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Department of Signal Theory and Communications, University of Vigo,
EI de Telecomunicación, Campus Universitario, E-36310 Vigo, Spain

Abstract—This paper presents a new method for computing fields
diffracted by a wedge for the MECA formulation, which is valid
not only for perfect electric conductors but also for lossy penetrable
dielectrics. The method is based on the computation of a wedge
correction matrix, which establishes a mapping function between fields
incident at and diffracted by the wedge. The MECA method is
based, in general, upon the oblique incidence of a plane wave at the
interface between free space and lossy dielectric media. MECA reduces
to the well-studied physical optics (PO) formulation in case of PEC
(perfect electric conductor) scatterers. In this work, we consider a
scenario involving diffraction caused by a plane wavefront incident on
a wedge with flat faces and straight edge. The version of the stationary
phase method for three-dimensional equivalent source distributions is
employed to calculate the asymptotic contribution of the integration
boundary along the edge of the diffraction wedge. This contribution
of the critical boundary points is compared to the GTD (geometrical
theory of diffraction) diffracted field in order to obtain the correction
matrix by which the incident electric field vector is multiplied
in MECA. As required to accomplish this comparison, the three-
dimensional incident electric field is previously resolved into an edge-
fixed coordinate system. Good agreement is demonstrated between
full-wave method-of-moments (MoM) results and the results obtained
by modifying MECA with our diffraction correction technique.

Received 18 November 2011, Accepted 18 January 2012, Scheduled 17 February 2012
* Corresponding author: Hipólito Gómez-Sousa (hgomez@com.uvigo.es).
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1. INTRODUCTION

The modified equivalent current approximation (MECA) method [1, 2]
has extended the asymptotic, high-frequency technique physical optics
(PO) to lossy materials with a complex effective permittivity. In
MECA the equivalent electric and magnetic currents are calculated
based on the oblique incidence of a plane wave at the interface, together
with a field decomposition into TE and TM components.

In contrast to full-wave methods, like the method of moments
(MoM), the PO and MECA formulations do not require large amount
of computational resources to solve, with a high degree of accuracy
and efficiency, electrically large problems. Although these advantages
are important, neither PO nor MECA are able to correctly evaluate
the edge diffracted fields [3, 4].

In order to introduce edge diffraction in the PO formulation, the
physical theory of diffraction (PTD) was developed by Ufimtsev [5, 6].
PTD uses additional current components, known as fringe currents,
evaluated from the difference between the PO formulation and rigorous
fields found from the solution of canonical diffraction problems.

There have been many proposals for correcting in efficient ways,
without using Ufimtsev’s concept of fringe currents, the fact that the
PO integrals lead to incorrect edge diffracted waves. In some of
these proposals, a version of the stationary phase method (SPM) is
applied [3, 7, 8]. The SPM is a mathematical approach that makes use
of a rapidly varying phase of the integrand. This phase variation results
in a self-cancelling oscillation of the exponential factor of the integrand.
The solution to the integral is asymptotically approximated by the
contribution of certain critical points distributed over the surface of
the scatterer. The phase variation is slower in the vicinity of these
points. In diffraction analysis, the critical points of interest are located
on the boundaries of the integration domain. Most of the published
applications of the SPM to the electromagnetic analysis are either
about integration in one dimension or are related to models based
on purely numerical calculations [7, 8].

Umul eliminated the aforementioned diffraction defect of PO by
modifying its mathematical structure according to three axioms in
the two-dimensional case [9]. In Section 5.6 of [3], James proposed
multiplicative scalar correction factors obtained by the one-variable
SPM in a two-dimensional edge diffraction problem where a PEC
(perfect electric conductor) scatterer is considered. Sakina et al.
studied a modification of a line integral reduction of PO [10]. In [11],
Shijo et al. presented PO diffraction coefficients obtained by applying
the one-variable SPM in the two-dimensional PEC case. Then they
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defined modified surface-normal vectors which turn the PO diffraction
coefficients into those of the GTD (geometrical theory of diffraction).
They introduced empirical weights for the extension to the three-
dimensional case.

