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Abstract—In this paper, a recently improved SO-FDTD (shift-
operator finite difference time-domain) method is proposed and applied
to the numerical analysis of the anisotropic magnetized plasma with
arbitrary magnetic declination. By using the constitutive relation
between polarized current density vector J and electric vector E
and bringing the shift operators, the difference iteration equations
of field components for Maxwell equations are derived in detail.
Furthermore, the memory requirement is decreased significantly
through incorporating a memory-minimized algorithm into the FDTD
iterative cycles. The reflection and transmission coefficients of
electromagnetic wave through a magnetized plasma layer are calculated
by using this method. It is shown that the new method not only
improves accuracy but also produces speed and memory advantages
over the SO-FDTD method in kDB coordinates system proposed in the
recent reference. In addition, the recursion formulae of the improved
SO-FDTD method are deduced and programmed easily and they
involve no complex variables, so the computations for the magnetized
plasma become very simple.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method is a powerful tool
for dealing with electromagnetic (EM) problems related to dispersive
media and anisotropic media, such as magnetized plasma. During
the past two decades, there have been numerous investigations of
FDTD dispersive media formulations [1–15]. These include the
recursive convolution FDTD (RC-FDTD) method [2], the piecewise-
linear recursive convolution FDTD (PLRC-FDTD) method [3, 4],
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the Z transform FDTD (ZT-FDTD) method [5, 6], the piecewise-
linear current density recursive convolution FDTD (PLCDRC-FDTD)
method [7], the trapezoidal recursive convolution finite-difference time-
domain (TRC-FDTD) method [8, 9], the FDTD method based on
locally one-dimensional scheme [6, 10, 11], the current-density-Laplace-
transfer FDTD (CLT-FDTD) method [12] and the shift-operator finite-
difference time-domain (SO-FDTD) method [13–15], and so on. The
above FDTD methods have been mainly used to analyze EM problems
for magnetized plasma where the external magnetic field direction is
parallel to the direction of EM-wave propagation, which is a serious
limitation. For many practical cases of interest, however, the angle
between the external magnetic field direction and the direction of
propagation is arbitrary [16–18]. In [16], the stopping power for
arbitrary angle between the test particle velocity and magnetic field
is investigated by using the longitudinal dielectric function derived for
charged test particles in helical movement around magnetic field lines.
H. B. Nersisyan et al. focus on the influence of a strong magnetic field
with arbitrary angle of declination on the interactions between charged
particles in a many-body system [17]. An ion projectile stopping at a
velocity smaller than the target electron thermal velocity in a strong
magnetic field is studied thoroughly in [18]. However, these research
in [16–18] centralize on the charged particles in magnetic field and there
are no numerical EM-models and related numerical methods, so we
want to find an effective numerical method to solve the EM-problems
in anisotropic medium with arbitrary magnetic field declination.

Several approaches have emerged that incorporate the FDTD algo-
rithm into the numerical analysis of magnetized plasma with arbitrary
magnetic declination. In [19] and [20], JE convolution FDTD (JEC-
FDTD) method and PLRC-FDTD method are developed respectively
to study the scattering and the transmission characteristics from the
anisotropic magnetized plasma with arbitrary magnetic declination.
These methods involve complicated convolutions and many exponential
variables in the FDTD iteration equations. To avoid convolution calcu-
lation, the FDTD method based on Laplace transfer principle (CLT-
FDTD) [21] is proposed to investigate the magnetized plasma with
arbitrary magnetic declination. However, there are complicated con-
versions from the time-domain to the s-domain or from the s-domain
to the time-domain in the CLT-FDTD method. Compared with the
FDTD methods mentioned above, the SO-FDTD method has many
advantages. First, there is no convolution calculation or complicated
transforms, moreover, the conceptions of the SO-FDTD method are
concise and the formulation derivations are simple. During the for-
mulae derivation of the SO-FDTD method, the dielectric constants
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or electric susceptibility of dispersive media in frequency-domain are
written as a rational polynomial function and the constitutive rela-
tions between D and E or J and E are deduced in the time-domain.
Through a shift operator, the constitutive relations in time-domain
are transformed to the discrete time-domain. In [22], the SO-FDTD
method is first introduced into the kDB coordinates system and the
EM-problem model which covers all the respects of EM-problem for
anisotropic plasma is set up, then the reflection and transmission co-
efficients of magnetized plasma slab are calculated. However, the re-
quired storage variables for each cell in the problem space are numerous
due to the high order (the order is 4 or 6 in general) of the jω in the
rational polynomial function, so the FDTD iteration will take much
memory and the computational efficiency is not high.

