference time domain
(ADI-FDTD) method is presented in this paper. The leapfrog ADI-
FDTD method is reformulated in the form similar to conventional
explicit FDTD method by introducing two auxiliary variables. The
auxiliary variables serve as perturbations of the main fields variables.
The stability of the leapfrog ADI-FDTD method is analyzed using
the Fourier method and the eigenvalues of the Fourier amplification
matrix are obtained analytically to prove the unconditional stability
of the leapfrog ADI-FDTD method. The dispersion relation of the
leapfrog ADI-FDTD method is also presented.

1. INTRODUCTION

Unconditionally stable implicit finite difference time domain (FDTD)
methods such as alternate direction implicit (ADI) FDTD [1–5], split-
step FDTD [6, 7] and locally one-dimensional (LOD) [8, 9] FDTD
methods are attractive over the conventional explicit FDTD [10]
method as they are not constrained by the Courant-Friedrich-Levy
(CFL) stability criterion [11]. The spatial mesh size can be reduced
independently of the time step size. Thus, implicit FDTD methods
are advantageous over explicit FDTD methods as they can model fine
structures without increasing the simulation time.

To improve the efficiency of implicit FDTD methods in
modeling fine structures, conformal ADI-FDTD methods have been
proposed [12]. It overcomes the problem of staircase meshing by using
distorted cells at the boundaries and has better stability than other
conformal FDTD methods.
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Alternatively, hybrid ADI-FDTD subgridding method can also be
employed. In this method, FDTD method is used to model the coarse
grid while ADI-FDTD method is used to model the fine grid [13]. ADI-
FDTD method is unconditionally stable and can employ the larger
time step size of the FDTD method. The time step size for the two
methods is the same and there is no need for time interpolation when
compared to FDTD subgridding methods [14]. However, ADI-FDTD
is a split-step method and FDTD is a leapfrog method. In the hybrid
ADI-FDTD subgridding method, the FDTD method is updated twice
for every update in the ADI-FDTD method.

Recently, the leapfrog ADI-FDTD method was introduced to
better synchronize the FDTD and ADI-FDTD methods [15]. The
leapfrog ADI-FDTD method employs the same Yee cells and leapfrog
scheme as the conventional explicit FDTD method. Numerical
examples highlighting the stability of the method have been presented
in [15–17]. Since it is an implicit method, it requires treatment of
the boundary condition [18]. In [16], perfectly matched layer (PML)
was implemented into the leapfrog ADI-FDTD method to model open
structures. In [17], convolutional perfectly matched layer (CPML)
was implemented into the leapfrog ADI-FDTD method to simulate
a bow-tie antenna. These examples demonstrated the stability of
the leapfrog ADI-FDTD method only in numerical way with some
boundary conditions. Till date, there is no rigorous analysis for
the stability of the leapfrog ADI-FDTD method. Furthermore, the
dispersion relation of the leapfrog ADI-FDTD method is also not clear.

In this paper, we present the rigorous analysis of the stability
and dispersion for the three-dimensional (3-D) leapfrog ADI-FDTD
method. The organization of the paper is as follows. Section 2 reviews
the leapfrog ADI-FDTD method and presents all the pertaining
implicit update equations of the method. In Section 3, we will
reformulate the leapfrog ADI-FDTD method in the form similar to
the conventional explicit FDTD method by introducing two auxiliary
variables. The auxiliary variables serve as perturbations of the main
fields variables. In Section 4, we analyze the stability of the leapfrog
ADI-FDTD method using the Fourier method. The eigenvalues of the
Fourier amplification matrix are obtained analytically and it is proven
that the leapfrog ADI-FDTD method is unconditionally stable. In
Section 5, the dispersion relation of the leapfrog ADI-FDTD method
will be presented.
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2. REVIEW OF 3-D LEAPFROG ADI-FDTD METHOD

In this section, we review the 3-D leapfrog ADI-FDTD method. The
leapfrog ADI-FDTD method uses the Yee cells and it has been derived
from the conventional ADI-FDTD method [15]. The conventional ADI-
FDTD method is a split-step approach with two procedures. By taking
the previous time step of the second procedure in the conventional ADI-
FDTD method and substituting the equations (cf. [15], Equations (10)–
(11)) into the tridiagonal implicit equations of the first procedure, one
can obtain (1) and (2) in the following.