In this work, we present a correction matrix which extends in
three ways the aforesaid edge diffraction results reported by James in
Section 5.6 of [3]. We employ a three-dimensional version of the SPM
on a radiation integral which contains the current densities given by
MECA. As a consequence, our approach extends James’s results to
the three-dimensional case and to non-PEC scatterers. Moreover, our
analytical development considers both zero and non-zero wedge angles.
These differences are particularly crucial when comparing our proposed
method to the PO correction techniques developed in [3, 11], which
are also based on comparisons with the GTD formulation. Namely,
the methods reported in [3, 11] were derived for a two-dimensional
PEC diffraction problem with normal incidence at the edge, and the
corresponding diffraction analyses are restricted to the case which
corresponds to zero wedge angle. As we will see, the correction factors
in [3] are particular cases of our correction technique.

This paper has been divided as follows. Section 2 explains the
edge-fixed coordinate system used in the wedge diffraction calculations
throughout the paper. In Section 3, the SPM is employed as
mentioned above to calculate the asymptotic contribution of the
integration boundary along the diffraction edge. Afterwards, a
mathematical comparison between the analytical SPM results and the
GTD formulation is performed in Section 4. The wedge diffraction
correction matrix for MECA is extracted from this comparison.
Section 5 includes results obtained through simulations. Finally,
Section 6 concludes the paper with a summary. The manuscript
contains as well one appendix with additional equations.

2. EDGE-FIXED COORDINATE SYSTEM

For the diffraction analysis presented in this paper, a flat surface with
one vertex situated at the origin of a Cartesian coordinate system,
as seen in Fig. 1, has been considered. The location of the origin is
relevant regarding the application of the SPM as described in Section 3.
The SPM is applied to one face of a wedge, which has an interior angle
of α. The unit vector ẑ is tangential to the edge of this studied wedge,
and ŷ is the surface normal vector. Note that the direction of ẑ should
be such that x̂ is directed toward the interior of the considered surface
as shown in Fig. 1. We assume that a homogeneous plane wave is
incident at the interface. The incident electric field is decomposed into
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Figure 1. Edge-fixed coordinate system. θi is an angle subtended
between the incidence direction vector k̂i and the considered edge.
θd is an angle between the direction of observation k̂d and the edge.
φi (φd) is the angle between the surface where we apply the three-
dimensional SPM and the plane containing ẑ and the unit vector k̂i

(k̂d). α is the interior wedge angle.

two components parallel and perpendicular to the edge-fixed plane
of incidence; that is, the plane containing ẑ and the unit vector k̂i

which defines the direction of incidence. Similarly, the diffracted field
components are parallel and perpendicular to the edge-fixed plane of
diffraction; that is, the plane containing ẑ and the unit vector k̂d which
denotes the direction of observation.

The edge-fixed Cartesian coordinate system (x, y, z) is shown in
Fig. 1. The incident electric field is resolved into φ̂i and θ̂i components,
and the diffracted field into φ̂d and θ̂d components, where

φ̂i =
−ẑ× k̂i∣∣∣ẑ× k̂i

∣∣∣
, θ̂i = φ̂i × k̂i, φ̂d =

ẑ× k̂d∣∣∣ẑ× k̂d

∣∣∣
, θ̂d = φ̂d × k̂d. (1)

The preceding vector equations refer to conventional spherical
coordinate systems relative to the diffraction edge. The unit vectors
in (1) are not clearly defined when θi → 0. This situation leads to
other important problems, notably a violation of the approximations
upon which the GTD is based [12].

The angles θi, φi and φd shown in Fig. 1 can be determined
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analytically as follows:

θi = arccos(k̂i · ẑ);

k̂t
i =

k̂i − (k̂i · ẑ)ẑ∣∣∣k̂i −
(
k̂i · ẑ

)
ẑ
∣∣∣
, k̂t

d =
k̂d −

(
k̂d · ẑ

)
ẑ

∣∣∣k̂d −
(
k̂d · ẑ

)
ẑ
∣∣∣
;

φi = π [1− sgn
(
−k̂t

i · ŷ
)
] + arccos

(
−k̂t

i · x̂
)

sgn
(
−k̂t

i · ŷ
)

,

φd = π [1− sgn
(
k̂t

d · ŷ
)
] + arccos

(
k̂t

d · x̂
)

sgn
(
k̂t

d · ŷ
)

,

(2)

with 0 ≤ arccos(u) ≤ π and

sgn(u) =
{

1, if u ≥ 0,

− 1, if u < 0.
(3)

