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Abstract—In this paper, the definition of the modal impedances of
the electromagnetic field in a nonhomogeneously filled waveguide is
discussed. The presence of TM modal impedances, which are functions
of the transverse coordinate, does not permit us to obtain a unique
Z matrix of these guides. Hence, the evaluation of the scattering
matrix can be involved. The introduction of a “natural” EM expansion
overcomes this problem leading to the definition of a unique modal
impedance and a unique Z matrix. This approach is applied to the
simulation of the effect of a block of dielectric in an empty waveguide
by “cascading” the S matrices of the existing junctions. Finally, this
“natural” EM expansion is applied to the junction between an empty
waveguide and a completely filled waveguide, obtaining an equivalent
circuit which better represents the physics of this problem, and to the
optical fibers.

1. INTRODUCTION

In recent years, dielectric loaded cavities have been thoroughly
analyzed mainly for their application of dielectric resonators as
microwave filters in many scenarios. Several techniques have been
used to deal with this problem such as mode matching [1, 2], the finite-
element method [3, 4], the finite-difference time-domain method [5], the
coupled mode method [6] or the expansion of the EM fields with respect
to the complete set of the closed cavity containing the resonator [7].
These techniques analyze the dielectric loaded cavity as a 3-D block
and the scattering parameters are always referred to the ports in the
empty waveguide. In other words, the EM fields are expanded in the
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3-D space containing the dielectric resonator and a part of the empty
waveguide. Only in [7], there is an attempt to refer the scattering
parameters to the port of the dielectric-loaded guide.

Another interesting field of investigation is the reconstruction of
dielectric properties required in many areas of geophysical prospecting
and subsurface imaging, where it helps in the geological investigation of
different kinds of rocks and soils [8]. In fact, for a reliable interpretation
of ground-penetrating radar (GPR) data for this kind of applications
in the L frequency band, an accurate knowledge of the dielectric
properties of rock materials is required. Similarly, the dielectric
constants are required in theoretical models that calculate propagation
constants and radar backscatter coefficients from a vegetation medium
such as a forest stand. Another example of geophysical application is
the estimation of the mass balance of ice sheets and glaciers on Earth
which can be evaluated with the help of the synthetic aperture radar
(SAR) and GPR if the dielectric properties of the ice are known [9–
11]. Analogously, the use of GPR techniques at high frequencies for
investigations on ornamental stones or masonries, either in quarries or
on historical buildings, requires an accurate knowledge of the material
complex permittivity.

One very common method for determining the permittivity of
materials is to use a transmission line approach, where the material
under test is placed either in a section of coaxial airline or in a
section of rectangular waveguide in order to measure the reflection
and transmission coefficient data in the frequency band of interest.
The dielectric properties of the material are then determined from
the scattering data using either an analytical or an optimization
approach [12–16]. Even in this case, the EM field analysis needed
for permittivity determination is performed in terms of a 3-D block,
as in the above scenario.

A simpler approach to the solution of the 3-D problem arising
from the dielectric loaded cavities could be obtained by “cascading”
the generalized scattering matrix (GSM) representing:

• the junction between the empty waveguide and the partially filled
waveguide (placed at z = 0);

• the partially filled waveguide of length L;
• the junction between the partially filled waveguide and the empty

waveguide (placed at z = L);

as shown in Fig. 1.
The problem is the evaluation of the GSM, which can be involved.

In fact, it is well-known that GSM is obtained by the Z (or Y )
matrix representing the junction and it can be influenced by the
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Figure 1. A waveguide filled with a nonhomogeneous dielectric.

definition of the reference impedance used in defining the scattering
(or pseudo-scattering) waves, as shown in [17]. In fact, any choice
of reference impedance is equally valid [18] but it has repercussions
in the evaluation of the equivalent circuit of the junction. In
fact, as Marcuvitz states in his excellent book [19], “No general
criterion exists to determine which of the equivalent networks is most
appropriate. [. . . ] Usually, there is a “natural” one distinguished
by having minimum number of impedance elements. [. . . ] In special
cases, however, the same criteria of a minimum number of network
parameters, simple frequency dependence, etc., can be employed to
determine the best network representation.” Moreover, a correct
definition of the normalization quantities of voltages and currents
permits to satisfy the causality condition as in [20] or the preservation
of reciprocity for lossy medium as in [21]. For lossless TEM, TE and
TM guides it can be shown that causality is satisfied if there is a unique
modal impedance relating electric and magnetic modal fields. This
latter condition is satisfied if the waveguide is filled with a homogeneous
medium, because the modal impedances are perfectly defined. If the
medium filling the guide is nonhomogenous, the modal impedances
may be a function of the part of the dielectric we are analyzing. Hence,
a proper definition of the Z (or Y ) matrix could be very difficult.

