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Abstract—The observation data obtained from 4-D synthetic
aperture radar system is sparse and non-uniform in the baseline-time
plane. Hence, the imaging results acquired by traditional Fourier-
based methods are limited by high sidelobes. Considering the sparse
structure of actual target space in high frequency radar application, a
novel 4-D imaging scheme based on compressive sensing is proposed
in this paper. Firstly, the azimuth-slant range image is acquired
by traditional pulse compression. Then, the basis matrix and the
measurement matrix are constructed based on the sparse distribution
of the radar positions and the signal form after the azimuth-slant range
compression. Moreover, a weighted matrix related to the supporting
field of the target is introduced to the cost function. Finally, the
elevation-velocity image is reconstructed with this new cost function.
Simulation results confirm the effectiveness of the proposed method.

1. INTRODUCTION

Traditional synthetic aperture radar (SAR) systems can reconstruct
2-D images of the investigated area with all-weather capability [1–
4], and SAR tomography extends the synthetic aperture principle
of SAR into the height direction for 3-D imaging. Tomography
SAR adds multiple baselines in the direction perpendicular to the
azimuth and to the line of sight and forms an additional synthetic
aperture in the height direction. Therefore it has a resolving capability
along this dimension [5, 6]. In particular, it can be an interesting
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tool for applications involving estimation of forest height, ground
topography, and for solving layover effect in natural or urban areas.
However, the displacements velocity of scatterers can not be measured
in tomography SAR.

Differential synthetic aperture radar interferometry (D-InSAR)
is an advanced operation mode of SAR interferometry (InSAR)
that allows one to investigate Earth surface deformation phenomena
by exploiting the phase difference of SAR image pairs relevant to
temporally separated observations of the investigated area [7, 8]. D-
InSAR is fruitfully applied for detecting and mapping deformations
(with centimeter to millimeter accuracy) of the ground and monitoring
buildings, glacier flows, and slope instabilities. However, this technique
assumes that there is only a single dominant scatterer within one
resolution cell. That is to say, with D-InSAR it is possible to provide an
average measurement of the ground deformation, but the distribution
of scatterers in height is underdetermined

4-D SAR imaging, also referred to as differential SAR tomography,
has been recently proposed as a natural extension of SAR
tomography [9]. It exploits both the multibaseline and multitemporal
nature of multipass data to allow distinguishing multiple scatterers at
different heights and deformation velocities within the same azimuth-
range resolution cell. Therefore, it allows measuring the scattering
distribution in the azimuth-range-height-velocity 4-D space. In
practice, 4-D imaging technique has been investigated in other fields
by solving a nonlinear inverse problem, such as electrical capacitance,
electrical impedance and magnetic induction tomography imaging [10–
13]. Unfortunately, for the current 4-D SAR system, the obtained
observation data is sparse and non-uniform in the baseline-time plane.
Hence, the imaging results obtained by traditional methods are limited
by high sidelobes.

To overcome these difficulties, an adaptive estimation algorithm
based on Capon filtering was proposed to achieve sidelobe reduction [9].
However, it requires the use of multilook data to estimate the data
covariance matrix. Subsequently, also singular value decomposition
(SVD) and inverse problem based methods were considered to focus
the height-velocity image [14–16]. An additional problem is that these
methods should handle an ill-conditioning inverse problem.

In a recent work, a new sampling theory referred as compressive
sensing (CS) has been proposed for SAR applications [17–20]. CS
is a model-based framework for data acquisition and signal recovery
based on the premise that a signal having a sparse representation in
one basis can be reconstructed from a small number of measurements
collected in a second basis that is incoherent with the first. Because
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the targets can be modeled as sparse based on the hypothesis of
multi-center of scattering in high frequency radar application [21],
the 4-D SAR imaging can be transformed into the problem of sparse
signal representation, and CS-based method can be used for image
reconstruction.

The main topic of this paper is to present a novel 4-D SAR imaging
scheme based on CS. The rest of the paper is organized as follows.
Section 2 presents the geometric and signal model of 4-D SAR system.
In Section 3, a new 4-D SAR imaging scheme based on CS is described
in detail. The performance of the method is investigated by simulated
data in Section 4. Finally, Section 5 gives a brief conclusion.