Tridiagonal implicit equations of En+ 1
2 for the leapfrog ADI-

FDTD method:
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where εα is the permittivity of the medium and α is the x, y, z
directions respectively.

Tridiagonal implicit equations of Hn+1 for the leapfrog ADI-
FDTD method:
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where µα is the permeability of the medium. Note that the leapfrog
ADI-FDTD method solves (1)–(2) implicitly and no explicit update
is needed as in the conventional ADI-FDTD method. In addition,
the leapfrog ADI-FDTD method updates E and H fields implicitly
in one direction only. In particular, referring to (1a) and (2a), we can
observed that Ex and Hx are updated only in the y direction. Although
the leapfrog ADI-FDTD method is derived from the conventional
ADI-FDTD method, the leapfrog ADI-FDTD method does not retain
the second procedure which alternates the direction of update. The
tridiagonal implicit equations (1) and (2) can be solved by using the
Thomas algorithm which is a special type of Gaussian elimination
method.

3. REFORMULATION OF LEAPFROG ADI-FDTD
METHOD

In this section, we reformulate the leapfrog ADI-FDTD method in the
form similar to the conventional explicit FDTD method by introducing
two auxiliary variables e and h. Let us consider the 3-D wave
propagation in a medium with permittivity ε and permeability µ. E
and H are the electric and magnetic component vectors

E = [Ex Ey Ez]
T

, H = [Hx Hy Hz]
T (3)

The splitting matrix operators of Maxwell’s equations may be selected
as (cf. [3], Equations (33)–(34))

A12 =




0 0 ε−1∂y
ε−1∂z 0 0

0 ε−1∂x 0


 (4a)

A21 =




0 µ−1∂z 0
0 0 µ−1∂x

µ−1∂y 0 0


 (4b)

B12 =




0 −ε−1∂z 0
0 0 −ε−1∂x

−ε−1∂y 0 0


 (4c)

B21 =




0 0 −µ−1∂y
−µ−1∂z 0 0

0 −µ−1∂x 0


 (4d)

where ∂x, ∂y, ∂z are the spatial difference operators for the first
derivatives along x, y, z directions respectively.



Progress In Electromagnetics Research M, Vol. 23, 2012 5

Using the matrix operators above, the tridiagonal implicit E
update equations in (1) can be expressed as
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where I is a 3× 3 identity matrix.
We can rewrite (5) as
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where we introduce the auxiliary variable
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Equation (6c) becomes the conventional explicit FDTD E update
equation when hn = Hn. It can be observed that the auxiliary variable
h in (7) is a perturbation of H. Next, we cast (6c) and (7) in matrix
form compactly as
[
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Similarly, the tridiagonal implicit H update equations in (2) can
be expressed as
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Following the procedure above, we can rewrite (9) as
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Equation (10c) becomes the conventional explicit FDTD H update
equation when en+ 1

2 = En+ 1
2 . The auxiliary variable e in (11) is

a perturbation of E. Next, we cast (10c) and (11) in matrix form
compactly as
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Solving (13a) for En+ 1
2 and Hn+1 reduces symbolically to
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The E and H fields are staggered in time and updated in one full time
step iteratively. Finally (13b) can be expressed in matrix operator
form compactly as

[
En+ 1

2

Hn+1

]
= M

[
En− 1

2

Hn

]
(14)

where M is a 6× 6 matrix.

4. STABILITY ANALYSIS

The stability of the leapfrog ADI-FDTD method will be analyzed using
the Fourier (Von Neumann) method in this section [19, 20]. The matrix
M in (14) is transformed to the Fourier domain to obtained the Fourier
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amplification matrix GF . The eigenvalues of GF will determine the
stability of the leapfrog ADI-FDTD method. Note that subscript “F”
denotes Fourier domain.