3. SPM APPLIED TO A RADIATION INTEGRAL WITH
THE MECA CURRENTS

According to the MECA method [1], the equivalent magnetic and
electric current densities over the flat surface are calculated by the
following two equations respectively:

M=
[
Ei

TE(1+RTE) (̂eTE×n̂)+Ei
TM cos θinc(1+RTM) êTE

]
e−jk1k̂i·r,

J=
1
η1

[
Ei

TE cos θinc(1−RTE)êTE+Ei
TM(1−RTM)(n̂×̂eTE)

]
e−jk1k̂i·r,

(4)

where η1 and k1 denote respectively the impedance and the wave
number in the medium of incidence. RTE (RTM) is the TE (TM)
reflection coefficient for the electric field. The expressions for RTE

and RTM can be found in [1, 13]. In order to deduce (4) in [1],
the Snell reflection coefficients establish the relation between incident
and reflected waves for each separate TE/TM polarization. The
decomposition into TE and TM components is essential, as indicated
by polarization-dependent reflection coefficients. This distinction is
often not made in the literature when extending the physical optics
to non-PEC objects. As shown in Fig. 2, Ei

TE = Ei
TEe−jk1k̂i·rêTE

and Ei
TM = Ei

TMe−jk1k̂i·rêTM are the TE and TM components of
the incident electric field at r = (x, 0, z), which is a position vector
to any point on the scattering surface. θinc represents the angle of
incidence between k̂i and the outward unit normal vector n̂ (let us
assume without loss of generality that 0 ≤ φi ≤ π for the wedge face
on which we apply the SPM).
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Figure 2. Oblique wave incidence on a wedge face. The first medium
(medium of incidence) is characterized by its constitutive parameters:
permittivity ε1, permeability µ1 and conductivity σ1. Similarly, the
second medium (scatterer) is characterized by (ε2, µ2, σ2).

The direction of incidence is given by

k̂i = − sin θi cosφix̂− sin θi sinφiŷ + cos θiẑ. (5)

In terms of the notation of Figs. 1 and 2, the following substitutions
can be performed in (4):

n̂ = ŷ, êTE =
k̂i × ŷ∣∣∣k̂i × ŷ

∣∣∣
, cos θinc = −ŷ · k̂i = sin θi sinφi. (6)

In order to express (4) as a function of the components of the incident
electric field along φ̂i and θ̂i, as required to compare with the three-
dimensional GTD formulation, the following transformation is made:
(
Ei

TM

Ei
TE

)
=

1√
1−sin2 θi sin2 φi

(
cos θi sinφi cosφi

− cosφi cos θi sinφi

)(
Ei

θi

Ei
φi

)
. (7)

Following an analogous procedure to that used in Chapter 2 of [3]
for the volume integration, the scattered electric field phasor ES can
be written as (see also (1) in [11])

ES = − j

2λ

∫

S0

{
M× R̂ + η1

[
J−

(
J · R̂

)
R̂

]}e−jk1R

R
dS, (8)

where R is the distance from a source point on the scatterer to
the observation point at h k̂d and R̂ denotes the unit vector in this
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direction. The variable h is the distance from the origin to the
observation point. The following equations are satisfied:

R =RR̂=h k̂d−xx̂−zẑ=
=(h sin θd cosφd−x)x̂+h sin θd sinφdŷ+(h cos θd−z)ẑ,

R = |R|=
√

h2+x2+z2−2h(z cos θd+x sin θd cosφd), R̂=R/R.

(9)

Equation (8) is valid for k1R À 1, which means that the distance
between the source and the observation point is much greater than
the wavelength, but this assumption has no implications regarding the
dimensions of the scatterer. The integral in (8) can be rewritten as

ES = − j

2λ

∫

S0

∫
F(x, z)

ejk1f(x,z)

R(x, z)
dx dz, (10)

where F (x, z) is a vector function which includes all the vector
operations in (8), R (x, z) is given by (9), and the phase function
f (x, z) can be expressed as

f(x, z) = −(k̂i · r + R) = x sin θi cosφi − z cos θi −R(x, z). (11)

As inferred from Subsection 3.2 of [7] (see also [8]), the critical
boundary points along the diffraction edge must satisfy