Different from the FDTD methods mentioned above, an improved
SO-FDTD method for magnetized plasma with arbitrary magnetic
declination is proposed and discussed in this paper. During the
derivation of the formulations, we see some advantages of this method,
such as easy derivation of formulae, clear concept and simplicity.
Compared to the SO-FDTD method in kDB coordinates system
proposed in [22], the proposed method not only improves the accuracy
but also spends less machine time due to the great reduction of storage
arrays for the problem space. The high efficiency and accuracy of this
method are confirmed by computing the reflection and transmission
coefficients of electromagnetic wave through a magnetized plasma layer
with the biasing magnetic field at an arbitrary angle θ with respect to
the direction of propagation.

2. METHODOLOGY

2.1. Electric Susceptibility Tensor of Magnetized Plasma

Considering the anisotropic magnetized cold plasma with collision
and assuming that the external static magnetic field in Cartesian
coordinate is in the y-z plane and declines an angle θ from z axis,
the permittivity of the plasma must be a tensor [2, 15, 20] and it can
be expressed as

ε̂(ω) = ε0(I + χ̂(ω)) (1)

where ε0 is the permittivity in vacuum, I is a unit tensor and χ̂ is the
electric susceptibility tensor. χ̂ can be written as [20]

χ̂(ω) = [T ]




χ11(ω) χ12(ω) 0
χ21(ω) χ22(ω) 0

0 0 χ33(ω)


 [T ]−1 (2)
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where

[T ] =




0 1 0
− cos θ 0 sin θ

sin θ 0 cos θ


 (3)

and the components of the electric susceptibility tensor are as follows:

χ11(ω) = χ22(ω) =
−jω2

p(jω + νen)
ω[(jω + νen)2 + ω2

b ]
(4a)

χ12(ω) = −χ21(ω) =
jω2

pωb

ω[(jω + νen)2 + ω2
b ]

(4b)

χ33(ω) =
−jω2

p

ω(jω + νen)
(4c)

In these expressions, ω is the EM-wave angular frequency, ωp(=
2πfp) is the plasma angular frequency, ωb is the cyclotron frequency
(proportional to the static magnetic field B0) and νen is the collision
frequency.

Substituting (3) into (2) and denoting any function χij(ω) = χij ,
we get

χ̂(ω)=




χ11 χ12 cos θ −χ12 sin θ

−χ12 cos θ χ11 cos2 θ+χ33 sin2 θ (χ33−χ11) cos θ sin θ

χ12 sin θ (χ33−χ11) cos θ sin θ χ11 sin2 θ+χ33 cos2 θ


 (5)

2.2. Derivation of the Improved SO-FDTD Formulations

In anisotropic magnetized plasma, Maxwell’s curl equations
are [7, 12, 15]:

∇×E = −µ0
∂H
∂t

(6a)

∇×H = ε0
∂E
∂t

+ J (6b)

where E, H and J are electric field vector, magnetic intensity vector
and polarized current density vector respectively; µ0 is magnetic
permeability.