2. 4-D SAR IMAGING PRINCIPLE

The system geometry of 4-D SAR is shown in Figure 1. x, y, and
r denote the range, azimuth, and slant range directions, respectively.
The direction perpendicular to the azimuth and to the slant range
is defined as the height direction, which is marked as s. Generally,
we consider M passes over the interested area at a fixed time, and
the M passes are supposed to be parallel to the azimuth direction.
Then, one 2-D SAR image can be derived by one pass, and M SAR
images are derived by M passes at the same time. After repeating
the above experiment at N different times tn (n = 1, 2, . . . , N), the
MN SAR images can be derived. Suppose that all SAR images have
been coregistered first, and then, the azimuth and slant range positions
of each scatterer in all SAR images are the same. That is to say, we
have MN data samples corresponding to each azimuth-slant range cell,
which are given by hm,n (m = 1, 2, . . . , M ; n = 1, 2, . . . , N), where
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Figure 1. The system geometry of 4-D SAR.
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hm,n denotes the data received by the mth pass at the time tn. For
a scatterer positioned at (y′, r′), distributed along the height direction
and that move with mean velocity v, the obtained 2-D SAR image can
be written as [22]

hm,n =
∫∫

dydrf(y′−y, r′−r)
∫∫

dsdvγ(y, r, s, v)exp
[
−j

4π

λ
Rm,n(r, s, v)

]

(1)
where f(y′, r′) is the azimuth-slant range 2-D point spread function,
γ(y, r, s, v) is the reflectivity function, and Rm,n(r, s, v) represents the
distance between the sensor related to the mth acquisition at the time
tn and the scatterer point

Rm,n(r, s, v) =
√

(r − b//(m,n))2 + (s− b⊥(m,n))2 + vtn

≈ r − b//(m,n) +
(s− b⊥(m,n))2

2(r − b//(m,n))
+ vtn (2)

where b//(m,n) is the baseline parallel to the line of sight, and b⊥(m,n) is
the baseline orthogonal to the line of sight. tn is the acquisition time,
supposed that t1 = 0.

Equation (1) represents that the azimuth-slant range focused
image of 4-D SAR can be obtained with the same imaging process
of classical 2-D imaging SAR. The information of the height and
the deformation velocity are included in the phase factor in (1).
For sake of simplicity, we assume the azimuth-slant range 2-D point
spread function f(y′, r′) to approximate an ideal 2-D Dirac function.
Consequently, the imaging process of the height-velocity can be
separated from the azimuth and slant range directions in 4-D SAR.
Therefore, the 4-D imaging process can be divided into two steps. The
azimuth-slant range focused image can be obtained first, and then, the
height-velocity focusing is performed. As the first step is a general 2-D
imaging process, this paper focuses on the second step.

Submitting f(y′, r′) = δ(y′)δ(r′) into (1) yields

hm,n =

vo∫

−vo

so∫

−so

γ(s, v) exp
[
−j

4π

λ
Rm,n(s, v)

]
dsdv (3)

where 2so is the extent in the height direction, and 2vo is the extent in
the velocity direction. The phase factor in (3) comprises a quadratic
distortion, which can be compensated by deramping procedure

ym,n = hm,n exp
[
j
4π

λ
Rm,n(0, 0)

]
=

vo∫

−vo

so∫

−so

γ(s, v)gm,n(s, v)dsdv (4)
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where

gm,n(s, v) = exp
[
j2π

(
2s

λr
b⊥(m,n) +

2v

λ
tn

)]
,

m = 1, 2, . . . , M ; n = 1, 2, . . . , N (5)
Equation (4) shows that the M × N received data Y are samples of
the 2-D Fourier transform of the scattering distribution in the height-
velocity plane. For many regularly spaced baselines and acquisition
times, 2-D Fourier analysis can provide satisfactory imaging results.
However, in practice, only one or a few baselines per each pass can
be considered, this would realize a sparse bidimensional sampling of
the 2-D baseline-time plane. Therefore, new imaging scheme should
be considered to obtain satisfactory reconstruction.

3. 4-D SAR IMAGING SCHEME BASED ON
COMPRESSIVE SENSING

Compressive sensing is a new sampling theorem [23–25]. Consider
a discrete signal x with a length of L, known to have sparse
representation in an orthogonal basis Ψ, and then the signal x can
be represented as

x = Ψγ (6)

where γ is the projection coefficient vector. If γ has only J nonzero
or significant elements, signal x is denoted as J-sparse in orthogonal
basis Ψ.

