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KOCH-LIKE SIDED SIERPINSKI GASKET MULTIFRAC-
TAL DIPOLE ANTENNA
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Abstract—Koch-like fractal curve and Sierpinski Gasket are syn-
cretized in minor-main way, forming so called Koch-like sided Sier-
pinski Gasket multifractal dipole (KSSG). Some iterative combi-
natorial cases of the two monofractals KiSj KSSG have been
investigated in free space without feedline for revealing the as-
sumed multifractal property. Then a pragmatical coplanar stripline
(CPS) fed K4S1 KSSG multifractal bow-tie dipole with dimen-
sion of 61.1mm × 34.75mm was designed, fabricated and mea-
sured. Six matched bands (S11 < −10 dB) with moderate gain
(2 dBi–6 dBi) and high efficiency (80%–95%) are obtained within
band 1.5 GHz–14 GHz, of which f1 = 2.137 GHz (1.978–2.287GHz,
309MHz, 14.46%, PCS1900 + IMT2000 + UMTS), f2 = 4.103 GHz
(3.916–4.2GHz, 374 MHz, 9.12%, WiMAX), f3 = 5.596 GHz (5.499–
5.679GHz, 180 MHz, 3.22%, WLAN + WiMAX) are commonly used.
Gain patterns of these bands are all almost omnidirectional in H-
plane (Phi = 0◦, XOZ) and doughnut-shaped in E-plane (Phi = 90◦,
Y OZ), which suggests that K4S1 KSSG operates as a half-wavelength
dipole. It behaviors like the main fractal in low frequency and re-
sembles the minor one in high frequency. The consistent results of
simulation and measurement have evinced the multifractal antennas’
peculiar properties and superiority over its monofractals in impedance
uniformity, gain pattern, efficiency and dimension. So it is attractive
to PCS, UMTS, WLAN, WiFi, WiMAX and other communication
systems.
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1. INTRODUCTION

FRACTAL antenna has been investigated and commercialized over
fifteen years since it was put forth by Nathan Cohen early in 1995 [1, 2].
It is a combination of antenna technology and fractal geometry [3].
Fractal antenna usually utilizes quasi-fractal or pre-fractal geometry
which represents self-similarity, space-filling and repeats itself in
finite different scales. The adjacent resonant frequency ratio is
quite approximately equal to the fractal scale ratio [4–6]. It has
shown many particular attributes during extensive researches and
applications as concluded in [7, 8]. However, almost all contrived
fractal antennas and previous fractal antenna studies have only focused
upon monofractal geometry hereunto, which usually has single fractal
scale ratio. Therefore, it is difficult to be utilized to design multiband
antenna with several different resonant frequency ratios. This should
be a great disadvantage of monofractal antenna. Naturally, we conceive
the idea of fabricating multifractal antenna with several different
fractal scale ratios so that we can design arbitrary multiband antenna
more easily.

As we know, multifractal is a concept usually referred to
Statistical Physics, Chemistry, Thermodynamics, and so on in Fractal
Geometry [9]. Fractal dimension D is used to describe the irregular
trait of fractal, which often has only a single self-similar structure. Just
as its name implies, multifractal has a continuous fractal dimension
distribution. This distribution can be usually described with a fractal
spectrum function f (α) [10], which depicts the irregular fractal’s
properties of different scale and level. Multifractal has only referred to
anomalous fractal, which is generally relevant to physical quantity such
as quality, concentration, density, strength, and so forth. We know
what’s most closely interrelated with fractal antenna is shape fractal.
Does shape multifractal exist? If it exists, is its fractal spectrum
continuous or discrete? If the spectrum function is continuous, whether
will the shape be so desultory that it cannot be constructed? And if
it is discrete, whether should the shape be formed with several simple
fractals? Multifractal has not been substantially explored for antenna
design.