The grid configuration for J is to place Jx, Jy and Jz at the
locations of Ex, Ey and Ez, respectively. If we define E at integer time
steps, i.e., En, while H and J at half integer time steps, i.e., Hn+1/2

and Jn+1/2, Equations (6) can be readily integrated into the FDTD
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algorithm. Taking a component for example, the discrete difference
schemes of (6) are

H
n+ 1

2
x = H

n− 1
2

x − ∆t

µ0
(∇×E)n

x (7)

En+1
x = En

x +
∆t

ε0
(∇×H)

n+ 1
2

x − ∆t

ε0
J

n+ 1
2

x (8)

where ∆t is the time step. By the same procedure, other components
can be easily obtained too.

The constitutive relation between polarized current density vector
and electric field vector is [15]

J = jωε0χ̂ ·E (9)

When Equation (9) is expanded, combined with Equation (5), the
component expressions of J are as follows:

Jx(ω) = jωχ11 · ε0Ex(ω)+jωχ12 cos θ · ε0Ey(ω)

−jωχ12 sin θ · ε0Ez(ω) (10a)

Jy(ω) =−jωχ12 cos θ·ε0Ex(ω)+jω(χ11cos2 θ+χ33 sin2 θ)·ε0Ey(ω)

+jω(χ33 − χ11) cos θ sin θ·ε0Ez(ω) (10b)

Jz(ω) = jωχ12 sin θ · ε0Ex(ω)+jω(χ33−χ11) cos θ sin θ·ε0Ey(ω)

+jω(χ11 sin2 θ + χ33 cos2 θ) · ε0Ez(ω) (10c)

Substituting constitutive parameters (4) into (10), the coefficients
in two sides of (10) can be written as rational fractional functions:

N∑

n=0

gn(jω)nJx = ε0

N∑

n=0

(A11 n(jω)nEx+A12 n(jω)nEy

+A13 n(jω)nEz) (11a)

M∑

m=0

hm(jω)mJy = ε0

M∑

m=0

(A21 m(jω)mEx+A22 m(jω)mEy

+A23 m(jω)mEz) (11b)

M∑

m=0

hm(jω)mJz = ε0

M∑

m=0

(A31 m(jω)mEx + A32 m(jω)mEy

+A33 m(jω)mEz) (11c)
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where N = 2 and M = 3; gn, hm, A1j n, A2j m and A3j m (j = 1, 2, 3;
n = 0, 1, . . . N ; m = 0, 1, . . .M .) are as follow




g0 = ν2
en + ω2

b , g1 = 2νen, g2 = 1;
h0 = ν3

en + νenω2
b , h1 = 3ν2

en + ω2
b , h2 = 3νen, h3 = 1;

A11 0 = νenω2
p, A11 1 = ω2

p, A11 2 = 0;
A12 0 = −ωbω

2
p cos θ, A12 1 = 0, A12 2 = 0;

A13 0 = ωbω
2
p sin θ, A13 1 = 0, A13 2 = 0;

A21 0 = νenωbω
2
p cos θ, A21 1 = ωbω

2
p cos θ, A21 2 = A21 3 = 0;

A22 0=ν2
enω2

p+ω2
bω

2
p sin2 θ, A22 1=2ω2

pνen, A22 2=ω2
p, A22 3=0;

A23 0 = ω2
bω

2
p cos θ sin θ, A23 1 = A23 2 = A23 3 = 0;

A31 0 =−νenωbω
2
p sin θ, A31 1 =−ωbω

2
p sin θ, A31 2 =A31 3 = 0;

A32 0 = ω2
bω

2
p sin θ cos θ, A32 1 = A32 2 = A32 3 = 0;

A33 0=ν2
enω2

p+ω2
bω

2
p cos2 θ, A33 1=2ω2

pνen, A33 2=ω2
p, A33 3=0;

(12)

It is well known that the transition relation between shift operator
zt and differential operator ∂/∂t is [13–15]

∂/∂t →
(

2
∆t

· zt − 1
zt + 1

)
(13)

Transforming Equation (11) to time domain and substituting (13) into
the formulae by using the SO-FDTD method, the recursive formulae
between J and E are arranged as