The main aim of this paper is the introduction of a “natural”
definition of voltage and current related to the Z matrix in order
to easily obtain a GSM for each junction of the problem shown in
Fig. 1. To that end, at first, a “natural” development of the EM field is
proposed to overcome the difficulty in defining the modal impedances,
then the definition of the voltages and currents related by the Z (or
Y ) matrix is introduced to obtain the GSM of a junction between
an empty waveguide and a partially filled waveguide. Obviously, the
“natural” development of the EM field can be extended to a more
complex nonhomogeneously filled waveguide, like optical fibers. Just
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as an example of application and to validate the new definition, the
obtained GSM will be applied to the solution of the problem mentioned
in the first part of the introduction, i.e., a waveguide filled with a block
of lossless dielectric. Results will be compared with those obtained with
commercial software. The solution of an elementary electromagnetic
problem (the discontinuity between an empty and a completely filled
waveguide) will also be briefly discussed with the help of this “natural”
development of the EM fields.

2. THEORY

In a homogeneously filled waveguide, the voltage and current are the
modal amplitude of transverse electric and magnetic modal fields,
et,n (x, y) and ht,n (x, y), defined as follows [19]:

Et (x, y, z) =
∞∑

n=1

Vn(z)et,n (x, y) (1)

Ht (x, y, z) =
∞∑

n=1

In(z)ht,n (x, y) (2)

It is well-known that, in a partially filled waveguide such as the
one shown in Fig. 1, TEy and TMy modes (or LSE and LSM
modes) are used to satisfy the boundary conditions at the discontinuity
interface [22]. Hence, we will use these families of modes in the
following discussion.

Under the hypothesis of using (1)–(2) also for the partially filled
waveguide of Fig. 1, the fields have a sin(kx,mx) or cos(kx,mx)
kx,m = mπ/a variation in the x direction, while they have different
characteristics in the dielectric εr and in the air (y direction). Hence,
by substituting (1)–(2) in the Maxwell’s equations, and, under the
hypothesis of propagation in ±z-direction (e∓γnz), it can be shown
that for forward and backward waves (Vn(z) = V +

n (z) + V −
n (z),

In(z) = I+
n (z) + I−n (z), V ±

n (z) = ±Z0,n(y)I±n (z)):

Z0,n(y) =





γ2
n − k2

x,m

jωε0εr(y)γn
TMy

jωµ0γn

γ2
n − k2

x,m

TEy

εr(y) =
{

εr 0 ≤ y ≤ d

1 d < y ≤ b
(3)

Hence, the modal impedances are a function of the transverse y
direction under TMy polarization and we need to define two voltages
and two currents, one for each dielectric (εr and air), in the partially
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filled waveguide. In these conditions, the definition of the Z matrix
would be quite difficult. For example, the Z11 element relative to the
n-th mode of the partially filled waveguide of length L would be

Z11 = Z0,n(y) coth(γnL) (4)

and we need two Z matrices, one for each dielectric filling the unit cell.
To overcome this problem, following the arbitrariness in the choice

of the voltage and the current, we try to define a “natural” modal
impedance which is the same for the two dielectric media, in the sense
specified by Marcuvitz [19]. Hence, we replace the usual expansions
(1), (2) with the following, “natural”, ones

Et (x, y, z) =
∞∑

n=1

Vn(z)
et,n (x, y)

gn(y)
(5)

Ht (x, y, z) =
∞∑

n=1

In(z)ht,n (x, y) gn(y) (6)

gn(y) =
{ √

εr(y) TMy

1 TEy
(7)

In this case the definition of the same Z matrix for the two dielectric
media is ensured. In fact, by substituting (5)–(6) in the Maxwell’s
equation

Hx(x, y, z) =
∂Ey(x,y,z)

∂z − ∂Ez(x,y,z)
∂y

jωµ0
(8)

Ez(x, y, z) =
∂Hy(x,y,z)

∂x − ∂Hx(x,y,z)
∂y

jωε(y)
(9)

after some mathematical manipulations and recalling that the
permittivity ε(y) is a piecewise-defined function of the y transverse
coordinate in (9), we obtain the following relationship for TMy modes:
∞∑

n=1

[
In(z)gn(y)

(
γ2

n − k2
x,m

)
hx,n (x, y)± Vn(z)

jωε(y)γn

gn(y)
ey,n (x, y)

]
= 0

(10)
with γn being the propagation constant along z for the n-th mode.

