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Abstract—The wire-ground electromagnetic coupling structures are
quite common in avionics system electromagnetic compatibility
(EMC) analysis. The increasing complexities of physical structures
make electromagnetic modeling an increasingly tough task, and
computational efficiency is desirable. In this paper, a novel selective
mesh approach is presented for partial element equivalent circuit
(PEEC) modeling where intense coupling parts are meshed while
the remaining parts are eliminated. With the proposed approach,
the meshed ground plane is dependent on the length and height of
the above wires. Relevant compact formulae for determining mesh
boundaries are deduced, and a procedure of general mesh generation
is also given. A numerical example is presented, and a validation
check is accomplished, showing that the approach leads to a significant
reduction in unknowns and thus computation time and consumed
memories, while preserving the sufficient precision. This approach is
especially useful for modeling the electromagnetic coupling of wires
and reference ground, and it may also be beneficial for other equivalent
circuit modeling techniques.

1. INTRODUCTION

With the development of avionics and system integration techniques,
electromagnetic environment in aircraft cabins becomes more and
more severe and complicated due to rich spectrum and limited
space. Electromagnetic compatibility (EMC) is now becoming
one of the key abilities guaranteeing avionics systems’ normal
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performances without suffering unacceptable degradation or causing
unintentional degradation [1–4]. Wire connection is an important
medium for necessary signal and power transmission. However,
unreasonable wiring or incorrect wire connection provides an undesired
electromagnetic interference (EMI) coupling path to the subsystems or
equipments. It is reported that most of the performance degradation
of equipments or systems results from electromagnetic coupling via
wires/cables [5–8].

Reasonable wiring is an important content to heighten EMC of
a complex avionics system [9]. This paper is dedicated to effective
modeling of wire-ground structures. By the term “wire-ground
structure”, we mean a typical electromagnetic coupling structure of
a ground plane associated with a wire/cable suspended over it. This
structure is quite common in avionics system EMC analysis.

Currently, the partial element equivalent circuit (PEEC)
method [10], firstly introduced by Ruehli in 1970s, is one of the
promising numerical methods for electromagnetic (EM) modeling of
various engineering problems, e.g., EMC, EMI and signal and power
integrity (SI, PI) of high-speed digital circuits [11–13]. This method
facilitates a combination of circuit and electromagnetic analysis
because a circuit interpretation of the electric field integral equation
(EFIE) in terms of partial circuit elements, namely resistances,
partial inductances, and partial coefficients of potentials can be
achieved [14]. Different from other integral equation (IE) based EM
modeling methodologies, PEEC is a full spectrum method valid from
dc to maximum frequency determined by mesh. The PEEC method
is implemented for modeling wire-ground structures thanks to its
potentials for mixed electromagnetic-circuit problems.

The term “mesh” is a discretization of a geometric domain into
small elementary cells, such as triangles or quadrilaterals in two
dimensions and tetrahedral or hexahedral elements in three [15].
The meshing of geometrical objects is a first step in EM modeling
using numerical techniques, and the overall solution efficiency strongly
depends on the geometrical mesh algorithms [15–17]. The majority of
the PEEC implementations mesh surfaces using quadrilateral elements
and volume cells are created as hexahedral cells. The basic rule of
thumb when carrying out discretization for PEEC modeling is to use a
fixed number of cells per shortest wavelength λmin corresponding to the
highest frequency of interest [18]. Following this conventional solution,
excessive number of unknowns and subdivisions will be introduced,
especially for large structures at high frequencies.

Several procedures aimed at minimizing the complexity of
the meshing while preserving sufficient accuracy have been devel-
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oped [14, 17, 19]. Some non-uniform mesh procedures are developed
for capturing skin effect, calculating capacitance and inductance. A
α-projection algorithm for neighboring conductors is presented in [17].
However, it is not clear in setting α value. In addition, the increas-
ing size of mesh suffers from difficulties of the node connection, and
remedying strategies of smoothing, tolerating and node relaxation un-
avoidably influence the overall accuracy. Clearly, most of the current
mesh procedures are short of considerations of coupling among ele-
ments. They all have a large number of unknowns for large structures
at high frequencies, which makes time-tedious and computationally
expensive modeling. The proposed mesh algorithm starts with de-
scriptions of field distribution induced by a filament over a ground
conductor. Based on the distribution characteristics, a selective mesh
procedure is developed to reduce the number of unknowns.