J
n+1

2
x =

2ε0

p0

(
2∑

i=0

B11 iE
n−i
x +

2∑

i=0

B12 iE
n−i
y +

2∑

i=0

B13 iE
n−i
z

)

− 1
p0

[
(p0 + p1)J

n− 1
2

x + (p1 + p2)J
n− 3

2
x + p2J

n− 5
2

x

]
(14a)

J
n+1

2
y =

2ε0

q0

(
3∑

i=0

B21 iE
n−i
x +

3∑

i=0

B22 iE
n−i
y +

3∑

i=0

B23 iE
n−i
z

)

− 1
q0

[
(q0+q1)J

n− 1
2

y +(q1+q2)J
n− 3

2
y +(q2+q3)J

n− 5
2

y +q3J
n− 7

2
y

]
(14b)

J
n+1

2
z =

2ε0

q0

(
3∑

i=0

B31 iE
n−i
x +

3∑

i=0

B32 iE
n−i
y +

3∑

i=0

B33 iE
n−i
z

)

− 1
q0

[
(q0+q1)J

n− 1
2

z +(q1+q2)J
n− 3

2
z +(q2+q3)J

n− 5
2

z +q3J
n− 7

2
z

]
(14c)



Progress In Electromagnetics Research B, Vol. 38, 2012 45

In order that the coefficients in above formulae can be presented
in simpler forms, we definite two matrices, which are expressed as

N̂ =




1 δ δ2

2 0 −2δ2

1 −δ δ2


 (15)

M̂ =




1 δ δ2 δ3

3 δ −δ2 −3δ3

3 −δ −δ2 3δ3

1 −δ δ2 −δ3


 (16)

where δ = 2/∆t. Then the B1i j , B2i k, B3i k, pj and qk (i = 1, 2, 3;
j = 0, 1, 2; k = 0, 1, 2, 3.) in (14) can be obtained in the following way:



[
p0

p1

p2

]
=N̂·

[
g0

g1

g2

]
,

[
B1i 0

B1i 1

B1i 2

]
=N̂·

[
A1i 0

A1i 1

A1i 2

]




q0

q1

q2

q3


=M̂·




h0

h1

h2

h3


 ,




B2i 0

B2i 1

B2i 2

B2i 3


=M̂·




A2i 0

A2i 1

A2i 2

A2i 3


 ,




B3i 0

B3i 1

B3i 2

B3i 3


=M̂·




A3i 0

A3i 1

A3i 2

A3i 3




(17)

A direct implementation of (14) would require additional
seventeen back storage arrays: En−i

x , En−i
y , En−i

z , J
n−1/2−i
y , J

n−1/2−i
z ,

J
n−1/2−j
x (i = 1, 2, 3; j = 1, 2.), which costs a lot of memory resource.

Subsequently, we employ a memory-minimized algorithm [23] to reduce
memory requirement. It is seen from (11) that the order of jω in the
rational polynomial function is lower in comparison with the SO-FDTD
method introduced in [22] (for example, the order N = 4 and M = 6
in [22], N = 2 and M = 3 in this paper), which is advantageous for
reducing the memory storage when adopting the memory-minimized
algorithm. Introducing two auxiliary variables Jx1 and Jx2, (14a) can
be rewritten in the form of the following three equations:

J
n+1

2
x =

2ε0

p0
(B11 0E

n
x+B12 0E

n
y +B13 0E

n
z )−p0+p1

p0
temp Jx+J

n− 1
2

x1 (18a)

J
n+1

2
x1 =

2ε0

p0
(B11 1E

n
x+B12 1E

n
y+B13 1E

n
z )−p1+p2

p0
temp Jx+J

n− 1
2

x2 (18b)

