
Progress In Electromagnetics Research B, Vol. 38, 387–403, 2012

MODIFIED DOA ESTIMATION METHODS WITH UN-
KNOWN SOURCE NUMBER BASED ON PROJECTION
PRETRANSFORMATION

Q.-C. Zhou, H. T. Gao*, F. Wang, and J. Shi

Radio Propagation Lab, Electronic Information Department, Wuhan
University, Wuhan, Hubei 430079, China

Abstract—In this paper, our purpose is to develop methods that
have high resolution and robustness in the presence of unknown
source number, array error, snapshot deficient, and low SNR. The
DOA (Direction-Of-Arrival) estimation with unknown source number
methods referred as MUSIC-like and SSMUSIC-like methods have
shown high resolution in the snapshot deficient and low SNR scenario.
However, they need to take several times of fine search on the full
space, which bring about high computational complexities. Thus,
modified methods are proposed to reduce computational complexities
and improve performances further. In the modified methods, we
priori use conventional beamforming to get the rough distribution
of signals’ angle, which helps to reduce computational complexity
and connect the technique of projection pretransformation. Then
through projection pretransformation, original methods are further
simplified and improved. As demonstrated in computer simulations,
the modified DOA estimation with unknown source number methods
shows not only higher resolution in the snapshot deficient and lower
SNR scenario, but also more robustness against array errors. Although
the proposed methods cannot replace the array calibration completely,
they reduce the requirement of calibration accuracy. Combined with
these advantages, it has been shown that the new methods are more
suitable in engineering.
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1. INTRODUCTION

The problem of Direction-Of-Arrival (DOA) estimation has been
receiving high attentions as it is a fundamental task in array
signal processing with applications in Radar [1], Sonar [2],
Communications [3]. The general problem formulation involves a set of
signals incident on the array elements with different spatial separations.
When the spatial separation between two close signals is smaller than
the nominal array resolution (corresponding to the Rayleigh resolution
limit of conventional beamforming), we need to find high resolution
methods to enable incident signal individual identified. Among those
high resolution DOA estimation methods, subspace-based methods [4–
6] such as MUSIC (Multiple Signal Classification), SSMUSIC (Signal
Subspace Scaled MUSIC) have received wide attention because of their
relatively high resolution and computational simplicity. In the ideal
environment, the estimation variance of MUSIC has been shown to
converge asymptotically to Cramer-Rao lower bound as the number of
snapshot increases [7]. However, the performances of subspace-based
methods are highly related to many conditions.

As subspace-based methods exploit the orthogonality between
noise subspace and signal subspace, the source number used to divide
noise and signal subspace is very critical in its implements. In many
cases, the source number provided by special source number detection
methods [8–11] is underestimated or overestimated. When the source
number is underestimated, some signal eigenvectors are mixed in the
noise subspace. Because the presumed noise subspace and signal
subspace cannot maintain orthogonality, the subspace-based methods
would get wrong results or even lose targets. In [12], the effects of
source number underestimation on MUSIC are illustrated in detail
through theoretic analysis. Compared with the grave degradation
caused by underestimation, the degradation caused by overestimation
seems tender. Its main defect is that its estimating results not only
contain real DOAs but also get spurious DOAs. Although the spurious
results could be eliminated by other methods [13, 14], these solutions
are also not very perfect.

As the subspace-based methods are handled based on the array
model, their steering vectors are particularly dependent on the
characteristics of the array, such as amplitudes, phases and locations.
To simplify the discussion, we only consider the amplitude and phase
error of the array in this paper. In practice, the array errors are
inevitable even after a calibration procedure. To make the array model
approach the real array characteristics as much as possible, one way
is to develop special calibration methods [15–17]. Another way is to
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develop DOA estimation methods with inherent robustness [18, 19].
Except the mentioned conditions, the signal-to-noise ratio (SNR)

and snapshot are other conditions the paper considers. In engineering,
it is common to find scenarios of snapshot deficient and low SNR.
In this case, the sample covariance matrix (SCM) formed from the
collection of spatial snapshot is quite different from the real SCM.
Then, the degradation of the obtained noise and signal subspaces
makes the subspace-based methods fail to distinguish the signals from
close angles.