Within the CS framework, the signal x can be reconstructed from
K (K = O(J · log(L/J))) measurements y only if the measurements
were obtained in a sensing basis Φ, which is mutually incoherent to
the basis Ψ. Therefore, the measurement vector can be written as

y = Φx = ΦΨγ (7)
When the mapping matrix ΦΨ follows the restricted isometry

property (RIP), γ can be recovered exactly from K measurements y
by solving an l norm minimization problem

γ̂ = min ‖γ‖0 s.t. y = ΦΨγ (8)
The imaging process of 4-D SAR is to reconstruct the reflectivity

function. As described in section 2, the 4-D SAR imaging can
be focused on the height-velocity imaging. That is to find proper
reflectivity function γ (s, v) meeting the integral

ym,n =

vo∫

−vo

so∫

−so

γ(s, v)gm,n(s, v)dsdv (9)
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For numerical analysis, the continuous-space system model of (9)
can be approximated by discrete system model

yK×1 =




y(1)
y(2)

...
y(K)


=




g1(1)
g2(1)

...
gK(1)

g1(2)
g2(2)

...
gK(2)

g1(3)
g2(3)

...
gK(3)

. . .

. . .
...

. . .

g1(L)
g2(L)

...
gK(L)







γ(1)
γ(2)
γ(3)

...
γ(L)




= GK×LγL×1 (10)

where

yK×1 =




y(1)
y(2)

...
y(K)


 = vec




y1,1 y1,2 . . . y1,N

y2,1 y2,2 . . . y2,N
...

...
...

...
yM,1 yM,2 . . . yM,N


 (11)

and

γL×1=




γ(1)
γ(2)

...
γ(L)




=vec




γ(∆s, ∆v) γ(∆s, 2∆v) . . . γ(∆s, Q∆v)
γ(2∆s, ∆v) γ(2∆s, 2∆v) . . . γ(2∆s, Q∆v)

...
...

...
...

γ(P∆s, ∆v) γ(P∆s, 2∆v) . . . γ(P∆s, Q∆v)


 (12)

where vec(·) is the vec-operator which stacks the columns of the matrix
between parenthesis. K = M × N , L = P × Q. ym,n (m =
1, 2, . . . M ; n = 1, 2, . . . , N) are the M × N received data obtained
by (4). γ (p∆s, q∆v) (p = 1, 2, . . . P ; q = 1, 2, . . . , Q) are the
discrete samplings of the reflectivity function γ(s, v), p∆s (p =
1, 2, . . . P ) denote the discrete height sampling positions, and q∆v (q =
1, 2, . . . , Q) denote the discrete velocity sampling points. Moreover,
the element gk(l)in the matrix GK×L is defined by

gk(l) = g(n−1)M+m((q−1)P +p) = exp
[
j2π

(
2p∆s

λr
b⊥(m,n) +

2q∆v

λ
tn

)]

(13)
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where k = 1, 2, . . . , K; l = 1, 2, . . . , L. The values of k and l are
defined by k = (n− 1)M + m (m = 1, 2, . . . ,M ; n = 1, 2, . . . , N) and
l = (q − 1)P + p, (p = 1, 2, . . . P ; q = 1, 2, . . . , Q), respectively.

In conclusion, the objective of 4-D SAR imaging is to retrieve
the reflectivity coefficient γL×1. Because the scene of interest
can be modeled by a set of point scatterers reflecting impinging
electromagnetic waves isotropically to all receivers in high frequency
radar application, the reflectivity coefficient γL×1 to be reconstructed
is sparse in the object domain, which is spanned by the orthogonal
basis Ψ = IL×L.

According to (10), the sensing basis Φ can be selected as

Φ = GK×L (14)

In order to expect a valid solution to the highly undetermined
system in (10), the mapping matrix Θ = ΦΨ must follow the restricted
isometry property (RIP) according to the theory of CS [24]. A matrix
Θ is said to satisfy the RIP of order J with constants δJ ∈ (0, 1) if

(1− δJ) ‖v‖2
2 ≤ ‖Θv‖2

2 ≤ (1 + δJ) ‖v‖2
2 (15)

for any v such that ‖v‖0 ≤ J . The RIP essentially states that all
subsets of J columns taken from Θ are in fact nearly orthogonal. Direct
design of Θ based on this property is challenging, as it is combinatorial
in nature. In fact, one can show that the RIP can be achieved with
high probability by simply assumes that the projections Φ are drawn
at random [23].

Even though the RIP can be established for some matrices, in
practice there is no computationally feasible way to check this property.
An alternative approach is to ensure the sensing matrix Φ mutually
incoherent with the basis Ψ. The mutual coherency is defined as:

µ(Φ,Ψ) = max
i,j

|〈φi, ψj〉|
‖φi‖2 ‖ψj‖2

(16)

where the φi are rows from Φ, and ψj are columns from Ψ. The Φ
and Ψ are mutually incoherent if µ(Φ,Ψ) is small. It has been shown
that the mutual coherence satisfies the following bound [25]

1√
L
≤ µ(Φ,Ψ) ≤ 1 (17)

When µ(Φ,Ψ) is close to its minimum value of 1
/√

L, the bases
Φ and Ψ are completely different. When µ(Φ,Ψ) approaches its
maximum value of 1 then Φ and Ψ are very similar. In our case
of 4-D SAR imaging, the sensing matrix Φ = GK×L is determined by
(13), which is a partial Fourier matrix where K rows of the Fourier
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matrix are selected at random, Ψ = IL×L is the identity matrix, then
the coherence µ(Φ,Ψ) between Φ and Ψ attains its minimum value
1
/√

L. That is to say, the Φ and Ψ have the maximal incoherence
in the 4-D SAR imaging system, and the sparse signal γL×1 will be
recovered exactly with high probability.