J
n+1

2
x2 =

2ε0

p0
(B11 2E

n
x + B12 2E

n
y +B13 2E

n
z )− p2

p0
temp Jx (18c)

where temp Jx = J
n−1/2
x , which is a temporary storage variable

(not a storage array) used to store J
n−1/2
x . The J

n−1/2
x should be

calculated and stored in temp Jx before the calculation of J
n+1/2
x



46 Yin et al.

and the implementation order from (18a) to (18c) should be kept
unchangeably in the FDTD iterative cycle. Consequently, only two
auxiliary storage variables (Jx1 and Jx2) per cell in the problem space
are required to obtain Jx from E, which saves eight back storage arrays
more than the direct implementation of (14a). Similarly, by denoting
temp Jy = J

n−1/2
y and introducing three auxiliary variables Jy1, Jy2

and Jy3, (14b) can be rewritten as

J
n+1

2
y =

2ε0

q0
(B21 0E

n
x+B22 0E

n
y+B23 0E

n
z )−q0+q1

q0
temp Jy+J

n− 1
2

y1 (19a)

J
n+1

2
y1 =

2ε0

q0
(B21 1E

n
x+B22 1E

n
y +B23 1E

n
z )−q1+q2

q0
temp Jy+J

n− 1
2

y2 (19b)

J
n+1

2
y2 =

2ε0

q0
(B21 2E

n
x+B22 2E

n
y+B23 2E

n
z )−q2+q3

q0
temp Jy+J

n− 1
2

y3 (19c)

J
n+ 1

2
y3 =

2ε0

q0
(B21 3E

n
x +B22 3E

n
y +B23 3E

n
z )− q3

q0
temp Jy (19d)

It is seen from (19) that significant savings in the memory storage is
achieved with respective to the direct computation of (14b). Similar
method can be used for solving (14c), which is shown as follows:

J
n+ 1

2
z =

2ε0

q0
(B31 0E

n
x+B32 0E

n
y+B33 0E

n
z )− q0+q1

q0
temp Jz+J

n− 1
2

z1 (20a)

J
n+ 1

2
z1 =

2ε0

q0
(B31 1E

n
x+B32 1E

n
y+B33 1E

n
z )−q1+q2

q0
temp Jz+J

n− 1
2

z2 (20b)

J
n+ 1

2
z2 =

2ε0

q0
(B31 2E

n
x+B32 2E

n
y+B33 2E

n
z )−q2+q3

q0
temp Jz+J

n− 1
2

z3 (20c)

J
n+ 1

2
z3 =

2ε0

q0
(B31 3E

n
x +B32 3E

n
y+B33 3E

n
z )−q3

q0
temp Jz (20d)

where temp Jz = J
n−1/2
z , and Jz1, Jz2 and Jz3 are three auxiliary

storage arrays needed to store field components for the problem space.
From formulae mentioned above, there comes a conclusion of the

computation processes by the SO-FDTD:

(a) From formula (7), H is derived from E;
(b) From formulae (18), (19) and (20), J is derived from E;
(c) From formula (8), E is derived from H;
(d) According to the sequences of (a), (b) and (c), a recursion is

completed and next recursion begins.

In addition, all coefficients are computed prior to the FDTD iterative
cycle of the field computation to save computational time.
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To illuminate the validity of the proposed new SO-FDTD method
in saving memory requirement, we compared the number of storage
arrays used to store field quantities between three SO-FDTD methods,
i.e., the proposed SO-FDTD method in this paper, the original SO-
FDTD method (here, referring to that the implementation scheme
is the same as that of the new SO-FDTD method provided in this
paper but without a combination of the memory-minimized algorithm)
and the SO-FDTD method in kDB coordinates system introduced
in [22]. In order to construct the same case as that in kDB coordinates
system, we suppose the direction of incident EM-wave parallel to the

Table 1. Comparison of the number of storage arrays used for different
SO-FDTD methods in the 1D/3D problem space.