Like fractal antenna, design of multifractal antenna also begins
with fractal shape construction. However, it is difficult to fabricate a
multifractal geometry because it’s hard to contrive different component
fractals and piece them together. This could be one reason that
there haven’t been any multifractal antennas fabricated up to now.
Therefore, we naturally attempt to form multifractal shape from
well known monofractal, such as Koch Curve/Snowflake, Sierpinski
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Gasket/Carpet, Minkowski Ring, and so on. We transform rectilinear
sides of Sierpinski Gasket into Koch-like fractal curves then we obtain
Koch-like sided Sierpinski Gasket multifractal. Here, we denote the
multifractal as KSSG for simplicity. We will investigate various
iterative combinations of the KSSG experimentally. At last, we chose
K4S1 as pragmatic antenna solutions for KSSG. After optimal design
by simulation with Ansoft HFSSTM v.13, we fabricate and measure
the physical KSSG dipole. The consistent good results between
simulation and measurement reveal and validate the particularity
and advantages of multifractal antenna in impedance uniformity, gain
pattern, efficiency and dimension.

2. KOCH-LIKE SIDED SIERPINSKI GASKET (KSSG)

2.1. The Multifractal Geometry

This proposed multifractal derives from Sierpinski Gasket and Koch-
like fractal curve. The two fractals were combined in superiority-
inferiority order with individual iterative. Sierpinski forms the
panorama and Koch-like fractal reforms the local sides. Here, a
general designation KiSj (Ki-Koch-like, Sj-Sierpinski Gasket) is given
to the two fractals for convenience. For acquisition of conspicuous
multifractal traits, we choose iterative S1 and K4 for Sierpinski Gasket
and Koch-like curve respectively. A K0-K4 iterated Koch-like sided
isosceles triangle replicates itself twice then the copies move to the base
vertexes, forming the S1 iterated Koch-like sided Sierpinski Gasket
(denoted as K0S1-K4S1 KSSG), as shown in Fig. 7. Apparently,
the base angle of Sierpinski Gasket is equal to that of Koch-like sided
isosceles and their size ratio is 2 : 1.

Intuitively, performances of the multifractal antenna are inti-
mately relevant to Koch-like fractal. Therefore, we will introduce this
fractal briefly. It is fabricated from an isosceles triangle. A small
isosceles triangle is cut off from centre of each side of the initial isosce-
les triangle, then the procedure iterates in the tips of two sides of each
angle of the notched triangle while a smaller one protrudes from middle
of equilateral sides of each isosceles-triangular notch of last iterative.
The iterative procedure itself proceeds, forming the novel fractal bow-
tie geometry, as shown in Figs. 1–6. The dipole is fully parameterized
modeled and simulated with Ansoft HFSSTM v.13. The parameters’
symbols and meanings are as follows: θ is base angle of the initial
isosceles triangle, ϕ is base angle of each iterative isosceles-triangular
notch, ν is rectilinear base side length of the isosceles dipole triangle,
ι is half length of base side of the initial isosceles-triangular notch,
α is the ratio of side length of initial ith iterated isosceles triangles
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Figure 2. K1, ι = 2.31mm.
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Figure 4. K3, ι = 0.34 mm.

to the base side length of (i + 1)th (i = 0, 1 . . . n) iterated isosceles
notches of Kn-iterated Koch-like sided isosceles triangle, as shown in
Figs. 2 and 6, µ is height of the isosceles dipole triangle. There is a
relationship among these arguments:

ν =
(2·α)n

(α−1)n−1 ·ln ⇔ ln =
(α−1)
2·α ·ln−1=χn−1·l1 (n=1,2 . . .), (1)

where νn is linear base side length of each iterative and ν0 = ν1 =
ν2 = ν3 = ν4 = ν. We choose θ = 60◦, ϕ = 60◦, ν = 39.3mm,
α = 4.25, µ = 34mm for the iterative procedure.

Now we assume that Si, Bi (i = 0, 1, 2, 3, 4) are the lateral side
length and base side length of the fractal isosceles triangle of each
iterative respectively. The relationships between Si, Bi and θ, ϕ, α, ι
can be expressed as formulas below.

Sn = σn · (α · l1 · sec θ) = (secθ ·α · χ) · (σ · χ−1
)n · ln;

Bn = σn · (2 ·α · l1) = (2 ·α · χ) · (σ · χ−1
)n · ln;

σ =
(α− 1 + sec ϕ)

α

(2)
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Figure 5. K4, ι = 0.13mm. Figure 6. Koch-like curve.
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Figure 8. K0S2 Sierpinski
Gasket.