∂f(x, z)
∂z

∣∣∣∣
x=0

= 0. (12)

In our case, these critical points are of the form (0, 0, zC). Moreover,
since our goal is to compare with the GTD formulation, we impose
θd = θi. This condition corresponds to the Keller’s cone in the GTD.
Accordingly, we find that

∂f(x, z)
∂z

∣∣∣∣
x=0

= − cos θi − z − h cos θi√
h2 + z2 − 2hz cos θi

= 0. (13)

The above equation has a unique solution zC = 0. It should be
noted that, although we obtain a critical boundary point at a vertex,
this point represents the contribution of the entire diffraction edge as
explained in Subsection 3.3 of [7]. The contribution of the boundary
point to the radiation integral is performed by calculating the following
expression [3, 7, 8]:

Ed
SPM =

F(0, zC)
4πR

ejk1f(0,zC)

(
∂f(x, z)

∂x

∣∣∣∣
x=0,z=zC

)−1
√√√√2jπ

k1

(
∂2f(x, z)

∂z2

∣∣∣∣
x=0,z=zC

)−1

. (14)
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The asymptotic approximation of (14) is valid when the value v0 from
Equation (12) of [7] is greater than 3, i.e., v0 > 3. We have checked that
in the case analyzed in this paper v0 ∝

√
k1h so the approximation is

valid in the absolute far field. Substituting the values of the derivatives
in (14) yields

Ed
SPM =

F(0, zC)
(cosφd + cosφi) sin2 θi

e−jk1h

√
8jπk1h

. (15)

As described in Subsection 2.2 of [14] (for the two-dimensional
case), the field Ed

SPM we have obtained in (15) represents a
geometrical-optic component. Evaluating F(0, zC) and calculating its
projections onto φ̂d and θ̂d, it is possible to write (15) in the form

(
Ed,SPM

θd

Ed,SPM
φd

)
=

(
DSPM

11 DSPM
12

DSPM
21 DSPM

22

)(
Ei

θi

Ei
φi

)
e−jk1h

√
8jπk1h

. (16)

The elements of the matrix in the previous equation can be found
in Appendix A. As commented above, we identify (16) as diffracted
GO (geometrical optics) field. In the next section, the diffraction
coefficients in the matrix of (16) are compared to the GTD in order to
correct (16).

4. WEDGE DIFFRACTION CORRECTION MATRIX

In [15], Luebbers modified Keller’s PEC GTD [16] to include finite
conductivity and the effects of relative permittivity on GTD fields.
The two-dimensional GTD coefficients of Luebbers [15] have recently
been extended to the three-dimensional case in [17]. These extended
coefficients depend on the angles in (2) and on the constitutive
parameters of the scattering material, and can be expressed in matrix
form as (

Ed,GTD
θd

Ed,GTD
φd

)
=

(
DGTD

11 DGTD
12

DGTD
21 DGTD

22

)(
Ei

θi

Ei
φi

)
e−jk1h

√
8jπk1h

. (17)

Again, the expressions for the GTD diffraction coefficients in the
preceding matrix are included in Appendix A.

Comparing (16) and (17), we can multiply the incident field in (16)
by a wedge diffraction correction matrix C such that(

DSPM
11 DSPM

12

DSPM
21 DSPM

22

)(
C11 C12

C21 C22

)

︸ ︷︷ ︸
C

(
Ei

θi

Ei
φi

)
=

(
DGTD

11 DGTD
12

DGTD
21 DGTD

22

)(
Ei

θi

Ei
φi

)
. (18)
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The correction matrix C transforms the diffracted GO component
deduced from MECA through the stationary phase method, into a
GTD component.

Note that the SPM allows us to mathematically obtain matrix
C; however, the SPM is not applied in the computational code where
the diffraction correction matrix C is implemented. Unfortunately, the
equations for the explicit elements of the correction matrix are much
too complicated to be worth writing down here. Let us emphasize that
this fact is not a problem for computational implementation purposes,
since matrix C can be easily obtained numerically from the other
2 × 2 matrices in (18). Nevertheless, we can present novel analytical
expressions for particular cases of interest.

A rectangular perfectly conducting plate has all its wedge angles
of size α = 0, and is infinitely thin. Consequently, in case of a PEC
plate, it is always true that RTE = RTM = Rs

0,n = Rh
0,n = −1, n = 2.