FDTD method
New SO-FDTD method in this paper

(using the memory-minimized algorithm)

Field components Jx Jy Jz Ex Ey Ez Hx Hy

3D

The number of

storage arrays used

for each field

3 4 4 1 1 1 1 1

Total number of

the storage arrays
16

FDTD method

Original SO-FDTD method in this

paper (without using

the memory-minimized algorithm)

Field components Jx Jy Jz Ex Ey Ez Hx Hy

3D

The number of

storage arrays used

for each field

4 5 5 5 5 5 1 1

Total number of

the storage arrays
31

FDTD method

SO-FDTD method proposed

in [22] (based on the

kDB coordinates system)

Field components D1 D2 E1 E2 E3 H1 H2

3D

The number of

storage arrays used

for each field

7 7 5 7 7 1 1

Total number of

the storage arrays
35
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FDTD method
New SO-FDTD method in this paper

(using the memory-minimized algorithm)

Field components Jx Jy Jz Ex Ey Ez Hx Hy

1D

The number of

storage arrays used

for each field

3 4 4 1 1 1 1 1

Total number of

the storage arrays
16

FDTD method

Original SO-FDTD method in this

paper (without using

the memory-minimized algorithm)

Field components Jx Jy Jz Ex Ey Ez Hx Hy

1D

The number of

storage arrays used

for each field

4 5 5 5 5 5 1 1

Total number of

the storage arrays
31

FDTD method

SO-FDTD method proposed

in [22] (based on the

kDB coordinates system)

Field components D1 D2 E1 E2 E3 H1 H2

1D

The number of

storage arrays used

for each field

7 7 5 7 0 1 1

Total number of

the storage arrays
28

z axis and the steady biasing magnetic field at an angle θ with respect
to the z axis, thus there is no need to calculate Hz component for
the SO-FDTD method based on Cartesian coordinates system. The
number of storage arrays used for above mentioned three SO-FDTD
methods to calculate the magnetized plasma with arbitrary magnetic
declination in the three-dimensional (3D) and one-dimensional (1D)
problem space are analyzed and summarized in Table 1. It is apparent
from the Table 1 that, for the novel SO-FDTD method proposed in
this work, the number of storage variables per cell in either 3D or 1D
FDTD problem region is greatly reduced as compared to the original
SO-FDTD method and the SO-FDTD method based on the kDB
coordinates system provided in [22]. As for 2D problem space, there
is also the greatest enhancement in saving memory storage for our
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proposed improved SO-FDTD method, which can be easily obtained
through some deduction.

3. NUMERICAL VERIFICATION

To demonstrate the validity of the aforementioned recently improved
SO-FDTD method, we compute the reflection and transmission
coefficients of electromagnetic wave through a uniform magnetized
collision plasma slab. This simple example is chosen because exact
analytical solutions are available. As shown in Figure 1, the incident
wave normally impinges on a magnetized plasma slab with arbitrary
magnetic declination. The computational domain is subdivided into
450 cells, and the plasma occupies cells 200–320. Each cell is 75µm
long, so the plasma layer is 9.0 mm thick. Five-cell PML (Perfectly
Matched Layer) medium is applied at the terminations of the space
to eliminate unwanted reflections, and the remainder is free space. To
satisfy courant stability condition, the time step ∆t is set as 0.125 ps.
The incident wave used in the simulation is a Gaussian-derivative
pulsed plane wave: Einc = (t − t0)/τ × exp[−4 × π(t − t0)2/τ2],
where t0 = 70∆t, τ = 140∆t. Parameters of the plasma are:
ωp = 50 × 2π × 109 rad/s, ωb = 3 × 1011 rad/s, νen = 2 × 1010 Hz.
To validate the accuracy of the SO-FDTD method, comparisons with
the analytical results and other numerical methods are needed.