According to the definition of box dimension of fractal geometry [8]
and the formulas above, we can derive fractal dimension of the Koch-
like fractal curve along the lateral sides and base side of the isosceles
triangle as follows:

D= lim
δ→0,N→∞

log N (δ)
log

(
1
δ

) = lim
δ→0,n→∞

log
(

Sn
ln

)

log
(

1
ln

) = lim
δ→0,n→∞

log
(

Bn
ln

)

log
(

1
ln

)

= lim
δ→0,n→∞





log
[
(secθ ·α·χ)·(σ ·χ−1

)n]

log
(

1
χn−1·l1

)


≈ 1+

log σ

log 1
χ

≈1.2382 (3)

D is very approximate to log 4
log 3 , which is the fractal dimension of Von

Koch Curve, because it is Koch-like. A special case for D is: ϕ = 60◦,
α = 3, D = log 4

log 3 ≈ 1.2617.
From formula (3), we know that D increases with ϕ, α, ν and

decreases with Ki and is independent of θ and ι.
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2.2. Simulation Results and Discussion

For validation of the supposition of the mutifractal properties deriving
from Koch-like sided isosceles triangle unit cell, we experiment on this
inferior fractal Koch-liked fractal bow-tie from iterative K0 to K4 with
the superior S1 iterative Sierpinski Gasket within band 1 GHz–70GHz.
Incidentally, we explore the properties of equidimensional Sierpinski
gasket dipole of each iterative. Then we compare K1S1-K4S1 KSSG
with K0S0-K0S4 Sierpinski Gasket, as shown in Fig. 8, for further
revealment of the advantages and peculiarity of the multifractal dipole.
We merge the simulated reflection coefficients and radiation patterns
of the resonant frequencies of each iterative K0S1−K4S1 and K0S0−
K0S4 respectively for this purpose, as shown in Figs. 9–14.

Here, distinct multifractal idiosyncrasy is obtained from a set
of optimal arguments of Koch-like fractal, which are yielded with
vast experiments by mean of multiple Parametric Sweeps from Ansoft
HFSSTM v.13 Optimetrics. The parameters are ν0 = ν1 = ν2 = ν3 =
ν4 = ν = 19.56mm, µ = 17mm, θ = 60◦, ϕ = 60◦, α = 3.125,
ι1 = 3.136mm, ι2 = 1.066mm, ι3 = 0.3625 mm, ι4 = 0.12325mm. So
the dimension of the multifractal Sierpinski Gasket dipole antenna is
4µ×2ν = 68mm×39.12 mm, as shown in Fig. 7. For good impedance
match and current distribution [11], baseside lengths of the overlapped
tips are chosen as: 2× ι4 = 0.2465mm. The dipole is fed at vertexes
of this pair of Sierpinski gasket triangles at 50Ω in free space for
experimental revealment of its multifractal traits.

First and foremost, we studied multifractal properties from input
impedance Zin(f) = Rin(f) + jXin(f) of each iterative, as shown in

Figure 9. Input impedance
Zin (f) of KiS1 KSSG (K1S1-
black, K2S1-blue, K3S1-green,
K4S1-red; solid-real, dash-
imaginary).

Figure 10. Reflection coeffi-
cients S11 of KiS1 KSSG (K1S1-
black, K2S1-blue, K3S1-green,
K4S1-red).
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Figs. 7, 22, and 24. We tabulate those frequencies and resistances
corresponding to Xin(fi) ≈ 0 of Zin (f) in Table 1.

As shown in Table 1, with increment of KiS1, resistances of
Zin (f1), Zin (f2) decreases and Zin(f3)-Zin(f6) increases. Meanwhile,
new resonant frequencies emerge in upper band as existent fi shift
towards lower band with Ki’s increment. The size is reduced by
11%–12.9% and 45.6% compared with the initiator and rectilinear
bow-tie dipole. KiSj KSSG has (n = i + j + 1) matched
bands [12]. KiS1 multifractal dipole present two impedance attractors,
which are approximately centered around resistances 50Ω and 120Ω
(underlined) respectively while its monofractal counterparts KiS0

takes on only one attractor and K0Sj has none, of which resistance
continuously fluctuates between 40Ω and 140Ω. We feed the KiSj

dipole at 50Ω then tabulate its matched frequency f i, bandwidth and
gain of each iterative also in Table 1.