Let us remark that RTE and RTM are respectively the TE and TM
reflection coefficients for the electric field, introduced in Section 3.
Additionally, Rs

0,n and Rh
0,n are, as shown in Appendix A, the soft and

hard reflection coefficients, respectively, incorporated into the GTD
diffraction coefficients (RTM and Rh

0,n refer here to the electric field
reflection, so their value is not 1). The parameter n is given by (A11)
in Appendix A. In the geometry discussed here, for every edge, matrix
C is obtained by substituting the particular values addressed in this
paragraph into the coefficients of (16) and (17), and then solving (18).
In this particular case, matrix C becomes

C =
(

sec(φi/2) sin(φd/2)
0

−1
2 cos(θi)[cos(φd) + cos(φi)] csc(φd/2) csc(φi/2)

cos(φi/2) csc(φd/2)

)
. (19)

At normal incidence relative to the considered edge (θi = π/2)
and if the scatterer is not necessarily composed of PEC material, then
the elements of matrix C reduce to

C11 =

[cos(φd)+cos(φi)]
[
Rs

0cot
(
π−(φd+φi)

2n

)
+Rs

ncot
(
π+(φd+φi)

2n

)

+cot
(

π+(φd−φi)
2n

)
+cot

(
π−(φd−φi)

2n

)]

n[(1+RTE) sin(φd)−(1−RTE) sin(φi)]
,
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C22 =

[cos(φd)+cos(φi)]
[
Rh

0cot
(
π−(φd+φi)

2n

)
+Rh

ncot
(

π+(φd+φi)
2n

)

−cot
(
π+(φd−φi)

2n

)
−cot

(
π−(φd−φi)

2n

)]

n[(1+RTM) sin(φi)−(1−RTM) sin(φd)]
,

C12 =C21 = 0.

(20)

If we take θi = π/2 in (19), or n = 2 and RTE = RTM = Rs
0,n =

Rh
0,n = −1 in (20), we obtain as expected a diagonal matrix whose

elements are exactly the correction factors explained in Section 5.6
of [3] for the two-dimensional PEC half-plane case. The expressions of
these factors, which can be deduced as a particular case of the results
in the present paper, were also published in Section 3 of [18].

5. IMPLEMENTATION AND SIMULATION RESULTS

In the computational implementation of MECA described in [1],
the surface radiation integral is decomposed into the contributions
from planar triangular facets. The currents are assumed to have
constant amplitude and linear phase variation on every facet. In the
present work, we utilize the same approach of discretizing into planar
triangular facets. Therefore we only apply the correction matrix to the
incident electric field on those facets which have one side coincident
with the portion of an edge. In order to obtain the results presented
in this section, we developed a parallel implementation of MECA in
which the optimization techniques explained in [19] were applied.

Before multiplying by the correction matrix, the unit vectors in (1)
must be computed in order to resolve the incident field into φ̂i and θ̂i

components, and the angles in (2) must be determined in order to
evaluate the correction matrix. Equations (1) and (2) are calculated
once for each edge. The diffraction correction is only implemented for
the incident electric field terms in those radiation integrals belonging
to one face of each wedge; otherwise, the GTD fields would be included
twice in the MECA method. Since the GTD fields are confined to the
Keller’s cone, for each given triangular facet, the matrix multiplication
correction is solely applied if the observation direction lies in the
Keller’s cone relative to the considered facet. This condition can be
expressed as (

k̂d − k̂i

)
· ê = 0, (21)

where the unit vector k̂d defines the direction of observation, k̂i is
the direction of incidence, and ê is a vector parallel to the facet side
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(portion of an edge) at which diffraction occurs. This restriction to the
Keller’s cone is frequently taken into account in the related literature.
(For instance, see the diffraction integrals in the recent reference [20].)

A comparison in terms of scattered far-field computations
validates the diffraction correction method presented in this paper
using simulated full-wave results of canonical geometries. These
simulated results deal with different types of surfaces ranging from
PEC to dielectric materials and including lossy cases which have
not been previously considered in other PO diffraction correction
techniques such as those described in [3, 9–11].