The electric fields data are recorded at cell 199 and cell 321
and then transformed to the frequency domain through discrete
Fourier transform (DFT). From the FDTD data, the reflection and
transmission coefficients are achieved by:

R(ω) = [Exr(ω) + ξ · Eyr(ω)]/Exi(ω) (21)
T (ω) = [Ext(ω) + ξ · Eyt(ω)]/Exi(ω) (22)

Figure 1. The EM-problem model of a plane wave normally incident
on a magnetized plasma slab.
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where

Exr(ω) = DFT [Ext(t)− Exi(t)], Eyr(ω) = DFT [Eyt(t)− Eyi(t)]
Ext(ω) = DFT [Ext(t)], Eyt(ω) = DFT [Eyt(t)]

The subscripts i, r, t correspond to the incident field, the reflected
one and the total one, respectively. For a magnetized plasma with an
arbitrary angle θ between wave vector k and bias magnetic field B0, ξ
in above equations satisfies such a relation as follows [24]:

ξ = − j

cos θ
·




ωb
ω sin2 θ

2
(
1−j νen

ω − ω2
p

ω2

) ±

√√√√√
ω2

b
ω2 sin4 θ

4
(
1−j νen

ω − ω2
p

ω2

)2 +cos2 θ


 (23)

For the specific case θ = 0◦, ξ = ±j, where “−” sign is for left-hand
circularly polarization (LCP) wave while “+” sign represents right-
hand circularly polarization (RCP) wave.

The reflection and transmission coefficients versus frequency
obtained by the improved SO-FDTD method, the SO-FDTD method
introduced in [22] (For simplicity, we called this method as the kDB-
SO-FDTD method) and the analytical method for θ = 0◦ are shown in
Figures 2 and 3. As far as the analytical solutions are concerned, we
follow the method found in Ginzburg [24]. It is known that the Eigen
wave in this case becomes two types of circularly polarized waves:
LCP wave and RCP wave. From these figures, it is found that the
agreements between the improved SO-FDTD method, the kDB-SO-
FDTD method and the analytical values are quite well. Furthermore,

    

 (a)  (b)

Figure 2. LCP wave reflection and transmission coefficient magnitude
vs. frequency of the anisotropic magnetized plasma. (a) Reflection
coefficient. (b) Transmission coefficient.
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(a) (b)

Figure 3. RCP wave reflection and transmission coefficient magnitude
vs. frequency of the anisotropic magnetized plasma. (a) Reflection
coefficient. (b) Transmission coefficient.

the accuracy of the improved SO-FDTD method is a little better
than that of the kDB-SO-FDTD method, which can be seen from the
transmission coefficient for RCP wave shown in Figure 3(b). However,
one can find that there is a distinct deviation between numerical and
analytical results in Figure 3(b). The reason is that there exists a
stop-band in the frequency spectrum where the wavenumber is pure
imaginary and no waves at these frequencies can propagate [5]. It
also can be seen that the characteristics of RCP wave and LCP wave
propagating through magnetized plasma are significantly different,
which has be discussed in detail in [22], and we do not discuss a lot
about it here.

When EM-wave propagates through uniform magnetized plasma
plate with a magnetic declination angle θ between 0◦ and 90◦, there
are two kinds of eigen waves in this case, which are both elliptically
polarized waves. One is called first type wave (I-wave) where the “+”
sign is taken in Equation (23), and the other is second type wave
(II-wave) where the “−” sign is taken in Equation (23). Suppose
θ is set to 45◦ and 65◦, the reflection coefficient and transmission
coefficient vs. frequency for I-wave and II-wave computed using
the improved SO-FDTD and kDB-SO-FDTD methods are compared
to the exact solutions in Figures 4 and 5. It is shown from the
numerical results that the improved SO-FDTD method coincides with
the analytical method very well and is more accurate than the kDB-
SO-FDTD method, which can be seen in Figure 5(b) where the
improved SO-FDTD method solution follows the analytical curve more
deeply during the stop-band in comparison with the kDB-SO-FDTD
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(a) (b)

Figure 4. I-wave reflection and transmission coefficient magnitude in
anisotropic plasma for θ = 45◦ and θ = 65◦ respectively. (a) Reflection
coefficient. (b) Transmission coefficient.