Waveguide theory tells us that we can choose ey,n (x, y) =
−hx,n (x, y) [19, 23] and, from (7), (10), we can define the new
(“natural”) modal impedance for TMy modes as:

Z0,n =
γ2

n − k2
x,m

jωε0γn
(11)
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which is no longer a function of y. Similar manipulations can be done
to obtain the modal impedance for TEy modes yielding

Z0,n =
jωµ0γn

γ2
n − k2

x,m

(12)

which does not change with respect to the case of homogeneously filled
waveguides.

With these new “natural” definitions of modal impedances (11)
and (12), any element of the Z matrix relative to the n-th mode
of the partially filled waveguide of length L, like (4), is no longer a
function of y and voltage and current are functions of the z propagation
coordinate alone. Hence, we can correctly define a unique Z matrix
for the partially filled waveguide, using (5)–(6).

3. ANALYSIS OF A DIELECTRIC LOADED
RECTANGULAR CAVITY

Having established the capability to define the “natural” modal
impedances of a partially filled waveguide as discussed above, we can
analyze the derivation of the Z matrix relative to the junction between
the empty waveguide and the partially filled waveguide placed at z = 0
in Fig. 1 by applying the multimode equivalent network approach [24–
26]. For this discontinuity, the spectra of the two regions are needed
(empty and partially filled waveguides). Both are well-known [22]
and we report only the TMy main component for the partially filled
waveguide which must obey the “natural” definitions (5)–(6):

ey,n (x, y) = A sin(kx,mx)





1√
εr

cos(kyry)
cos(kyrd)

∀γn 0 ≤ y ≤ d





cosh[ky0(y − b)]
cosh[ky0(b− d)]

γn ∈ =
cos[ky0(y − b)]
cos[ky0(b− d)]

γn ∈ <
d ≤ y ≤ b

ky0 =
√

k2
0 + γ2

n − k2
x,m , kyr =

√
k2

0εr + γ2
n − k2

x,m

where A is a normalization constant, not reported here for the sake of
brevity. The other components can be obtained from

ex,n(x, y) =
1

k2
x,m − γ2

n

∂2ey,n(x, y)
∂x∂y

hx,n(x, y) = −ey,n(x, y)

ez,n(x, y) = ∓ γn

k2
x,m − γ2

n

∂ey,n(x, y)
∂y

hz,n(x, y) = ∓ 1
γn

∂ey,n(x, y)
∂x

(13)
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where the longitudinal components have been defined as:

Ez (x, y, z) =
∞∑

n=1

Vn(z)
ez,n (x, y)

gn(y)

Hz (x, y, z) =
∞∑

n=1

In(z)hz,n (x, y) gn(y)

We can now proceed with the integral equation formulation of the
discontinuity placed at z = 0. The approach is very similar to the one
reported in [25]. Hence, only a few steps will be discussed. The first
step consists in the introduction of the “accessible” and “localized”
modes concept [27]. The accessible modes are the first modes excited
by the discontinuity (all the propagating modes plus the first few non-
propagating modes). These modes are responsible for the interaction
between adjacent discontinuities. The localized modes are the infinite
remaining modes localized in the neighborhood of the discontinuity.
By separating the accessible from the localized modes and by (5)–
(6), we can write the continuity of the magnetic field at the surface
discontinuity placed at z = 0 as:

N1∑

n=1

I(1)
n (0−)h(1)

t,n (x, y) g(1)
n (y)−

∞∑

n=N1+1

V (1)
n (0−)Y (1)

0,n h
(1)
t,n (x, y) g(1)

n (y)

=
N2∑

n=1

I(2)
n (0+)h(2)

t,n (x, y)g(2)
n (y)+

∞∑

n=N2+1

V (2)
n (0+)Y (2)

0,n h
(2)
t,n (x, y)g(2)

n (y)(14)

where the index n covers both TEy and TMy modes, the superscripts
(1) and (2) refer to regions to the left and to the right of the
discontinuity, respectively. Y

(1)
0,n , Y

(2)
0,n are the modal admittances as in

(11)–(12) and N1, N2 are the number of the accessible modes in regions
1 (empty waveguide) and 2 (partially filled waveguide), respectively.
g
(1,2)
n (y) are defined as in (7). The x-functions in (14) are relative to

the (1, 0) order mode, with kx,m = π/a, because the structure does not
vary along x. In (14) we have introduced the following modal voltage
amplitudes,

V (j)
n =

∫ a

0

∫ b

0

[
ẑ × Et (x, y)