5.1. Square Flat PEC Plate

The first validation geometry consists of a square flat PEC plate whose
length is 3 cm, located in the XY plane. (Note that, in this section,
we are referring to a global coordinate system — different from that
of Section 2 — where here ẑ is the surface normal vector.) Figs. 3
and 4 show comparisons among the far-field patterns obtained by
MoM, original MECA and a modified version of MECA which includes
the diffraction correction described in this paper.

The incident electric field on the PEC plate is a plane wave
polarized along the θ̂ direction, with amplitude 1 V/m, and f =
94GHz. The results in Fig. 3 correspond to normal incidence on the
interface, whereas oblique incidence angles of θinc = 30◦ and θinc = 45◦
have been introduced in order to obtain the patterns presented in

(a) (b)

Figure 3. Comparison at a frequency of 94 GHz among different
solutions along the observation cuts φ = 0◦ (a) and φ = 90◦ (b) for
a square PEC scatterer of side length 3 cm, with normal plane wave
incidence.



218 Gómez-Sousa, Mart́ınez-Lorenzo, Rubiños-López

(a) (b)

Figure 4. Comparison at a frequency of 94 GHz among different
solutions along the observation cut φ = 0◦ for a square PEC scatterer
of side length 3 cm, with oblique plane wave incidence at θinc = 30◦ (a)
and θinc = 45◦ (b).

1 1 1
, ,ε µ σ

ẑ

ŷx̂

2 2 2
, ,ε µ σ

d

L

Figure 5. Cuboidal slab of thickness d and square face with side
length L.

Fig. 4. It can be observed that the overlap between the MECA and
MoM curves is improved when the diffraction correction technique is
incorporated into MECA.

5.2. Cuboidal Penetrable Slab

The next set of examples consists of a cuboidal penetrable slab whose
thickness d is large compared to the penetration depth of the material
at the simulation frequency. A plane wave whose electric field is
polarized along x̂, with amplitude 1V/m, impinges at normal incidence
on a square face of the slab. The value of the side length L of this
incidence face, indicated in Fig. 5, was set to be 3 m.
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(a) (b)

Figure 6. Comparison at a frequency of 300 MHz among different
solutions along the observation cuts φ = 0◦ (a) and φ = 90◦ (b) for a
dielectric slab with ε2 = 15ε0 and σ2 = 0.1 S/m.

(a) (b)

Figure 7. Comparison at a frequency of 400 MHz among different
solutions along the observation cuts φ = 0◦ (a) and φ = 90◦ (b) for a
dielectric slab with ε2 = 6ε0 and σ2 = 0.005 S/m.

Two cases have been considered: a general lossy dielectric medium
(ε2 = 15ε0, σ2 = 0.1 S/m, f = 300 MHz) in Fig. 6 and a good dielectric
(ε2 = 6ε0, σ2 = 0.005 S/m, f = 400 MHz) in Fig. 7. The full-wave
solution, taken as reference, has been obtained from a version of MoM
for penetrable scatterers. A description of this generalized formulation
of MoM can be found in [21].

For a cuboidal slab, the parameter n given by (A11) in Appendix A
has the value 3/2 for every wedge since the interior angles measure 90◦.
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Figure 8. Geometry of the dihedral corner reflector formed by two
square PEC plates each 5λ long. In this case, the maximum leg length
of the mesh triangles for the MECA simulations was set to λ, as shown
in this figure, whereas for the MoM simulation was λ/10.

Figure 9. Comparison at a frequency of 94 GHz among different
solutions along the observation cut φ = 90◦ for a dihedral corner
reflector composed of two square PEC plates of side length 5λ, with
an interior wedge angle α = 120◦. The curves on the right correspond
to a zoom-in on an area over the graph on the left, around the grazing
observation direction for one of the plates.

The inclusion of the GTD parameter n is a major difference compared
to the GTD-based PO-correction techniques proposed in [3, 11], which
are limited to the case n = 2 and only restricted to PEC scatterers. On
the evidence of the results presented in Figs. 6 and 7, it can be inferred
that our proposed method can efficiently approximate the envelopes of
the MoM curves due to non-PEC scatterers.
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Figure 10. Comparison at a frequency of 94 GHz among different
solutions along the observation cut φ = 90◦ for a dihedral corner
reflector composed of two square PEC plates of side length 5λ, with
an interior wedge angle α = 90◦. The curves on the right correspond
to a zoom-in on an area over the graph on the left, around the central
direction of observation.

