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Abstract—Bacteria exist in a variety of groups of shapes, sizes, and
single or multiple cell formations. In this paper, the level set shape
reconstruction technique, the method of moments, and the marching
cubes methods are integrated in the high frequency band for imaging
three dimensional bacteria. The time step and the resolution of the
marching cubes method are investigated to smooth the error function
of the level set and hence speed up the convergence at high frequencies.
The numerical results demonstrate the robustness of the level set
algorithm for the detection of bacteria based on their shapes. The
three dimensional shape reconstructions of unknown bacteria can be
utilized to classify biological warfare agents.

1. INTRODUCTION

Biological warfare agents (BWA) pose serious threats on humankind
as exemplified by the lethal international incidents in Japan, Russia
and the USA [1]. The threat could be magnified by the fact that
there are currently limited accurate tests that can identify biological
warfare agents in a time frame small enough to launch effective counter
measures [1].

Several modalities were investigated to lower the detection
and classification process time of biological warfare agents such
as acoustical, electrochemical, piezoelectric, thermal and optical
techniques [2–4]. The optical technique is classified as indirect or
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direct, depending on whether a labeling agent is used or not [2].
Examples of direct optical methods are resonant mirror (RM) and
evanescent wave interferometer (EWI) whereas the indirect optical
methods include the fluorescent labeled antibody (FA). The RM is
based on placing a high refractive index layer on top of a glass
prism with a low refractive index material inserted in the middle
as a coupler [3]. Once the light is exerted at a certain angle it
exhibits total internal reflection in the high refractive index layer. In
addition, evanescent waves will propagate perpendicular to the high
refractive index layer into the sensing medium above it. Biological
agents positioned on top of the high refractive index layer interact
with the evanescent wave perturbing the reflected waves from the
prism and allowing the detection of the agent [3]. The performance
of the RM technique was tested using the Staphylococcus Aureus
bacteria exhibiting a limited detection of 106 cells/ml. Similarly, EWI
uses evanescent waves, in addition to utilizing optical elements, to
create interference patterns from the sensing region [4]. In indirect
methods, labeling agents are utilized to target certain elements, termed
immunoglobulins, in BWA [2]. The labeling agents are excited by
the light at a short wave length and then release light at a longer
wavelength to enhance the signature of the agent [2].

The above techniques were based on spectroscopy, where the
presence of BWA were identified using the absorption resonances in
the transmission spectra of the sample. Advances in micro-fabrication
and micro-fluidics had facilitated the development of systems to allow
3D tomography of a single cell [5, 6]. In the cell tomography system
developed by Meyera et al., cell samples were rotated from 0◦ to 360◦
in steps of 0.72◦ in order to achieve 500 projections [5]. A three
dimensional filtered back-projection algorithm was implemented to
reconstruct the shape of cancerous cells [6].

The current work expands the previous published work on the
level set method [7–10]. The contribution can be summarized as:
(i) demonstrating the capability of the level set algorithm for the shape
reconstruction of 3D bacteria, leading to use very high frequencies,
(ii) testing the convergence of the algorithm at frequencies up to
300THz, and (iii) investigating and analyzing the effect of two specific
parameters on the algorithm convergence at these high frequencies;
these parameters are the time step and the resolution of the marching
cubes method.

The proposed idea is based on reconstructing the 3D shape of
bacteria as a tool of detection, since biological agents have very
different shapes. Bacteria, for example, can exist in three fundamental
shapes; (i) spherical (coccus), (ii) rod (bacillus), and (iii) spiral
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(spirillum) [11], in single, pairs (diplo-), groups of cells, or in chains
(Strepto-). In general, bacteria can be separated, joined, or overlapped
depending on their species [11].

Finally, different bacteria have different sizes ranging from 100 nm
to 80µm [11]. This small size of bacteria requires the use of high
frequencies at the upper limit of the terahertz (THz) and in the
infrared (IR) band. The shape reconstruction of 3D bacteria can help
narrowing down the possible categories of the bacteria under test in a
fast manner. The conventional techniques can be lengthy and require
larger samples of the bacteria. The exact classification can then be
determined using conventional techniques such as polymerase chain
reaction (PCR) which detects and amplifies the genetic material needed
to identify the bacteria [2].