By using MATLAB, (14) can be written in the Fourier domain as
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Here, Pα corresponds to the spatial difference operator ∂α in the
Fourier domain and k is the wavenumber. Eα0 and Hα0 are the initial
conditions of Eα and Hα fields respectively in the Fourier domain.
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The eigenvalues of GF are obtained using MATLAB as

λ1 = λ2 = 1 (24)
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Since R and Q are real numbers and (29) is true, all the eigenvalues of
GF have unity magnitude. The leapfrog ADI-FDTD method is thus
unconditionally stable and non-dissipative. The eigenvalues of GF for
the leapfrog ADI-FDTD method are also the same as the eigenvalues
of GF for the conventional ADI-FDTD method. Note that Q in [20]
has a typo error and it should read (28).

5. DISPERSION ANALYSIS

The dispersion of the leapfrog ADI-FDTD method can be analyzed by
assuming the field to be a monochromatic wave with angular frequency
ω [20, 21]. The dispersion relation of the leapfrog ADI-FDTD method
can be deduced from the eigenvalues of GF . Since the eigenvalues
of the leapfrog ADI-FDTD method are the same as the conventional
ADI-FDTD method, the dispersion relation of the leapfrog ADI-FDTD
method is also the same as that of the conventional ADI-FDTD method
and is given as
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For illustration, the angular frequency ω is chosen to be 3 GHz with
uniform cell size ∆ = ∆x = ∆y = ∆z = λ

50 . The Courant limit time
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step size is ∆tCFL = ∆
c
√

3
where c is the speed of light in freespace. We

also denote CFLN as ∆t
∆tCFL

.
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Figure 1. Normalized phase velocity (vp/c) vs. wave propagation
angle φ for CFLN = 1, 5 and 10 at θ = 45◦.
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Figure 2. Normalized phase velocity (vp/c) vs. wave propagation
angle φ for CFLN = 1, 5 and 10 at θ = 90◦.
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The numerical phase velocity is given as

vp =
ω

k
(31)

where the wavenumber k can be obtained by solving (30) with the
parameters given above. The normalized phase velocity (vp/c) vs.
wave propagation angle φ for CFLN = 1, 5 and 10 at θ = 45◦
and 90◦ is plotted in Figures 1 and 2 respectively. It is apparent
that the numerical phase velocity error increases with CFLN and the
numerical phase velocity is slightly anisotropic. Referring to Figure 1,
the normalized phase velocity approaches 1 for CFLN = 1 while the
normalized phase velocity is approximately 0.975 for CFLN = 10.
Referring to Figure 2 for CFLN = 10, we can clearly observed that
the normalized phase velocity varies with wave propagation angle φ
and it is maximum at wave propagation angle φ = 45◦.

6. CONCLUSION

This paper has presented the stability and dispersion analysis of
the leapfrog ADI-FDTD method. The leapfrog ADI-FDTD method
was reviewed and the implicit update equations presented. The
leapfrog ADI-FDTD method was reformulated in the form similar
to conventional explicit FDTD method by introducing two auxiliary
variables. The auxiliary variables serve as perturbations of the main
fields variables. We analyzed the stability of the leapfrog ADI-FDTD
method using the Fourier method. The eigenvalues of the Fourier
amplification matrix are obtained analytically and it is proven that the
leapfrog ADI-FDTD method is unconditionally stable. The dispersion
relation of the leapfrog ADI-FDTD method was also presented. The
leapfrog ADI-FDTD method has the same eigenvalues and dispersion
relation as the conventional ADI-FDTD method.

The leapfrog ADI-FDTD method is unconditionally stable and
employs the same leapfrog scheme as the conventional explicit FDTD
method. It should be very useful for modeling of fine structures using
hybrid subgridding methods.
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