5.3. Dihedral Corner Reflector

The dihedral corner reflector is useful for evaluating the field
contributions caused by diffraction at arbitrary wedge angles. The
simulated geometry is composed of two square PEC plates each 5λ long
so the dihedral axis is along the Z-axis and the angle between each plate
and the XZ plane is α/2. This geometry is depicted in Fig. 8 together
with the triangular mesh of the surfaces employed in MECA. The
origin of the global Cartesian system is situated at the dihedral vertex.
The incident electric field consists of a plane wave polarized along
the ŷ direction, with amplitude 1 V/m, f = 94 GHz and incidence
direction −ẑ. In order to highlight the wedge diffraction effects on
simulation results, we have chosen that the wavefront impinges on
the convex dihedral angle. In the concave dihedral angle, the effects
of multiple reflections between plates would dominate over wedge
diffraction contributions.

Figures 9 and 10 present the far-field distributions obtained by
simulation of the scattering from a dihedral corner reflector using MoM,
MECA, and a version of MECA modified with the proposed correction
technique. The angle between the plates (interior wedge angle) was
α = 120◦ for the patterns in Fig. 9 and α = 90◦ for those in Fig. 10.
Both examples show a good agreement between modified MECA and
MoM results in the given angular margin.
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6. CONCLUSION

This paper presents a technique for correcting the wedge diffraction
contributions in a modified PO method, known as the modified
equivalent current approximation (MECA) method, valid for both PEC
and dielectric objects. We have extended the analytical results in [3]
to the three-dimensional case, to non-PEC scatterers, and to non-zero
wedge angles. The correction matrix is derived comparing the GTD
diffracted fields with the diffraction component obtained through the
three-dimensional stationary phase method.

Regarding the scope of application, the main difference between
our technique and the general three-dimensional GTD published in [17]
concerns the fact that our proposed technique is directly applicable to
the PO and MECA formulations.

Our simulation data show that the coincidence between the results
provided by a computational implementation of MECA and a full-wave
MoM method is increased by applying the wedge diffraction correction
matrix technique.
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APPENDIX A. SPM AND GTD DIFFRACTION
COEFFICIENTS

This appendix contains the coefficients DSPM
ij of the matrix obtained

through the SPM procedure presented in Section 3, and the general
expressions for the GTD diffraction coefficients DGTD

ij of the matrix in
Section 4.

The elements of the matrix in (16) represent the SPM diffraction
coefficients which can be found by applying the version of the SPM
published in [7, 8], and by performing the manipulations described in
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Section 3 of this paper. These coefficients are given by:

DSPM
11 =

Ed
θd

Ei
θi

∣∣∣∣∣
Ei

φi
=0

=
1

sin θi(cosφd+cos φi)
(
1−sin2 θi sin2 φi

) ·[(1+RTE)

cos2φi sinφd+(1−RTE) sinφicosφi

(
cos2θi cosφd−cosφisin2θi

)
+(1+RTM)

sin2 φi cos2 θi sinφd − (1−RTM) sin φi cos2 θi(1 + cosφi cosφd)], (A1)

DSPM
22 =

Ed
φd

Ei
φi

∣∣∣∣∣
Ei

θi
=0

=
1

sin θi(cosφd+cos φi)
(
1−sin2 θi sin2φi

) ·[−(1+RTE)

sinφi cos2θi(1+cosφi cosφd)+(1−RTE) sin2φi cos2θi sinφd+(1+RTM)
sinφi cosφi

(
cos2θi cosφd−cosφi sin2θi

)
+(1−RTM) cos2φi sinφd], (A2)

DSPM
12 =

Ed
θd

Ei
φi

∣∣∣∣∣
Ei

θi
=0

=
1

sin θi(cosφd+cosφi)
(
1−sin2θi sin2φi

) ·[−(1+RTE)

sinφicosφi cos θisinφd−(1−RTE) sin2φicos θi(
cos2θi cosφd−cosφisin2θi

)
+ (1+RTM) sin φicosφicos θisinφd

−(1−RTM) cos φicos θi(1+cosφi cosφd)], (A3)