In this work, we employ the high frequency 3D level set algorithm
to reconstruct the shape of BWA immersed in air. As reported
in [12], the BWA are most effectively delivered as aerosols in air
and they represent a serious threat because they are invisible and
tasteless. However, investigating bacteria immersed in other media is
also important for validation with controlled laboratory measurements
similar to those conducted in [5, 6]. The later will be the subject
of future work. The current work represents the first attempt to
prove the concept of detecting harmful bacteria based on their shapes
using the high frequency 3D level set algorithm. Fig. 1 shows a
synthetic system to collect the scattering fields at different incident
and receiving directions (angles) and at multiple high frequencies,
conceptually similar to the single cell system in [5, 6]. The single cell
system reported in [5] demonstrated that the 3D shape reconstruction
increased the accuracy of cancer cells detection three fold, compared
with the 2D shape reconstruction. Therefore, the current 3D shape
reconstruction of bacteria has a high potential for the detection and
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Figure 1. A synthetic setup showing the high frequency source and
the detectors directions.
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classification of these bacteria.

2. LEVEL SET SHAPE RECONSTRUCTION
ALGORITHM

The level set inverse scattering technique has proven its capability
in retrieving the shapes of multiple unknown targets based on their
scattered fields in the microwave range of frequency (100 MHz–
10GHz) [7–10]. The scattered fields are measured at multiple receiving
directions when the target is excited from multiple incident directions
and at multiple frequencies (see Fig. 1). The algorithm starts with
an initial guess which then evolves to the true target. The main idea
behind the level set technique is that the evolving object is implicitly
modeled as the zero level of a higher order function [7–10]. The zero
level of a higher order function φ is given as:

Γt = { r̄|φ (r̄, t) = 0} (1)

where Γt represents the surface of the evolving object and r̄ (x, y, z)
represents the location vector in the computational domain. The level
set function, φ, is updated according to the Hamilton Jacobi equation:

∂φ

∂t
+ F (r̄) ‖∇φ‖ = 0, φ0 = φ (r̄, t = 0) (2)

where F (r̄) is the normal deformation velocity and φ0 represents the
initial values of the level set function. The initial values of the level set
function, φ0, at each pixel in the computational domain are assigned
equal to the signed distance function which is defined as the minimum
distance between each pixel and the surface (or contour) of the initial
guess [7–10]. The signed distance function is negative if the pixel is
inside the initial guess surface, positive if the pixel is outside the initial
guess surface and zero if the pixel is on the surface of the initial guess.
The deformation velocity function F (r̄) normal to the surface is the
force which drives the initial surface to converge to the true one. The
values of the normal deformation velocity are calculated by minimizing
the mismatch between the simulated fields scattered from the evolving
object and the synthetic measured fields, see details in [7–10]. In order
to calculate F (r̄), the method of moments surface current densities and
the marching cubes computer graphics method are used. Details of the
3D level set algorithm are given in [10]. It should be mentioned that the
level set algorithm requires solving the scattering problem twice; once
for the forward problem and the second for the adjoint problem [13].
The forward scattered fields are the fields scattered from the evolving
object due to a normalized incident plane wave. The adjoint fields are
the fields scattered from the evolving object due to an incident plane
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wave of amplitude equal to the complex conjugate of the difference
between the simulated scattered fields from the evolving object and
the synthetic measurements from the true object [13]. The forward
and adjoint scattered far fields are used to update the deformation
velocity F (r̄) according to the following equation:

F (r̄) = −
Ninc∑

i=1

Nrec∑

j=1

Re
(

M̄ (r̄) · M̄ ′ (r̄)− ∇ · J̄ (r̄) ∇ · J̄ ′ (r̄)
(ωε0)

2

)
(3)

where Ninc is the number of incident directions, Nrec is the
number of receiving directions, M̄ (r̄) , M̄ ′ (r̄) , J̄ (r̄) and J̄ ′ (r̄) are the
forward magnetic current density, adjoint magnetic current density,
forward electric current density, and adjoint electric current density,
respectively. The deformation velocity F is calculated at the surface
of the evolving object. However, from (2), F needs to be calculated
at every pixel in the computational domain in order to update the
level set function. Therefore, the extended deformation velocity is
calculated such that its value at each pixel in the domain is equal to
the deformation velocity at the closest pixel on the surface (or the
contour) [7–10]. The Hamilton Jacobi equation in (2) is discretized
spatially and temporally as follows:

φn+1
ijk = φn

ijk −∆t
[
max (Fijk, 0)∇+ + min (Fijk, 0)∇−]

(4a)

where i, j, k are the discretization indices for the x, y, z directions,
respectively, ∆t is the time step, Fijk is deformation velocity obtained
using (3), ∇+, and ∇− are spatial difference operators, e.g., ∇+ is
given by [10]:

∇+=
[
max

(
Dx−

ijk,−Dx+
ijk, 0

)2
+max

(
Dy−

ijk,−Dy+
ijk, 0

)2
+max

(
Dz−

ijk,−Dz+
ijk, 0

)2
]1/2

(4b)

where Dx±
ijk , Dy±

ijk, and Dz±
ijk are the forward and backward difference

spatial operators [10]. The operator ∇− is similar to (4b) upon
replacing the function max(.) with the function min(.) [10]. The
temporal and spatial discretizations are constraint through the
Courant condition to ensure the stability of the solution of (2) [7–
10]. The cost function (i.e., the mismatch between the measured and
the simulated fields) is given as:

Cost =
∑

θinc,ϕinc

∑

θrec,ϕrec

∥∥Ēevolv

(
θinc, ϕinc, θrec, ϕrec

)−Ētrue

(
θinc,ϕinc,θrec,ϕrec

)∥∥2

∥∥Ētrue (θinc,ϕinc,θrec,ϕrec)
∥∥2 (5)

where Ēevolv and Ētrue are the simulated electric far fields scattered
from the evolving object and the measured far fields from the true
object, respectively. The angles θinc, φinc and θrec, φrec represent the
incident and scattering directions, respectively, (see Fig. 1).
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Figure 2. 3D configuration of the level set method, marching cubes
scheme, and evolving surface, showing (a) 3× 3× 3 (see the pixels on
the green cube), and (b) 4×4×4 (see the pixels on the red cube), level
set pixels down sampled to one marching cube with 2× 2× 2 pixels.

The MoM surface nodes on the evolving object need to be updated
in every inversion iteration. Therefore, the marching cubes scheme
is implemented for the 3D targets [10]. The configuration of Fig. 2
shows the pixels (i, j, k) in the computational domain that are used for
updating the level set function ϕ(i, j, k), while the pixels (m, n, o)
are associated with the marching cubes scheme for updating the MoM
surface nodes. To keep the computational cost intact, finer resolution
is typically used for the level set pixels (i, j, k) compared with those
used for the marching cubes pixels (m, n, o). For example, in Figs. 2(a)
and 2(b), each 3× 3× 3 and 4× 4× 4 level set pixels, respectively, are
down sampled to one marching cube with 2× 2× 2 pixels [10].

3. NUMERICAL RESULTS

In all results here, 26 incident and 26 receiving directions are utilized
(similar to our work in [10]), where the θinc and θrec angles vary from
0 to π in steps of π/4 and vary the φinc and φrec angles vary from 0 to
2π in steps of π/4. Moreover, the dielectric properties of bacteria
are assumed here to be similar to the water. This assumption is
motivated by the availability of water properties in the terahertz and
the infrared bands (see [14] for the range 15 THz–150 THz, [15] for the
range 5 GHz–30THz, and [16] for the range 114–833 THz). Also, this
approximation has been utilized in the literature at lower frequencies
and can be justified by the fact that water constitutes the majority
of the cellular contents [17]. The dielectric properties of water versus
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frequency are shown in Fig. 3. It is well known that water is dispersive
in the terahertz and infrared bands [14–16]. However, it is important
to emphasize that the 3D level set shape reconstruction algorithm is
not limited to certain material properties as long as they are a priori
known at each frequency used in the reconstruction algorithm.

As published in the literature (e.g., [7–10, 18]), the level set
method has been proven to be robust. Therefore the algorithm always
converges to the true target regardless of the initial guess. During
the reconstruction, a single initial guess could evolve and break into
several objects or the multiple objects initial guess could merge into

Figure 3. The dielectric relative permittivity of water [14–16].
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Figure 4. Reconstruction results of diplococci bacteria using the first
initial guess: (a) The first initial guess versus the true diplococci
bacteria. (b) The level set reconstruction after 250 iterations at
50THz. (c) The final level set reconstruction after 4000 iterations
at 300 THz. (d) The normalized cost function versus the iteration
number, using frequency hopping 50–300THz. The results of (a)–(d)
are repeated in (e)–(h) using a different initial guess. The evolving
object is shown in red color and the true diplococci bacteria are shown
in yellow mesh.

a single object. When the initial guess was different in shape and
far in location from the true target, more iterations and frequencies
were needed; however, the evolving object always converged to the
true one [7–10]. The initial guess was also selected as four spheres,
they merged into one sphere demonstrating the successful convergence
of the level set algorithm in the work by Dubios et al. [18]. Therefore
for simplicity in this work, the initial guess of the 3D bacteria was
selected to be a sphere of radius 1.5µm located at the center of the
computational domain.