] · h(j)∗
t,n (x, y)g(j)

n (y)dxdy (15)

with z being the direction of propagation and j = 1, 2.
The unknown quantity of the problem, namely the transverse

electric field in the aperture
[
ẑ × Et (x, y)

]
, can now be expanded in
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terms of proper sets of vectorial expanding functions M
(j)
k weighted by

the amplitudes of the accessible modes

ẑ ×Et (x, y) =
N1∑

k=1

I
(1)
k (0−)M (1)

k (x, y)−
N2∑

k=1

I
(2)
k (0+)M (2)

k (x, y) (16)

In fact, we can expect the resulting electric field to be dependent
on the amplitudes of the exciting modes. Expressions (15) and (16) can
now be used in (14), then equating term by term, we can define a set
of integral equations, where the unknown quantities are the expanding
vector functions M

(j)
k . These integral equations can now be solved

by using the method of moments. The unknown vector functions
M

(j)
k are expanded as linear combinations of orthonormal modes of

the two regions 1 (the empty waveguide) and 2 (the partially filled
waveguide) [22, 25]. The final step for the solution of the resulting
equations is the application of Galerkin’s procedure that leads to an
equations system similar to the one reported in [25]. Finally, recalling
(15) and (16), we can write

[
V(1)(0−)

∣∣
N1

V(2)(0+)
∣∣
N2

]
= Z

[
I(1)(0−)

∣∣
N1

I(2)(0+)
∣∣
N2

]

where we have defined

Z =




Z(1,1)
∣∣
N1XN1

Z(1,2)
∣∣
N1XN2

Z(2,1)
∣∣
N2XN1

Z(2,2)
∣∣
N2XN2


 (17)

and the elements of the Z matrix (17) are

Z
(i,j)
n,k =

∫ a

0

∫ b

0
M

(j)
k (x, y) · h(i)∗

t,n (x, y)g(i)
n (y)dxdy i, j = 1, 2 (18)

and they are the same for the two dielectric media of the partially
filled waveguide. The S matrix of the discontinuity can be obtained by
normalizing (17) with (11)–(12) and with S = (Z̄ + I)−1(Z̄− I).

The length L of the partially filled waveguide (Fig. 1) can be
taken into account by adding a proper phase shift in some blocks of
the S-matrix. The S matrix of the discontinuity placed at z = L
(inverse with respect to the previous matrix) can be obtained by simply
changing input ports with output ports relative to the S matrix of the
discontinuity placed at z = 0. The entire structure can be analyzed
by “cascading” the S matrices of each block, connected with the lines
relative to the accessible modes.
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4. NUMERICAL RESULTS AND APPLICATIONS

Having obtained all the S matrices of the discontinuities, we can
“cascade” them to simulate the properties of the overall structure and
to validate the proposed approach. Results are shown in Fig. 2 where
the reflection coefficient of the fundamental TMy,10 mode obtained
with this approach and with commercial software (CST) is reported
for a WR90 waveguide (a = 22.86 mm, b = 10.16mm) in the X-band.
The dielectric block dimensions (a, d, L) are 22.86 mm × 5.08mm ×
15mm and εr = 2.2. The resonance is due to the length of the partially
filled waveguide which is about λg/2 at 9.6 GHz. The continuity of the
electric and magnetic fields at z = 0 is discussed in Fig. 3, where
the y-variation of the components intensities at z = 0− (suffix 1) and
z = 0+ (suffix 2) are shown. The x-variation is sin/cos (π

ax).
As the reader can see, the Ey and Dz components show

singularities at the dielectric wedge, unlike the Ex component and all
the magnetic fields, as is well-known [22] (chapter 1.5). In fact, the
electric components normal to the dielectric wedge in z = 0, y = d
(Ey and Dz) exhibit a singularity of the type rν−1 with r being the
distance from the wedge and ν being the solution of the equation

ν =
2
π

cos−1

[
εr − 1

2 (εr + 1)

]
0 ≤ ν ≤ 2/3 (19)
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Figure 2. |S11| in the X-band for the fundamental mode of an empty
WR90 waveguide partially filled with a dielectric block (εr=2.2) of
height 5.08mm and length 15 mm. Theoretical results obtained with
the “natural” definitions (5)–(6) are compared with those obtained
with commercial software CST.
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Figure 3. Continuity of the electric and magnetic fields at z = 0:
comparison between components intensities at z = 0− (suffix 1) and
z = 0+ (suffix 2) for TMy,10 incidence. The geometry of the partially
filled waveguide is shown at the bottom.