DSPM
21 =

Ed
φd

Ei
θi

∣∣∣∣∣
Ei

φi
=0

=
1

sin θi(cosφd+cos φi)
(
1−sin2θi sin2φi

) ·[(1+RTE)

cosφi cos θi(1 + cosφi cosφd)− (1−RTE) sin φi cosφi cos θi sinφd +
+(1 + RTM) sin2 φi cos θi

(
cos2 θi cosφd − cosφi sin2 θi

)

+(1−RTM) sin φi cosφi cos θi sinφd]. (A4)

The GTD diffraction coefficients in matrix (17) are defined as
follows [17]:

DGTD
11 =

1
n · sin θi

(
1−sin2 θi sin2 φi

) ·
{(

Rs
0 cos2 φi+Rh

0 cos2 θi sin2 φi

)
cot

(
π−(φd+φi)

2n

)
+

+
(
Rs

n cos2 φi+Rh
n cos2θi sin2φi

)
cot

(
π+(φd+φi)

2n

)

+
(
1−sin2 θi sin2φi

) [
cot

(
π−(φd−φi)

2n

)
+cot

(
π+(φd−φi)

2n

)]}
,

(A5)
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DGTD
22 =

1
n · sin θi

(
1−sin2 θi sin2φi

) ·
{
−

(
Rh

0 cos2 φi+Rs
0 cos2θi sin2 φi

)
cot

(
π−(φd+φi)

2n

)
+

−
(
Rh

n cos2 φi+Rs
n cos2θi sin2φi

)
cot

(
π+(φd+φi)

2n

)

+
(
1−sin2 θi sin2 φi

)[
cot

(
π−(φd−φi)

2n

)
+cot

(
π+(φd−φi)

2n

)]}
, (A6)

DGTD
12 =

sinφi cosφi cos θi

n · sin θi

(
1−sin2θi sin2φi

) ·
[(

Rh
0−Rs

0

)
cot

(
π−(φd+φi)

2n

)
+

(
Rh

n−Rs
n

)
cot

(
π+(φd+φi)

2n

)]
, (A7)

DGTD
21 =−DGTD

12 . (A8)

Rs
0,n and Rh

0,n are the so-called soft and hard reflection coefficients,
respectively, incorporated into the GTD diffraction coefficients [17]:

Rs
0,n =

sin(θ0,n)−√
εcr2−cos2(θ0,n)

sin(θ0,n)+
√

εcr2 − cos2(θ0,n)
,

Rh
0,n =−εcr2 sin(θ0,n)−√

εcr2−cos2(θ0,n)
εcr2 sin(θ0,n)+

√
εcr2−cos2(θ0,n)

.

(A9)

In (A9) the surrounding medium is assumed to be free space with
ε1 = ε0 and µ1 = µ0, the scatterer is supposed to have µ2 = µ0, and
the complex relative permittivity εcr2 of the scatterer is defined as

εcr2 =
1
ε0

(
ε2 − j

σ2

2πf

)
. (A10)

The interior wedge angle α, depicted in Figs. 1 and 2, is related to the
parameter n in (A5)–(A8) by

n = 2− α/π, (A11)

with α measured in radians. Note that n need not be an integer.
Angles θ0 and θn in (A9) are calculated by using the following

expressions [17]:

θ0 = min (φi, φd) , θn = min (nπ − φi, nπ − φd) . (A12)

It should be observed that, in (A5)–(A8), the Fresnel integrals
involved in the original uniform diffraction coefficients presented in [17]
have been set equal to unity. As stated in Subsection V.A of [22], we
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can set these Fresnel transition functions equal to unity in case of an
incident plane wave if the observation point is sufficiently far from the
edge. This approximation has also been applied in the PO diffraction
correction technique developed in [11]. When any cotangent function
in (A5)–(A8) has an argument which causes a singularity in some of the
GTD coefficients, we explicitly avoid the far-field numerical evaluation
for the observation direction in which the singularity occurs. This form
of avoidance can be achieved because the set of simulated observation
directions is a discrete sampling. From the discussion in Section 2
of [23], it follows that, for the case of an incident plane wave, the GTD
solution is adequate except for a range of angles about the optical
boundaries where the singularities take place. As discussed in [23], that
range of angles can be made arbitrarily small by increasing the distance
between the edge and the observation point. For the results of the
present paper, we perform scattering calculations restricted to the far
field region (k1h →∞). Therefore, we draw upon the approximations
we have dealt with above.
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