Figure 4 shows the 3D reconstruction of the diplococci bacteria
of diameter of 0.8µm and separation gap 10 nm. Four frequencies are
used in the frequency hopping scheme in this case, as 50THz, 100THz,
200THz and 300THz. Hopping from one frequency to the next one
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was conducted after 1000 iterations [10]. Even though the normalized
cost function in Fig. 4(d) seems constant after 250 iterations, on the
average, the evolving object is still significantly improving up to 4000
iterations. The reconstruction result after 250 iterations is shown in
Fig. 4(b) while the final reconstruction after 4000 iterations is shown in
Fig. 4(c). The results of Fig. 4(a)–(d) are repeated using another initial
guess as a sphere of radius 0.5µm located at (0µm, 1µm, −1.5µm) as
shown in Figs. 4(e)–(h). The initial guess in this case is smaller than
the true target and located off the center of the computational domain
by 1µm in the y-direction and −1.5µm in the z-direction.

While the large oscillations in the cost function, in Figs. 4(d) and
4(h), obscure the convergence of the algorithm, it is observed that
increasing the number of iterations at each frequency and using more
frequencies improve the reconstruction results. The reconstruction
of the diplococcic bacteria in Fig. 4 required ∼ 10 hours using a
single core on a node with 2 Xeon X5670 processors having a clock
speed of 2.93 GHz and 24 GB of memory. The results in Fig. 4 show
good agreement with the true shape of the diplococci bacteria, but no
techniques are implemented to smooth out the cost function.

To focus the current work on understanding and mitigating
the large oscillations observed in the cost function at the used
high frequencies necessary for the bacteria detection, we adopted a
simple hopping criteria based on pre-assigned number of iterations at
each frequency selected based on the numerical experience with the
application (1000 iterations in this work). It was observed that the
cost function oscillations prevent reaching the pre-assigned stopping
criterion of 10−7 [9]. In our previous work in the microwave band [7–
10], the cost function oscillations were manageable. Therefore, we
implemented better hopping criteria to avoid unnecessary increase in
the computational time when the cost function drops in local minima.
The criterion was based on the most recent 20 samples calculated
for the cost function. If the difference between the averages of each
successive points was less than a threshold (e.g., 1%), the working
frequency hops to a higher value [10]. These criteria can be easily
adopted for the bacteria detection in this work.

The results in Figs. 4(d) and 4(h) demonstrate large magnitude of
oscillations in the normalized cost function, especially as the frequency
increases, which affects the convergence of the algorithm. To mitigate
these oscillations, two specific parameters are investigated; the time
step, ∆t, and the resolution of the marching cubes scheme as explained
in Fig. 2. The results of Fig. 5 will demonstrate the decrease in the
magnitude of the observed oscillations and hence the improvement in
the algorithm convergence versus these two parameters.
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A chain of three bacillus bacteria each having a length of 3µm
and a diameter of 1µm with separation gap of 0.01µm are shown in
Fig. 5. Six hopping frequencies are used in this case, as 10, 25, 50, 60,
70, and 85 THz. Higher frequencies, up to 150 THz, were tested in the
reconstruction of the three bacillus bacteria in Fig. 5 (not shown);
however, insignificant improvement in the results was achieved at
frequencies higher than 85 THz. The initial guess is a sphere of radius
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Figure 5. (a)–(c) Reconstruction of a chain of three bacillus bacteria
using 7 × 7 × 7 pixels at all frequencies down sampled to a one
marching cube with time step (∆t). (a) After 1000 iterations at
10THz. (b) After 3000 iterations at 50 THz. (c) Final reconstruction
after 6000 at 85THz. (d)–(f) Reconstruction using 7 × 7 × 7 pixels
at all frequencies down sampled to a one marching cube and half the
time step (∆t/2). (d) After 1000 iterations at 10THz. (e) After 3000
iterations at 50 THz. (f) Final reconstruction after 6000 iterations at
85THz. (g)–(i) Reconstruction using progressively decreasing number
of pixels from 7 × 7 × 7 to 5 × 5 × 5 down sampled to a one
marching cube and the time step (∆t). (g) After 1000 iterations at
10THz. (h) Reconstruction after 3000 iterations at 50THz. (i) Final
reconstruction after 6000 at 85THz. The evolving object is shown in
red color and the true bacillus bacteria are shown in yellow mesh.
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Figure 6. The reconstruction cost functions of a chain of three bacillus
bacteria. (a) Using 7× 7× 7 pixels at all frequencies down sampled to
a one marching cube and time step (∆t). (b) Using 7× 7× 7 pixels at
all frequencies down sampled to a one marching cube and half the time
step used in 6a (∆t/2). (c) Using progressively decreasing number of
pixels from 7×7×7 to 5×5×5 down sampled to a one marching cube
and time step (∆t).