For the analyzed discontinuity, ν − 1 = −0.12. The ringing effect in
Ey is due to the truncation (about 1000 terms) of the infinite series in
(14). All the non-singular fields at z = 0− and z = 0+ are in very good
agreement, with the curves overlapping. Curves relative to singular
fields at z = 0− and z = 0+ are very similar.

An interesting application of the “natural” definitions (5)–(6)
regards the analysis of the junction between an empty waveguide and
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Figure 4. The transformer representing the junction between an
empty waveguide and a completely filled waveguide.

a completely filled one. It is well-known that for such discontinuity
it is not possible to define a Z/Y matrix, but only a voltage-current
transmission matrix, or T [22]. In fact, only the fundamental mode
TMy,10 (which coincides with the TEz,10 mode) is coupled at the
discontinuity surface. Using the classic definition (1)–(2), with

ey,10 (x, y) =

√
2
ab

sin
(π

a
x
)

(20)

the same for both the guides (empty and completely filled), the
continuity of the tangential EM fields at z = 0 results in

V (1)e
(1)
y,10 (x, y) = V (2)e

(2)
y,10 (x, y) , I(1)h

(1)
x,10 (x, y) = I(2)h

(2)
x,10 (x, y)

Hence, the T matrix is a unit matrix and the discontinuity is not
“seen” by the transformer representing the T matrix, shown in Fig. 4,
having it a transformer ratio nt = 1. Only the transformation of T in
S leads to the definition of the reflection coefficient as:

S
′
11 =

Z
(2)′
0 − Z

(1)′
0

Z
(1)′
0 + Z

(2)′
0

(21)

with

Z
(1)′
0 =

γ
(1)2

1,0 − (π
a )2

jωε0γ
(1)
1,0

Z
(2)′
0 =

γ
(2)2

1,0 − (π
a )2

jωε0εrγ
(2)
1,0

With the “natural” choice (5)–(6), the e
(1)
y,10 component is equal

to (20) for the empty guide, while

e
(2)
y,10 (x, y) =

√
2
ab

1√
εr

sin
(π

a
x
)

(22)

for the completely filled one. Now, the continuity of the tangential EM
fields at z = 0 leads to

V (1)e
(1)
y,10 (x, y) = V (2)

e
(2)
y,10 (x, y)
√

εr
, I(1)h

(1)
x,10 (x, y) = I(2)h

(2)
x,10 (x, y)

√
εr
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and the T matrix becomes:

[T ] =
[ 1√

εr
0

0
√

εr

]
(23)

Hence, the equivalent circuit of the discontinuity is a transformer
with ratio nt = 1√

εr
, as shown in Fig. 4, which seems more “natural”

to describe such discontinuity. In fact, it is not possible to understand
why this discontinuity should have a unit transformer as in the previous
case, although the reflection coefficient is non-zero. The transformation
of T in S and the definition (11) lead to:

S11 =
Z

(2)
0
εr

− Z
(1)
0

Z
(1)
0 + Z

(2)
0
εr

(24)

which, obviously, equals (21), because Z
(2)
0
εr

= Z
(2)′
0 .

To sum up, the “natural” choice (5)–(6) seems to better represent
the equivalent circuit relative to the junction between an empty
waveguide and a completely filled one.

Another application of the “natural” definition of the modal
impedances is relative to optical fibers. It is well-known that hybrid
modes are used to describe the electromagnetic field. By applying usual
definition (1)–(2), transverse components can be expressed as shown
in [28] and the modal impedance, defined as the ratio V ±

n (z)/I±n (z), is:

Z0,n(r) = ± β

ωε0





1
εr,co

0 ≤ r ≤ a

1
εr,cl

r > a
(25)

with εr,co, εr,cl being the core and the cladding relative dielectric
constants. If we apply the “natural” definitions (5)–(6) for the modal
fields , it can be easily shown that the “natural” modal impedance is:

Z ′0,n(r) = ± β

ωε0
= ± η0√

εr,e
(26)

which corresponds to the modal impedance of an electromagnetic
wave propagating in an equivalent medium representing the fiber,
characterized by the effective dielectric constant εr,e = β

k0
[29].

5. CONCLUSIONS

In this paper, a “natural” expansion of the EM transverse fields has
been proposed to define “natural” modal impedances in dielectric
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loaded waveguide, which have the same value in the two dielectric
media constituting the guide. This expansion was then used to simulate
the effect of a block of dielectric in an empty waveguide by “cascading”
the S matrices of the existing junctions. Finally, the simple problem
of the junction between an empty waveguide and a completely filled
waveguide has been discussed, showing that the “natural” modal
impedances can better represent the equivalent circuit of this problem.
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