Different from other methods which focus on improving
the calibration performance [15–17], source number estimating
accuracy [8–11] and resolution of close signals in the snapshot deficient
scenario [5, 6], our purpose is to develop methods with high resolution
and robustness in the presence of unknown source number, array error,
snapshot deficient and low SNR. In [20], we have developed a simple
but high resolution DOA estimating method with unknown source
number, suitable for the snapshot deficient and low SNR scenario.
Through the equations provided in [20], the spectrums of MUSIC
and SSMUSIC could be represented approximately, which eliminate
estimating the source number in advance. However, to avoid the awful
impact brought by the spreading of noise eigenvalues in the snapshot
deficient and low SNR scenario, a high computational complexity
method is used, which needs to be simplified.

Regarded as a particular beamspace method, projection pretrans-
formation referred in [21] could be used to enhance the robustness of
subspace-based methods and reduce their computational complexities.
In [22], it is used to improve the performance of adaptive beamform-
ing. In this paper, on its basis, the methods proposed in [20] are
further modified to get lower computational complexity and better
performance.

The rest of this paper is organized as follows. The signal model
and several relevant DOA estimation algorithms are introduced in
Section 2. Modified methods based on projection pretransformation
are illustrated in Section 3. To verify the validity of modified methods,
computer simulations in numerous different situations are conducted
in Section 4. Finally, we make conclusions in Section 5.

2. SIGNAL MODEL AND RELEVANT ALGORITHMS

Consider that P independent narrowband signals from the directions of
{θi} arrive at an arbitrary array of M sensors under an additive white
gaussian noise environment (the signals and noises are uncorrelated),
where {θi} denotes the incident angle of the ith signal. The received
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noisy signals can be expressed as:

X(t) =
P∑

i=1

a(θi)si(t) + n(t) = A(θ)s(t) + n(t) (1)

where X(t), s(t), n(t) are the vectors of the received signals, incident
signals, and the additive noise, and A is M × P matrix A(θ) =
[a(θ1), a(θ2), . . . , a(θP )]. Here a(θi) is the steering vector of the array
toward the direction θi. Considering that the array exists amplitude
and phase errors, we denote the amplitude and phase errors of the ith
sensor as αi and βi, respectively. Thus, the data of array outputs are
rewritten as

X(t) = GΦA(θ)s(t) + n(t) (2)
where G, Φ are diagonal matrices and their ith diagonal elements Gii

and Φii are αi and ejβi .
The RCM R is given by

R = E[x(t)xH(t)] = ARSAH + σ2I (3)
where RS , σ2, I denote the signal covariance matrix, noise power,
and identity matrix, respectively. Besides, E[·] denotes the statistical
expectation and H the conjugate transpose. The eigendecomposition
of matrix R yields

R =
M∑

i=1

λiuiu
H
i =

P∑

i=1

λiuiu
H
i +

M∑

i=P+1

λiuiu
H
i (4)

where λi and ui are the ith eigenvalue and eigenvector, respectively.
When the source number P is known in advance, the eigenvalues
and eigenvectors of the RCM can be split into two sets that generate
independent linear spaces: the signal subspace and noise subspace.

In spite of its limited resolution, conventional beamforming (CBF)
is still being widely used in engineering for its simplicity and robustness
against array errors and snapshot deficient. The CBF spectrum can
be expressed as

PCBF (θ) = AH(θ)RA(θ) (5)
Due to the property that the noise subspace is orthogonal to the

steering vectors of the signals, the high resolution of subspace-based
methods is realized by looking for steering vectors as orthogonal to the
noise subspace as possible.