2µm located at the center of the computational domain. Figs. 5(a)–
(i) show the reconstruction results of the three bacillus bacteria after
1000, 3000, and 6000 iterations. The cost functions are shown in Fig. 6.
Similar to Figs. 4(d) and 4(h), it is observed that the normalized cost
function (mismatch) is highly oscillating around 60 THz as shown in
Fig. 6(a). The reconstruction of the three bacillus chain of Figs. 5(a)–
(c) is repeated in Fig. 5(d)–(f) using ∆t/2. The corresponding cost
function is shown in Fig. 6(b). The results in Fig. 6(b) show a
decrease in the oscillations level of the cost function as the time step
decreases, especially around the 60 THz. It is important to note that
although the reduction in the time step has mitigated the oscillations at
60THz shown in Fig. 6(a), these oscillations are still observed around
70THz in Fig. 6(b). Therefore, the second parameter, the resolution
of the marching cubes was investigated as demonstrated in Fig. 6(c)
associated with Figs. 5(g)–(i) which used the larger time step ∆t.

As discussed earlier, this factor determines the resolution of the
MoM surface nodes of the evolving object. In Figs. 5(a)–(f) every
7× 7× 7 level set pixels are down sampled to one marching cube at all
eight frequencies. However, in Figs. 5(g)–(i), an empirical frequency
based down sampling scheme is used as follows; at 10 THz and 25THz,
every 7 × 7 × 7 level set pixels are down sampled to a one marching
cube; at 50THz and 60THz, every 6× 6× 6 level set pixels are down
sampled to a one marching cube; and at 70THz and 85THz, every
5 × 5 × 5 level set pixels are down sampled to a one marching cube.
The corresponding cost function is shown in Fig. 6(c) which shows the
decrease of the oscillations level upon increasing the marching cubes
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resolution at all considered frequencies. The reconstruction CPU times
for the results in Figs. 5(a)–(c), Figs. 5(d)–(f), and Figs. 5(g)–(i) are
∼ 19 hrs, 25 hrs, and 56 hrs, respectively, also using a single core on a
node with 2 Xeon X5670 processors having a clock speed of 2.93 GHz
and 24 GB of memory. These reconstruction times can be significantly
reduced via the MPI parallelization of the algorithm [19].

In this work, an implicit regularization scheme is implemented [10].
This regularization is based on weighted averaging of the deformation
velocity and smoothing of the evolving surface meshes as reported
in [10]. Specifically, the deformation velocity at each surface patch
is calculated as the weighted average of the velocities of neighboring
patches. The average deformation velocity at a particular patch is
calculated by assigning a weight of three to the velocity at that patch
and a weight of two to the velocities of the neighboring patches [10].