This paper is organized as follows. An overview of PEEC modeling
is presented in Section 2, including the basic PEEC formulations
and meshing issues. Mathematic preliminary and the proposed
selective mesh approach together with the working flow for the code
implementation are described in detail in Section 3. Section 4 gives a
numerical experiment where a serpentine wire suspended over a ground
conductor is modeled using the proposed mesh approach. Comparison
with conventional solutions and the relevant measurement results are
presented in this section. Finally, Section 5 ends with conclusions.

2. OVERVIEW OF PEEC MODELING

2.1. Partial Element Equivalent Circuit Construction

The formulation of PEEC method starts with a mixed potential
equation which is written as

Ei(r, t) =
J(r, t)

σ
+

∂A(r, t)
∂t

+∇Φ(r, t); (1)

where Ei is an incident electric field and J the current density in the
conductor. The potentials A and Φ are, respectively, the magnetic
vector potential and electric scalar potential, and σ is the electrical
conductivity.

The closed forms of magnetic vector potential A(r,t) due to
current J(r,t) and electric scalar potential Φ(r,t) due to charge
distribution ρ(r,t) are defined as

A(r, t) =
µ

4π

∫

V ′

J(r′, t′)
|r− r′| dV ′; (2)
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Φ(r, t) =
1

4πε

∫

S′

ρ(r′, t′)
|r− r′| dS′. (3)

In (2) and (3), µ is permeability, and ε is permittivity, or electric
constant. The t′ denotes the time when the current and charge
distribution. J and ρ act as sources of A and Φ respectively. The
difference between t′ and t is due to a finite value of the speed of light
in the background homogenous medium. This fact results in a retarded
time given by

τ = t′ − t = |r− r′|/c; (4)
where c = 1/

√
µε.

If we substitute the potential expressions (2) and (3) into potential
Equation (1), the electric field integral equation can be obtained as

Ei(r, t) =
J(r, t)

σ
+

∂

∂t

µ

4π

∫

V ′

J(r′, t′)
|r− r′| dV ′ +

1
4πε

∇
∫

S′

ρ(r′, t′)
|r− r′| dS′. (5)

To ensure the conservation of charge, the continuity equation
should be enforced:

∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0. (6)

Equations (5) and (6) can be rewritten in the Laplace domain as:

Ei(r, s)=
J(r, s)

σ
+

µs

4π

∫

V ′

J(r′, s)e−sτ

|r−r′| dV ′

+
1

4πε
∇

∫

S′

ρ(r′, s)e−sτ

|r− r′| dS′; (7)

∇ · J(r, s) + sρ(r, s) = 0. (8)
PEEC method can be implemented for transient analysis by

solving (5) and (6), and the solutions can also be found in the frequency
domain as (7) and (8), assuming s = jω. The unknowns of such a
problem are represented by the current density J(r, t) in the interior of
conductors, and the charge density ρ(r, t) on the surface of conductors.

The most popular method for discretization of integral equations
is the method of moment (MoM) [20]. The EFIE (7) and
continuity Equation (8) are spatially discretised applying the Galerkin
method [21]. The basis function bn(r) and pm(r) are introduced for
the unknown quantities J and ρ [12, 22].

J(r, ω) =
Nv∑

n=1

bn(r)In(ω); (9)

ρ(r, ω) =
Ns∑

m=1

pm(r)Qm(ω); (10)
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Here Nv and Ns represent the number of corresponding basis
functions, i.e., the meshed volume and surface cells.

Piecewise constant set of basis functions as (11) and (12) are
usually applied in PEEC method [12], where an is the cross section
of volume Vn, ı̂n the unit vector indicating the current orientation in
volume Vn, and sm the area of surface cell Sm.

bn(r) =
{

în
an

r ∈ Vn

0 otherwise
; (11)

pm(r) =
{

1
sm

r ∈ Sm

0 otherwise
. (12)

Such a basis function selection results in physical meaning of the
corresponding basis function weights. In(ω) represents the current
flowing in the volume Vn, and Qm(ω) is the charge on the surface
element Sm.