Additionally, with increase of KiS1, gain pattern of f1 are almost
invariable, as shown in Fig. 13(a); gain pattern of f2 increases by
0.4 dBi in Z-axis, as shown in Fig. 13(b); gain pattern of f3 observably
ameliorates omni-directivity in H-plane, broadens main beamwidth
in E-plane and gain increases by 2.48 dBi in Z-axis, as shown in
Fig. 13(c); gain pattern of f4 transmutes from quatrefoiled shape to
bifoiled shape in E-plane, significantly enhances omni-directivity in
H-plane and gain increases drastically by 6.93 dBi in Z-axis, as shown
in Fig. 13(d); gain pattern of f5 narrows its main beam in Z-axis
but gain slightly decreases in this direction, as shown in Fig. 13(e);
gain pattern of f6 meliorates omni-directivity in H-plane, reduces
side lobe in E-plane and gain slightly decreases in Z-axis, as shown
in Fig. 13(f). Meantime, absolute and relative bandwidths fall off

Figure 11. Input impedance
Zin (f) of K0Sj Sierpinski Gasket
dipole (K0S0-cyan, K0S1-black,
K0S2-blue, K0S3-green, K0S4-
red; solid-real, dash-imaginary)

Figure 12. Reflection coeffi-
cients S11 of K0Sj Sierpinski Gas-
ket dipole (K0S0-cyan, K0S1-
black, K0S2-blue, K0S3-green,
K0S4-red).
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Gain patterns of KiS1 at fi ((a) f1, (b) f2, (c) f3, (d) f4,
(e) f5, (f) f6; solid-Phi = 0◦, XOZ; dash-Phi = 90◦, Y OZ; K1S1-
black, K2S1-blue, K3S1-green, K4S1-red, fi are shown in Table 1).

simultaneously. However, percentage bandwidths of newly emerging
matched bands don’t diminish with iterative probably because Ai of
KSSG decreases with Ki but infinitely approaches to a constant. Gain
patterns of f1-f6 are quasi-omnidirectional in H-plane (XOZ), but
become cloven in E-plane (Y OZ) except f1. They peak at Theta = 0◦,
±180◦ and null at Theta = ±90◦, yielding one sidelobe (Theta =
±30◦−±70◦, ±150◦−±110◦) in angular domain of Theta = 0◦−±90◦,
±90◦ − ±180◦, as shown in Figs. 13(c)–(f), which indicate that KiS1

KSSG is not half-wavelength dipole at these frequencies. And these
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(a) (b)

(c) (d)

(e)

Figure 14. Gain patterns of K0Sj at fi ((a) f1, (b) f2, (c) f3, (d) f4,
(e) f5; solid-Phi = 0◦, XOZ; dash-Phi = 90◦, Y OZ; K0S0-cyan,
K0S1-black, K0S2-blue, K0S3-green, K0S4-red, as shown in Table 1).

gain patterns are very similar with that of Koch-like sided bow-tie
dipole KiS0 and quite different from that of Sierpinski Gasket dipole
K0Sj at f4, f5, as shown in Figs. 14(d)–(e).

From Fig. 10, we can see K4S1 KSSG shows marked multifractal
reflection coefficient. Therefore, we illustrate surface current density
distribution of resonant frequencies of this iterative case in Figs. 15–
20. With the current distribution, we can intuitively unveils the
multifractal trait in essence and better extrapolate the proportional
relationships of adjacent resonant frequencies of each iterative case
from Figs. 9, 10.
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Table 1. Resistances, −8 dB BW and gain of each f i of KiSj(f i-GHz,
Rin − Ω).

KiSj f i f1 f2 f3 f4 f5 f6

K0S0

f i 1.35

Rin 40.1

BW

(MHz)

300

21.8%

G

(dBi)
1.97

K0S1

f i 1.325 5.5

Rin 40.3 71.9

BW

(MHz)

270,

20%

475

9.3%

G

(dBi)
1.98 6.21

K0S2

f i 1.325 4.985 11.085

Rin 40.5 78.4 115

BW

(MHz)

253.6,

19.14%

467,

9.37%
—

G

(dBi)
1.99 6.31 10.36

K0S3

f i 1.30 4.90 10.875 20.75

Rin 39 72.2 115 148

BW

(MHz)