Within the CS framework, the sparse signal γL×1 can be
reconstructed by l norm minimization

γ̂ = min ‖γ‖0 s.t. y = ΦΨγ (18)

In the more realistic case some noise is added on the measurements

y = ΦΨγ + n (19)

with n a complex Gaussian vector with zero mean and power σ2.
Therefore, the solution of (18) can be replaced by constraining the
l2 norm of the error in measurements to be less than some threshold ε

γ̂ = min ‖γ‖0 s.t. ‖ΦΨγ − y‖2 ≤ ε (20)

where ε is a small positive number.
The l0 norm can obtain the optimally sparse solution of a signal.

Unfortunately, the l0 norm is computationally difficult to solve, as it
involves NP-hard enumerative search. A common alternative is to
consider the convex problem using an l1 norm as a proxy for the
l0 norm. For K = O(J · log(L/J)), it can be shown that l1 norm
minimization leads to the same result as l norm minimization [24]

γ̂ = min ‖γ‖1 s.t. ‖ΦΨγ − y‖2 ≤ ε (21)

However, in practice there is still error using an l1 norm instead of
the l0 norm in the low signal-to-noise ratio (SNR) condition. Since the
larger and smaller coefficients have the different contributions to the
object function in the l1 norm minimization, the larger coefficients are
penalized more heavily in the l1 norm than smaller coefficients, unlike
the more democratic penalization of the l0 norm, which may reduce the
contribution of the larger coefficients, and can not give strict constraint
on the smaller coefficients. To address this imbalance, a weighted
formulation of l1 norm minimization designed to more democratically
penalize nonzero coefficients is proposed in [26]

γ̂ = min ‖Wγ‖1 s.t. ‖ΦΨγ − y‖2 ≤ ε (22)

where W is a diagonal matrix with w1, w2, . . . , wL on the diagonal
and zeros elsewhere, and w1, w2, . . . , wL are positive weights. In [26],
Candes et al. have proven that the weights should relate inversely to
the true signal magnitude

wi =
1

γi + δ
, i = 1, 2, . . . L (23)
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where δ is a small positive number.
The main idea of this weighted step is to construct the appropriate

weights in the optimization problem and reduce the influence of noise.
Therefore, the weights should be selected to find the correct signal
components and counteract the influence of the noise. According
to (22) and (23), it is obvious that the large entries in wi force the
solution of γ to concentrate on the indices where wi is small, and
correspond precisely to the indices where γ is nonzero.

Compared with the l1 norm model, it is easier to obtain the
optimally sparse solution of the signal for the weighted l1 norm
minimization. Therefore, a weight matrix is introduced to the 4-D SAR
imaging process. From (23) we can get that the weights are related
to the prior information of the signal γ, which can not be constructed
precisely without first knowing γ. Therefore, an iterative algorithm is
used to estimating γ and redefining the weights





γ̂(k) = min
∥∥∥W(k)γ

∥∥∥
1

s.t. ‖ΦΨγ − y‖2 ≤ ε

w
(k+1)
i = 1

γ
(k)
i +δ

, i = 1, 2, . . . L
(24)

Without loss of generality, a preliminary imaging result obtained
by Fourier transform is adopted to construct the initial weights.
Although the imaging quality is limited by high silelobes, an
approximate imaging profile can be extracted from the preliminary
result. Then, the initial weights can be constructed by (23) and the
final image can be obtained by (24).

4. SIMULATION RESULTS

In this section, to verify the validity of the proposed imaging algorithm
for 4-D SAR, the imaging experiments are carried out with respect to
simulated data.

The main parameters used for simulation are as follows: the radar
carrier frequency is 1.3 GHz, the flight height and the centre of ground
range are all 5000 m, the baseline length is 500 m, the maximum
unambiguous imaging range of height is 40 m, and the maximum
unambiguous imaging range of velocity is 0.288 m/year. Supposed that
there are two targets located in the scene at s1 = −2m and s2 = 2m
with a signal-to-noise ratio of 10 dB each, and that moved with mean
velocities v1 = 0.02 m/year and v2 = −0.05m/year, respectively.