With definitions of partial inductance in (13) and resistance in
(14), EFIE can be interpreted as a circuit Equation (15) by enforcing
Kirchhoff’s voltage law (KVL) in resistive-inductive (R-L) branches
between coupled nodes.

Lpin =
µ

4π

1
aian

∫

Vi

∫

Vn

îi · în e−jωτ

|ri − rn|dVndVi; (13)

Ri =
li

σai
; (14)

Φ1i(ω)− Φ2i(ω) = V i
i (ω) + RiIi + jω

Nv∑

n=1

LpinIn(ω); (15)

where V i
i (ω) represents a voltage source due to external field; Φ1i and

Φ2i are potentials at two terminals of volume Vi. In a PEEC circuit
network, (15) can be rewritten in a compact matrix form as

AΦ(ω) + RI(ω) + jωLp(ω)I(ω) + Vi(ω)=0. (16)
The entries in the connectivity matrix A are defined as

ank =

{ +1 if current flows from node k to n
−1 if current flows from node n to k
0 others

.

With the definition of partial coefficient of potential in (17), the
electric scalar potential Φ(ω) defined by (3) is related to the charges
located on the meshed surface patches as (18).

Plm(ω) =
1

4πε

1
sm

1
sl

∫

sm

∫

sl

e−jωτ

|rl − rm|dsmdsl; (17)

Φ(ω) = P(ω)Q(ω). (18)
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Figure 1. Elementary partial element equivalent circuit model.

The PEEC method enforces the continuity Equation (6) at
equivalent circuit nodes in form of Kirchhoff’s current law (KCL) as

Ic(ω)−AT IL(ω) = Is(ω); (19)
where Ic(ω) = jωQ(ω) is the displacement current in capacitive
branches; IL(ω) is the current in R-L branches; Is(ω) represents the
external current sources connecting to the nodes.

Circuit Equations (16) and (18) represent magnetic and electric
field couplings, respectively, thus leading to an elementary equivalent
circuit as in Fig. 1, which is called partial element equivalent circuit.

The resulting equivalent circuit illustrated in Fig. 1 is suitable
for being solved by appropriate network solver. The modified nodal
analysis (MNA) [23] circuit Equation (20) can be applied in frequency
domain. [ −(R + jωLp) −A

−AT jωP−1

] [
IL

Φ

]
=

[
Vi

Is

]
. (20)

2.2. Meshing for the PEEC Model

Meshing is an important issue in accurate and effective PEEC
modeling, as other numerical methods [24]. Two kinds of
discretizations are constructed in this method. After the initial node
placement, surfaces are meshed using quadrilateral elements from
which coefficients of potentials are calculated using (17). Depending
on the boundaries of the surface mesh, volume cells are created as
hexahedral cells from which partial inductances and resistances are
calculated using (13) and (14), respectively [18]. It facilitates the
partial elements calculation using such quadrilateral and hexahedral
elements in the mesh [25, 26].
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Figure 2(a) shows the elementary surface and volume discretiza-
tion in three dimensions, where the numbers 0 ∼ 6 denote the different
surfaces, and I ∼ VI are the volume cells. Fig. 2(b) presents the node
placement of a three dimensional conductor. Three kinds of nodes are
set including one inner node as (1), six surface nodes as (2), eight vertex
nodes as (3), and 12 edge nodes as (4). Totally, 27 nodes are obtained.
With such node placement, 54 surface cells (6×1+8×3+12×2 = 54)
are formed as in Fig. 2(c) indicated with different patterns. Fig. 2(d)
shows two volume cells, and actually 18 such volumes cells are created
in one current orientation by any two adjacent nodes. This results in 54
volumes in total in an ordinary 3-D orthogonal coordinate system [27].