The MUSIC algorithm spectrum can be expressed as

PMUSIC (θ) =
1

AH(θ)
M∑

i=P+1

uiu
H
i A(θ)

(6)
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By contrast to MUSIC, the numerator in SSMUSIC is a signal
subspace function. Its spectrum can be expressed as

PSSMUSIC (θ) =

AH(θ)
P∑

i=1

1
λi − σ2

uiu
H
i A(θ)

AH(θ)
M∑

i=P+1

uiu
H
i A(θ)

(7)

Through the simulations in [20], we know that the weights of signal
subspace projection in SSMUSIC signal subspace function could be
slightly changed. A new spectrum similar to SSMUSIC is given as

Pnew(θ) =

AH(θ)

(
1

λ1 − σ2
u1u

H
1 +

P∑

i=2

1
λ i

uiu
H
i

)
A(θ)

AH(θ)UNUH
N A(θ)

(8)

In standard form, the dimensions of signal subspace and noise
subspace are based on the results offered by the source number
estimation method. In [20], we infer approximate representations
of MUSIC and SSMUSIC spectrums, in which the source number is
unnecessary. In the ideal environment, we have:

λ1 ≥ . . . ≥ λP > λP+1 = . . . = λM = σ2 (9)

Assuming that m is selected sufficiently large, we can obtain,

lim
m→∞

(
λM

λi

)m

uiu
H
i
∼=

{
0, for i = 1, . . . , P

uiu
H
i , for i = P + 1, . . . , M.

(10)

According to Equation (10), the following equations are easily derived:
M∑

i=P+1

uiu
H
i
∼= lim

m→∞

M∑

i=1

(
λM

λi

)m

uiui (11)

1
λ1 − σ2

u1u
H
1 +

P∑

i=2

1
λ i

uiu
H
i
∼= 1

λ1 − λM
u1u

H
1

+
M∑

i=2

1
λ i

uiu
H
i −

1
λM

M∑

i=P+1

uiu
H
i (12)

Based on Equation (11), MUSIC spectrum can be approximately
represented. And SSMUSIC spectrum could be approximately
represented based on Equations (8), (11)–(12). For convenience,
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we name the two new spectrums as MUSIC-like and SSMUSIC-like
methods, respectively.

It is notable that the derivations are based on assumption (9).
When the array exists, some errors or the number of snapshots is
small. The eigenvalues obtained from the practical SCM can be given
as: λ′1 > . . . > λ′P > λ′P+1 ≥ . . . ≥ λ′M , which spread significantly. To
prohibit the spreading of noise eigenvalues, we need to load a proper
value λ′′ to modify the eigenvalues. As λ′′ decreases, the resolutions
of SSMUSIC-like and MUSIC-like methods improve in the risk of
producing spurious peaks. According to this feature, an empirical
method is used to modify the eigenvalues in [20]. In the empirical
method, the proper loading value is obtained through testing the
performances of the spatial spectrums as λ′′ decreases. When the
spurious peaks occur, the test stops, and the corresponding value
is selected as the proper loading value. However, the procedure of
searching and detecting spurious peaks need to take several times of
fine search on the full space, which brings about high computational
complexity.

In fact, the procedure of modifying eigenvalues can be simplified
when the rough directions of signals are known, because the locations
in the spectrums of MUSIC-like and SSMUSIC-like methods, which
produce spurious peaks are far away from the real DOAs. Moreover,
the rough directions of signals could be obtained by prior information
and low complexity DOA estimation methods such as CBF. Thus,
we could eliminate the spurious peaks based on the results of CBF.
Exploiting the results of CBF, we shrink the scanning area from full
space to several separate sectors, which contain rough directions of
signals. In fact, such shrinkage can not only eliminate spurious peaks,
but also reduce computational complexity. Besides, it is helpful for
us to use projection pretransformation to modify MUSIC-like and
SSMUSIC-like methods further.

3. MODIFIED METHODS BASED ON PROJECTION
PRETRANSFORMATION

Regarded as a particular beamspace method, projection pretransfor-
mation that transforms the output data of the array into the transform
domain could be used to enhance the robustness of subspace-based
methods. Its key point is to calculate transform matrix T in a rough
known region Ω. The details of calculating T are as follows.

Step 1) Construct a correlation matrix RΩ, which is defined as:

RΩ =
∫

Ω
a(θ)aH(θ) (13)
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Step 2) RΩ could be eigendecomposited as RΩ =
∑M

i=1 λ̄ieie
H
i ,

where λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄M . Assume a small constant ε (in this paper,
ε = 10−2) and find D significant eigenvalues of RΩ by the formula:

M∑

i=D+1

λ̄i/
M∑

i=1

λ̄i ≥ ε (14)

Step 3) The transform matrix T is consisted by eigenvectors which
correspond to D significant eigenvalues. Thus, T = [e1, e2, . . . , eD]H .