(a) (b)

Figure 5. II-wave reflection and transmission coefficient magnitude in
anisotropic plasma for θ = 45◦ and θ = 65◦ respectively. (a) Reflection
coefficient. (b) Transmission coefficient.

method. However, the improved SO-FDTD method also has trouble in
predicting transmission coefficient values for II-wave where the stop-
band exists in the frequency spectrum.

It can be noticed from Figures 4 and 5 that I-wave is left-handed
elliptically polarized wave and possesses the property similar to LCP
wave and II-wave is right-handed elliptically polarized wave whose
feature is alike that of RCP wave. There is a sudden change at the
point of plasma frequency for both I-wave and II-wave, which can be
explained by the fact that the plasma frequency is inherently one of
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reflection points.
Regarding computation efficiency, we have conducted a test on

the EM-problem model where the EM-wave propagates through a
uniform magnetized plasma slab with a magnetic declination angle
of 45◦. The simulation parameters are the same as the above EM-
problem model of θ = 45◦, but the computational domain is changed
with three cases. In Case 1, the FDTD problem space consists of
450 cells with the magnetized plasma occupying cells 200–320. In
Case 2, the computational space is subdivided into 1000 cells and the
plasma occupies cells from 200 to 800. In Case 3, the computational
space consists of 1600 cells with the plasma situated on cells 200–
1400. The simulations were allowed to run for 10000 time steps by a
computer based on Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz. The
time cost of computing by the improved SO-FDTD method and the
kDB-SO-FDTD method is shown in Table 2. It should be noticed
that the programs of the two FDTD methods had been carried out
for six times to gain the average time cost for each case. The data
shown in Table 2 indicate that the machine time of the improved SO-
FDTD method is much less than that of the kDB-SO-FDTD method.
The more space cells occupied by the magnetized plasma, the more
reduction in running time is achieved by the improved SO-FDTD
method. From the derivation of the existing FDTD methods, it is easy
to find the reasons why the new SO-FDTD method is more efficient
and accurate than the kDB-SO-FDTD method. The first reason is
that the storage arrays used for the proposed scheme are less than
that of the kDB-SO-FDTD method due to the lower order of jω in
the rational polynomial function and the incorporation of the memory-
minimized algorithm. As a result, the accumulated error is decreased
and the computation time is saved. The second possible reason is
that the recursion formulae of the improved SO-FDTD method are
deduced and programmed easily. For instance, compared to the kDB-
SO-FDTD method, the recursive formulae between J and E introduced
in this paper is simpler than that between D and E.

Table 2. Comparison of the average running times used for the new
SO-FDTD method and the kDB-SO-FDTD method proposed in [22].
(Each program was allowed to run for six times to obtain an average
time cost).

Case 1 Case 2 Case 3
the new SO-FDTD method 1.7120 s 3.5448 s 5.7983 s
the kDB -SO-FDTD method 1.7411 s 4.0371 s 6.8468 s
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4. CONCLUSION

In this paper, a new SO-FDTD method for modeling the anisotropic
dispersive magnetized plasma with arbitrary magnetic declination
is derived using the discrete difference schemes about J, E and
H and a memory-minimized technique. Then, this method is
applied to calculating the reflection and transmission coefficients
of electromagnetic wave through a magnetized plasma layer and
its accuracy is validated by the analytical method. Compared
to the SO-FDTD method in kDB coordinates system proposed
in [22], our proposed method is more accurate and efficient. As
for formulae derivation, the recursion formulae of the improved SO-
FDTD method are deduced and programmed easily and they involve no
complex variables, so the computations become simpler in comparison
with other FDTD algorithm based on recursive convolution or
transformation principle such as the methods in [19–21]. Therefore, the
improved SO-FDTD method proposed in this paper is advantageous
for decreasing accumulated error and saving computation time in
calculating anisotropic magnetized plasma with arbitrary magnetic
declination. Though only one-dimensional examples are discussed in
this paper, this novel SO-FDTD method can be easily extended to
resolve two- or three-dimensional problems for anisotropic magnetized
plasma and can be used in other frequency dispersion electromagnetic
problem if it is modified slightly.
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