The basic rule of thumb when carrying out the PEEC
discretization is to use a fixed number of cells per shortest wavelength
λmin (corresponding to the highest frequency of interest) to assure
sufficient accuracy. Originally, approximately 10 cells per λmin was

min 
/20λ≤

m
in

 /
2

0
λ

≤

(a) (b)

(c) (d)

Figure 2. Surface- and volume- mesh of a rectangular structure (a)
elementary mesh; (b) node placement; (c) surface cells; (d)volume cells.
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used. This has been refined to 20 cells/λmin for an improved
performance in current PEEC models [15].

3. A NOVEL SELECTIVE MESH APPROACH

3.1. Wire-ground Coupling

It is well known from Biot-Savart law [28] that the magnetic field B
at any point P induced by an infinite filament with a time-varying
current I(t) can be calculated by

B =
µ0I(t)
2πr0

× r̂; (21)

where r0 is the distance between investigated point P and the filament.
r̂ is the displacement unit vector pointing from the wire element
towards the point at which the field is being computed.

In a general orthogonal x, y, z coordinate system shown in Fig. 3,
an infinite filament extending along the y coordinate is allocated with
a height of h in z direction. Using (21), the induced magnetic field B
over the XY plane can be deduced.

B = îx
µ0hI(t)

2π(h2 + x2)
+ îz

µ0xI(t)
2π(h2 + x2)

. (22)

The magnetic field has two orthogonal components as indicated in
(22). Suppose that an infinite grounded conductor is allocated on the
XY plane, it can be deduced with image theory that the total induced
magnetic field only has the X components, and (23) is a representation
of total field in presence of the conductor.

B = îx
µ0I(t)h

π(h2 + x2)
. (23)

It is clear in (23) that the magnetic field is independent from the y
coordinate value (height), and maximizes at x = 0. The field strength
has quadratic falloff with the absolute value of x. Fig. 3 also illustrates
the field distribution over the ground surface. Following this derivation,
a similar electric field distribution can be obtained. All the derivation
above is based on the assumption of infinite dimensions. However,
the field distribution characteristic is acceptable for approximation in
practice of large system problems. Fig. 4 shows the calculated field
distribution over cross section of a wire-ground structure by MoM.
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Figure 3. Description of the
selective mesh.

Figure 4. Field distribution over
cross sections calculated by MoM.

3.2. A Selective Mesh Approach

The magnetic field H indicates the inductive coupling, while the
electric field E represents the capacitive coupling. Since most of
coupling energy is concentrated in a limited region, only intense
coupling parts are meshed in the proposed selective mesh approach,
while the other parts are eliminated. This can reduce the
computational time and consumed memory.

Here we set mesh boundaries in both sides of a filament, and
conventional mesh will be carried out only within the boundaries. The
following problem is to quantitatively determine the mesh boundaries.

∫ x0

0
B(x)dx = k

∫ ∞

0
B(x)dx. (24)

A threshold value k which means the occupation of field within
the boundaries over the total field in free space is defined in (24). The
threshold value is user-defined which determines the approximation
accuracy, and normally a larger value of k results in a better
approximation. Numerical validations indicate that a value larger than
0.9 is suitable for most practical problems. It is not difficult to solve
the value of x0 in (24), and it is a compact function of the height hand
the threshold value k, as shown in (25).

x0 = tan
(
k · π

2

)
· h (0 < k < 1) . (25)

It is evident in (25) that, with the selective mesh approach, the
necessary mesh boundaries of ground plane are dependent on height
and the length of the above wires. In some wire-ground structures
where the ground conductor is relatively much larger than the mesh
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region defined by (25), meshing the entire structure in a conventional
manner with an identical discretization size is not effective.

Figure 5 illustrates a framework of the proposed mesh generation,
and the process is detailed taking a wire-ground configuration in Fig. 6
as an example.

1) Count the number of straight wire segments (Sw) and flat
planes (Sp). The notation w

(i)
x , w

(j)
y , and w

(k)
z are used to identify

wire segments, and P
(l)
XY , P

(m)
XZ , P

(n)
Y Z to name different planes. The

counters i, j, k, l, m, n all start with one. So, Sw = i + j + k and
Sp = l + m + n. In a configuration of Fig. 6, Sw = Sp = 3.