From the above procedure, we can draw a conclusion that the
calculation of the matrix T is easy to be obtained provided that the
distribution of signal angles is known. Thus, for computation in real
time, the transform matrix could be calculated off-line in advance.
After dividing the whole scanning area into many small sectors, we
calculate all the corresponding transform matrices T and store them
in computer, which is convenient for practice use.

Through transformation, the M dimension array output data X(t)
could be reduced to D dimension (D < M). The transformed datum
Y (t) is given as

Y (t) = TX(t) (15)
Similarly, the transformed steering vector AT (θ) and transformed SCM
RT can be expressed as:

AT (θ) = TA(θ) (16)

RT = TRTH (17)
There are two principles by which projection pretransformation

can improve the performances of subspace-based methods.
Firstly, transform matrix T is a unitary matrix, which satisfies

TTH = I. In the perspective of beamspace, if we regard T as a
beamforming matrix, it can be regarded as the best beamforming
matrix, which makes Beamspace MUSIC [23] have the minimum SNR
resolution threshold [21].

Secondly, the errors caused by array error and snapshot deficient
are reduced. Assume that the eigenvectors ui, ûi are obtained
from SCM in ideal circumstance and SCM in nonideal circumstance,
respectively. So ûi = ui+δui, where δui presents the eigenvector error.
Through transformation, we have ūi = Tui and T ûi = Tui + Tδui.
Further, T ûi = ūi +Tδui. As ‖Tδui‖2 ≤ ‖δui‖2, where ‖·‖2 represents
Euclidean norm. Hence, the transformation can suppress the errors.

Considering array errors and snapshot deficient, we eigendecom-
posite the matrix RT in unideal circumstance:

RT =
D∑

i=1

λ̂iûiû
H
i =

P∑

i=1

λ̂iûiû
H
i +

D∑

i=P+1

λ̂iûiû
H
i (18)
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As previously mentioned, the spurious peaks could be easily
eliminated, if only the rough known sector Ω is selected sufficiently
small. Besides, the smaller sector Ω could improve the performance of
projection pretransformation provided that the DOAs of close signals
are contained. As a matter of experience, the sector that extends nearly
two to three times of nominal array resolution around the rough known
direction is enough in practice. On this basis, the task of loading value
is reduced to realize high resolution of close signals.

Because a theoretic value is too difficult to provide, the modified
loading value we provide is based on qualitative analysis. As the
purpose of loading value is to make the noise eigenvalues smooth and
steady, it should be less than the biggest signal eigenvalue and bigger
than the least noise eigenvalue, which is restricted as: λ̂D ¿ λ̂′′ ¿ λ̂1.
So a loading value is recommended as:

λ̂′′ =

√√√√
D∑

i=1

λ̂i (19)

Through computer simulation, this loading value is proper in most
situations. In some particular cases, the recommended value could be
changed slightly.

In practice, m is replaced by a finite value. As illustrated
previously in [20], in ideal environment, the distinction between the
SSMUSIC-like method and SSMUSIC decreases as m increases. So
do MUSIC-like method and MUSIC. However, as the parameters of
m and loading value λ′′ interact greatly, m and λ′′ are too hard to
be defined simultaneously in unideal environment. Unlike MUSIC-
like and SSMUSIC-like methods, m in the modified methods could be
quite flexible, as they only need to distinguish signals in the feasible
areas while the problem of avoiding spurious peaks is solved by CBF.
Whereas, improving performances of new methods are not obvious
when m increases to a certain value. Generally, m selected between
15 and 25 is sufficient, which has been demonstrated in the simulation
test.

For modified methods, except parameters in the original
spectrums which need to be replaced by that in transform domain,
their procedures are also different. They are implemented as follows.

Step 1) Based on prior information, divide the full space into
many small sectors and calculate all the corresponding matrices T
based on Equations (13)–(14). Then store all the calculated matrices
in computers.

Step 2) Use CBF to scan the full space in a large step to obtain
the rough directions of signals. According to the result of CBF, choose
all feasible sectors and the corresponding transform matrix T .
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Step 3) Choose a feasible sector and transform the data of array
domain into transform domain based on Equations (15)–(17).