As known, due to the nonlinearity of the inverse scattering
problem, the level set algorithm requires measurements at multiple
sources and receivers as shown in Fig. 1. In our previous work, the
level set algorithm has proven its capability in bistatic, monostatic, and
limited view configurations in the microwave frequency range [7–10].
However, advances in micro-fabrication and micro-fluidics have allowed
the development of systems that provide recordings every 0.72◦ in order
to achieve several hundred measurements in the bistatic configuration
at 510THz [5]. Although the level set algorithm capability was proved
using experimental data in the microwave frequency range [20, 21], the
experimental validation of the results obtained in this work will require
a coherent radiation system that can measure the amplitude and the
phase at high frequencies. The work in [22] and [23] have demonstrated
the development of a continuous coherent radiation system operating
from the microwave region up to 40 THz. Moreover, for diffuse
optical tomography applications, a coherent radiation system has been
developed to operate at several discrete frequencies in the infrared
frequency range from 300 THz to 450 THz [24]. Therefore, we believe
that experimental validation of the high frequency level set algorithm
for bacteria detection can be conducted in the near future using
coherent systems similar to the ones reported in [22–24].

4. CONCLUSION

The obtained results demonstrated the capability of the high frequency
level set algorithm in reconstructing the shapes of 3D bacteria for the
purpose of detection. The robustness of the algorithm increased when
the time step was decreased and when the resolution of the marching
cubes was increased. The bacteria in this work were assumed to be
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immersed in air; however, in future work the surrounding medium will
be incorporated in the algorithm.

In this work, only synthetic data free of noise were examined
using the level set algorithm at high frequencies. Experimental
data of scattered fields from 3D bacteria are not available at this
point; however, it is expected to be prone to several sources of noise
such as white noise, drift noise due to the system configuration and
the sensor stepping movements, if any, and clutter due to nearby
unwanted objects, especially at high frequencies. For example, in
our experimental microwave work [20], the drift noise due to the
stepping rotation of the antennas was experienced. Low pass filtering
techniques were successfully implemented to remove the drift noise [20].
Also, in the microwave band, the level set algorithm was successfully
tested versus random noise added to the synthetic data with signal
to noise ratio (SNR) as low as 5 dB [7, 10]. For lower values of SNR,
obtaining meaningful reconstruction results of any target using almost
any method will be challenging. In the future, the level set algorithm
will be examined using experimental data in the high frequency, once
made available from systems similar to those reported in [5, 6].

In the case that different types of bacteria exist, but not
overlapping, the current level set algorithm is capable of reconstructing
their shapes [10]. However, if the different types of bacteria
are overlapping, which means that different materials targets are
overlapping, the multiphase level set algorithm will be needed, which
is a future work.
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17. Kotnik, T., and D. Miklavčič, “Second-order model of membrane
electric field induced by alternating external electric fields,” IEEE
Trans. on Biomed. Eng., Vol. 47, No. 8, 1074–1081, 2000.

18. Dubois, P., C. Dedeban, and J. Zolésio, “3D inverse scattering
by level set with zero capacity connecting set. Wave guide
optimization by ‘zone’,” Proceedings of the First European
Conference on Antennas and Propagation, 1–6, 2006.

19. Hajihashemi, M. R. and M. El-Shenawee, “High performance
computing of the level-set reconstruction algorithm,” Journal of
Parallel and Distributed Computing, Vol. 70, 671–679, Jun. 2010.

20. Hassan, A. M., M. R. Hajihashemi, M. El-Shenawee, A. Al-Zoubi,
and A. Kishk, “Drift de-noising of experimental TE measurements
for imaging 2D PEC cylinder using the level set algorithm,” IEEE
Antennas and Wireless Propagation Letters, Vol. 8, 1218–1222,
2009.

21. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M.
El-Shenawee, “Experimental microwave validation of level-set
reconstruction algorithm,” IEEE Trans. Antennas and Propag.,
Vol. 58, No. 1, 230–233, Jan. 2010.

22. Karpowicz, N., J. Chen, T. Tongue, and X.-C. Zhang, “Coherent
millimeter wave to mid-infrared measurements with continuous
bandwidth reaching 40 THz,” Electronics Letters, Vol. 44, 544–
545, 2008.

23. Liu, J., J. Dai, X. Lu, I. Ho, and X.-C. Zhang, “Broadband
terahertz wave generation, detection and coherent control using
terahertz gas photonics,” International Journal of High Speed
Electronics and Systems, Vol. 20, No. 1, 3–12, 2011.

24. Bevilacqua, F., A. Berger, A. Cerussi, D. Jakubowski, and
B. Tromberg, “Broadband absorption spectroscopy in turbid



54 Hassan, Hajihashemi, and El-Shenawee

media by combined frequency-domain and steady-state methods,”
Applied Optics, Vol. 39, No. 34, 6498–6507, Dec. 2000.