2) Calculate the distances of wire-plane pair indicated in Table 1.
3) Calculate the mesh boundaries of each non-perpendicular wire-

plane pair using (25).
4) Overlapping process. Once the selective mesh surfaces are

overlapped, the overlapping subdivisions are merged as presented in
Fig. 6.

Distance of ith segment 
and the jth plane: Hij

Calculate number of 
segments : sw

Mesh boundaries : ∆ij

Overlapping process

Equivalent mesh area

i = sw?
AND j = sP ?

Calculate number of 
plane: sP

No

Yes

Proposed selective mesh

END

START

Figure 5. Framework of the proposed mesh generation.
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Figure 6. Equivalent mesh area by overlapping process.

Table 1. Parameters for the selective mesh.
PPPPPPPPwire

plane
P

(l)
XY P

(m)
XZ P

(n)
Y Z

w
(i)
x H

(i,l)
x−XY H

(i,m)
x−XZ –

w
(j)
y H

(j,l)
y−XY – H

(j,n)
y−Y Z

w
(k)
z – H

(k,m)
z−XZ H

(k,n)
z−Y Z

4. NUMERICAL RESULTS

A serpentine wire with identical cross sectional dimensions of 1mm ×
1mm is suspended over a ground conductor with a height of 5 mm. The
ground conductor is a flat copper with the dimensions of 1m in length,
0.5m in width, and 0.5mm in thickness. The wire is terminated with
a 50 Ω loading in one end and excited by an ideal current source in
the other. Fig. 7 and Fig. 8 are respectively the relevant dimension
description and the prototype of measurement platform.

Figure 9(a) shows the conventional (full) mesh results, while
Fig. 9(b) illustrates the reduced mesh results using Matlab. Here a
suitable threshold value k in (25) (k = 0.95) is adopted to calculate
the mesh boundaries.

The input impedance is a key parameter for capturing the
transmission characteristics [29, 30]. In the numerical validation, the
input impedance calculation is carried out to show the effectiveness of
the proposed mesh procedure. The investigated frequencies are limited
up to 600MHz by a mesh size of 0.05m.

Figure 10 presents numerical results of equivalent circuit models
constructed by the full mesh and the reduced mesh approach,
respectively. Excellent agreements are achieved with a suitable
threshold value k = 0.95.
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Figure 7. A serpentine wire over a
ground conductor (a) 3D view; (b)
dimensions.

Figure 8. Prototype of
measurement platform of a
serpentine wire.

(b)

(a)

Figure 9. Meshed structures by (a) full mesh, and (b) selective mesh.

Relevant measurement results by a vector network analyzer
(VNA) are also given as a reference in Fig. 10. With the increase
of analysis frequencies, the meshed element dimensions reach several
or even hundreds times of the shortest wavelength, so a rigorous, full-
wave PEEC model is necessary, where the retarded factor τ due to
wave propagation in (4) is considered [31]. Since our PEEC modeling
code at present is mainly based on the quasi-static PEEC model, some
difference between measurements and calculations presents at high
frequencies.
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Figure 10. Measurement and numerical results by full mesh and
selective mesh.

Table 2. Computation consumption of the full model and reduced
model.

Total number of Consumed time (sec)

Nodes
Partial

elements
Element

calculation
Circuit
solver

Full model 270 55006 161.9 819.2
Reduced model

(k = 0.95)
148 13349 31.6 32.1

Table 2 shows the numbers of unknowns and the consumed time of
the full model and the reduced model. It is evident that the consumed
time of the element calculation and circuit solving of the reduced model
in this example is only 1/5 and 1/25 of the counterparts of the full
model. Numerous practical applications indicate that both the number
of unknowns and the consumed time are reduced using the proposed
selective mesh approach.

5. CONCLUSION

A selective mesh approach which is consistent with coupled field
distribution is proposed for PEEC modeling in this paper. The intense
coupling parts are meshed while the remaining parts are eliminated.
The resulting meshed region of ground plane is dependent on the length
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and height of the above wires in wire-ground structures. Numerical
results show that the mesh approach can greatly reduce the unknowns
while preserving the sufficient precision, which follows the reduction of
consumed modeling time. This approach especially has potentials for
wiring analysis in aspect of system EMC and can be extend to other
equivalent circuit modeling techniques.
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