Step 4) Reconstruct the modified spectrums based on Equa-
tions (6), (8), (10)–(12),(18)–(19) and search for DOAs.

Step 5) Choose other sectors and repeat the Steps (3)–(4).
From the above illustrations, as the first step of modified methods

could be done off-line, so their computational complexities mainly
focus on SCM decomposition and searching peaks of the spectrum.
Compared with the original methods, the computational complexities
of these two points have been greatly reduced. Firstly, the modified
methods only one time of take rough search on the full space and several
times of fine search on the feasible sectors. The total computational
complexity of this searching method is less than that of taking one-
time search on the full space. Whereas, the empirical method needs
at least three times of fine search on the full space. Secondly, through
transformation, the corresponding computational complexities of SCM
decomposition are reduced from O(M3) to O(D3).

4. COMPUTER SIMULATIONS

As the lower computational complexities of modified methods have
been analysed in Section 3, we only consider the resolution and
robustness of these methods in this section. For simplicity, SSMUSIC
and MUSIC used in this section are assumed that the source number is
correctly estimated and that variables in SSMUSIC-like and MUSIC-
like methods remain the same as that in [20], which m = 10 and
k = 0.25.

To show the improvement of the modified methods better, we
arrange the simulations as follows. Firstly, we give all the mentioned
spectrums (including CBF) for rough comparison in Figure 1.
Secondly, as m is an important variable in the modified methods,
we evaluate its impact and choose a proper value for the following
simulations based on Figure 2. Lastly, to verify the improvement of
resolution performance in the snapshot deficient and low SNR scenario
and robustness under array error, we compare the modified methods
with MUSIC, SSMUSIC, MUSIC-like method, and SSMUSIC-like
method in detail in Figure 3 and Figure 4.

In simulations, assume a uniform circular array with 40 sensors, its
radius is 150 meters. We adopt 16 sequential sensors of this circular
array as receiving array. The center frequency of signals is 10 MHz.
The Rayleigh resolution limit in this case is about 5◦. In Mento-
Carlo simulations, every single experiment has been run 500 times.
Regarding to two closely spaced signals in a single experiment, if the
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estimated DOAs satisfy: | θ̂1 − θ1 | + | θ̂2 − θ2 |<| θ̂1 − θ̂2 |, we define
the trial of angle separation successful. On this basis, the RMSE (Root-
Mean-Square-Error) is calculated as:

RMSE(θ) =

√√√√ 1
K

K∑

i=1

(θ̂i − θ)2 (20)

where K is the number of successful trials in the Mento-Carlo
simulation, θ the true DOA, and θ̂i the estimated DOA of the ith
trial.

Figure 1 shows that the rough impression of the mentioned
methods. In this case, three narrowband signals (θ1 = 66◦, θ2 = 67.5◦,
θ3 = 85◦) with 10 dB impinge on the array, and the snapshot is 40. In
the modified methods, m = 20. Based on the results of CBF, the whole
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Figure 1. The normalized spectrums of the mentioned methods.
(a) Performances of two close signals. (b) Performances of two close
signals. (c) Performances of the third signal. (d) Performances of the
third signal.
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space is shrunk to two sectors: [60◦, 75◦], [70◦, 95◦]. At the same time,
transform matrices T calculated respectively on this two sectors are
selected. It is observed that CBF cannot resolve the two close signals
completely, and MUSIC, MUSIC-like method can hardly resolve two
peaks, while two peaks are resolved distinctly in SSMUSIC, SSMUSIC-
like method and the modified methods. Besides, from the perspective
of spectrum peak sharp degree, modified SSMUSIC-like method have
the sharpest peaks, and modified MUSIC-like method have the less
sharp peaks, indicating that the resolutions of modified methods have
been greatly improved.

Figure 2 shows that the performances of the modified methods
under different m. In this case, we mainly consider the impact of m on
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Figure 2. The performances of modified methods under different m.
(a) Resolution probability of modified MUSIC-like method. (b) RSME
of modified MUSIC-like method. (c) Resolution probability of modified
SSMUSIC-like method. (d) RSME of modified SSMUSIC-like method.
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the resolution of close signals. The snapshots and SNR are fixed at 40
and 10 dB while the angle separation of two close signals varies. From
this figure, we can find that the two modified methods have similar
regularity when m increases. The performances of modified methods
have been improving until m increases to a certain value. From the
results, m selected between 15 and 25 is sufficient to realize the best
resolution. Therefore, m = 20 is selected in the following simulations.