Let us refer the system geometry depicted in Figure 1. Considering
M = 1 pass over the interested area at a fixed time, and then repeating
the above experiment at N = 25 different times. The investigated
scene has a height extension of 2so = 20 m and a velocity extension of
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Figure 2. The position distributions of each pass in the baseline-time
plane.

2vo = 0.2m/year. The non-uniform position distributions of each pass
in the baseline-time plane are shown in Figure 2.

In order to analyze the performance of the proposed method,
the imaging results obtained by the Fourier transform and the SVD
methods are also given for comparison. Figure 3(a) shows the
height-velocity reconstruction result obtained by the Fourier method.
From Figure 2, we can get that the observation data received by
the 4-D SAR system is sparse and non-uniform in the baseline-
time plane. Therefore, the Fourier estimated height-velocity image
is impaired by intolerable sidelobes. Figure 3(b) shows the height-
velocity reconstruction result obtained by the SVD method. Since a
prior knowledge of investigated scene is taken into account, a reduction
of the sidelobes can be acquired by this method. A realization
of the CS-based height-velocity reconstruction image is shown in
Figure 3(c). As a favorable sparse reconstruction technique, CS
reconstructs spectral lines instead of sinclike point response functions
and shows a lower sidelobes interference, overcoming the imaging
quality limitation imposed by the low number of flight tracks and
their non-uniform distributions. And Figure 3(d) is the height-velocity
reconstruction result obtained by the weighted CS method. From
Figures 3(c) and (d), we can get that the imaging result can be
improved after the weighted matrix introduced to the cost function.

The following case studies the influence of noise to the imaging
algorithm. Maintaining the same parameters as above, the only
difference is that the two targets with a signal-to-noise ratio of 0 dB
each. Figure 4 shows the height-velocity reconstruction images with
Fourier, SVD, CS, and weighted CS methods, respectively. From
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(a) (b)

(c) (d)

Figure 3. Comparison of the height-velocity imaging results of 4-
D SAR with a signal-to-noise ratio of 10 dB. Shown are the results
obtained by (a) fourier, (b) SVD, (c) CS, and (d) weighted CS.

Figure 4, the reconstruction images obtained by Fourier and SVD suffer
from high sidelobes, and the image quality of CS is also influenced with
lots of false targets under low noise level. However, the weighted CS
method can reduce the sidelobes at

The coming to analysis takes into account four targets, with the
different scattering factors, located at the same range and azimuth co-
ordinates and with the height and velocity values equal to (2, 0.02), (2,
−0.05), (−2, 0.02) and (−2, −0.05), respectively. The imaging results,
obtained by the weighted CS method with different SNR levels, are
represented in Figure 5. It can be observed that the lowest amplitude
target located at (2, −0.05) is hidden by false targets under low noise
level. However, for an SNR equal to 10 dB, the method based on
weighted CS exhibits a close match to the truth: The targets are
detected with accurate amplitudes at the right positions. The results
presented in this case show that the imaging quality of weighted CS
processing will become unsatisfactory when the difference of targets’
scattering factor is large under low SNR level. Nevertheless, the
imaging result will be acceptable with the increasing of the SNR.
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(a) (b)

(c) (d)

Figure 4. Comparison of the height-velocity imaging results of 4-D
SAR with a signal-to-noise ratio of 0 dB. Shown are the results obtained
by (a) Fourier, (b) SVD, (c) CS, and (d) weighted CS.

(a) (b)

Figure 5. Imaging results obtained by the weighted CS method
with different SNR levels. Shown are the results obtained with (a)
SNR = 0dB, (b) SNR = 10dB.
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5. CONCLUSION

4-D SAR imaging is an extension of the conventional microwave
imaging technique. It extends the potentialities of SAR tomography to
the target deformation monitoring, which enables not only separating
interfering targets in height but also distinguishing their single slow
deformation velocities. Therefore, 4-D SAR may have challenging
potential for buried scatterers and subsurface dynamical processes
investigations. In this paper, a novel 4-D SAR imaging method based
on weighted compressive sensing has been proposed. The principle
behind the method is based on considering the sparse structure of
actual target space in high frequency radar application. The key step
of this method is to construct the basis matrix and the measurement
matrix using the sparse distribution of the radar positions and the
signal form after the azimuth-slant range compression. Moreover, a
weighted matrix is introduced into the optimization problem to reduce
the influence of noise. The results of the simulated data confirm
the effectiveness of the proposed method. Further work will focus
on improving the cost function and evaluating the super resolution
capability of this method.
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