Figure 3 shows that the resolution improvement of modified
methods in the snapshot deficient and low SNR scenario. This figure
consists of three parts, which focus on the conditions, such as the
angle separation of two close signals, snapshot, SNR. Figure 3(a)
and Figure 3(b) show the comparison against angle separation of two
close signals while the snapshots and SNR are fixed at 40 and 10 dB.
Figure 3(c) and Figure 3(d) show the comparison against the snapshot
while the angle separation of two close signals and the SNR are fixed
at 2◦ and 10 dB. Figure 3(e) and Figure 3(f) show the comparison
against SNR while the number of snapshot and the angle separation
of two close signals are fixed at 40 and 2◦.

Assume the probability of 90% as a resolution threshold, which
enables two close signals individually identified. As seen from these
subfigures, we can rank modified SSMUSIC-like method, SSUMUSIC,
modified MUSIC-like method, SSMUSIC-like method, MUSIC-like
method, MUSIC in the order of resolution probability from high to
low. Besides, the RSME of modified methods are better than other four
methods. Generally speaking, the resolution of modified methods in
the snapshot deficient and low SNR scenario is significant and reliable.

Based on Figure 3, we test these six methods’ robustness under
array errors in Figure 4, while the scenario remains the snapshot
deficient and low SNR. Figure 4(a) and Figure 4(b) show the
comparison against the random amplitude error of the array while
the phases of the array sensors are fixed at 0rad. Figure 4(c) and
Figure 4(d) against the random phase error of the array while the
amplitudes of the array sensors are fixed at 1. In this two parts, the
angle separation of two close signals, snapshot and SNR are fixed at
2◦, 40, and 10 dB, respectively.

In Figure 4, the performances of methods in the two simulations
not only are related to the random array errors but also have the
impact of small sample random noise, both of which make the
resolution probabilities of these methods vary greatly. Thus, we
can only get a rough impression of robustness of the six methods
while the accurate information of robustness in this case needs further
investigation. In [19], the authors proved that MUSIC exhibits certain
inherent robustness against array model errors. From Figure 4,
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Figure 3. The resolution improvement of modified method in the
snapshot defficient and low SNR scenario. (a) Resolution probability
against angle separation. (b) RSME against angle separation. (c)
Resolution probability against snapshot. (d) RSME against snapshot.
(e) Resolution probability against SNR. (f) RSME against SNR.
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Figure 4. The comparison of robustness under array error. (a)
Resolution probability against amplitude error. (b) RSME against
amplitude error. (c) Resolution probability against phase error. (d)
RSME against phase error.

in the perspective of resolution probability, it is observed that the
modified methods and SSMUSIC exhibit much better robustness
against array errors than other three methods. More specifically,
SSMUSIC has better robustness against amplitude error than modified
methods while modified methods are more robust against phase error.
Besides, MUSIC is more robust than SSMUSIC-like and MUSIC-like
methods. However, from another perspective of RSME, the higher
resolution probability of SSMUSIC is at the expense of estimating
accuracy. Thus, results of the modified methods are more reliable than
SSMUSIC-like method, SSMUSIC, MUSIC-like method, and MUSIC
in unideal circumstance. Comparatively speaking, the robustness of
the modified methods is decent, although it cannot replace the array
calibration completely.
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5. CONCLUSION

In this paper, new modified methods are proposed to obtain
less computational complexity and better performances. Through
computer simulations that the conditions, such as snapshot, SNR,
amplitude error and phase error of the array, are considered separately,
we find that the modified DOA estimation with unknown source
number methods not only show high resolution in the snapshot
deficient and low SNR scenario, but also exhibit certain robustness
against array errors. Although the proposed methods cannot replace
the array calibration completely, they reduce the requirement of
calibration accuracy. Combined with these advantages, it has been
shown that the new methods are more suitable for engineering.
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