238.4,

18.34%

381,

7.78%
— —

G

(dBi)
1.97 6.45 10.44 9.45

K0S4

f i 1.275 4.775 10.575 20.975 42.40

Rin 37.4 67.2 107 128.6 128.2

BW

(MHz)

219,

17.18%

348,

7.29%

336.2,

3.1%
— —

G

(dBi)
1.98 4.57 11.13 9.05 9.0

K1S1

f i 1.25 4775 8.70 10.45

Rin 35.9 102 30.3 31.77

BW

(MHz)

210,

16.5%

200

4.2%

350,

4.0%

335,

3.2%
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G

(dBi)
1.95 6.24 4.43 1.24

K2S1

f i 1.225 4.525 8.15 9.675 28.225

Rin 34.9 71.1 79.0 33.3 51.1

BW

(MHz)

180,

14.7%
280,6.2% 3153.9%

260,

2.7%

2125,

7.6%

G

(dBi)
1.95 6.53 6.47 7.07 7.92

K3S1

f i 1.2 4.425 7.95 9.475 27.525 65.20

Rin 33.1 56.6 103.9 30.4 75.3 132.8

BW

(MHz)

160,

13.2%

270

6.1%

180

2.3%

265

2.8%

1750,

64%
—

G

(dBi)
1.96 6.63 6.75 7.65 7.93 7.93

K4S1

f i 1.2 4.40 7.975 9.375 26.775 62.70

Rin 33.1 577 104 37.6 834 146.4

BW

(MHz)

167,

13.9%

266

6.0%

186

2.4%

320

3.4%

1478,

5.5%
—

G

(dBi)
1.96 6.61 6.91 8.17 7.36 7.86

Figure 15. K4S1 at f1 =
1.2GHz.

Figure 16. K4S1 at f2 =
4.4GHz.

As depicted in Fig. 15, current density Js maximizes at
the vertexal feeding point and travels along the fractal equicrural
sides to the base sides attenuating on and on, but boosts up at
central discontinuities of each iterative. Along with the doughnut-
shaped [13, 14] radiation pattern in E-plane, as shown in Fig. 13(a),
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we can conclude that K4S1 operates as a half wavelength dipole at
f1 = 1.2GHz, so

λ1

4
≈ 2 · κ1 · S4 + ς1 ·B4, ς1 → 0+, (4)

where ς1 → 0+ means λ1 can propagates to the furthermost and get
cross the base vertexes. When f2 = 4.4 GHz, Js also maximizes
at feeding point and augments at central joint discontinuities, but
minimizes near base apexes of three isosceles triangle unit cells, so,

λ2

4
≈ κ2 · S4 + ς2 ·B4

(
κ2 → 1+, ς2 → 0+

)
, (5)

as depicted in Fig. 16. κ2 → 1+ means λ2 can only arrives to the
proximal end away from the base vertexes of the upper isosceles triangle
unit cell. For f1 − f6, Js also has this similar distribution property,
but their corresponding wavelengths along the fractal lateral sides are
shorten as:

λ3

4
≈ (κ3 · χ) · S4

(
κ3 → 1+

)
(6)

λ4

4
≈ (κ4 · χ) · S4

(
κ4 → 1+

)
(7)

λ5

4
≈ (

κ5 · χ2
) · S4

(
κ5 → 1+

)
(8)

λ6

4
≈ (

κ6 · χ3
) · S4

(
κ6 → 1+

)
(9)

respectively, which can be seen in Figs. 17–20. Formulas (5)–(9)
indicate that adjacent frequency ratio δ is proportional to fractal scale
ratio χ−1 in high frequency.

According to the analysis above, we can conclude that the
KiSj Koch-like sided Sierpinski Gasket dipole (KSSG) is a fire-new
multifractal antenna and it doesn’t operate as a half wavelength or a
full wavelength dipole at resonant frequencies fnj (n = fn; i-Ki) of its
each iterative KiS1 besides f1i (i-KiS1). We will deduce resonant
frequency formulas for Sierpinski Gasket dipole K0S1-K0S4 and
KSSG multifractal dipole K1S1-K4S1 respectively in the following
section.

2.2.1. K0Sj (Sierpinski Gasket)

We have fabricated KSSG dipole on Sierpinski Gasket with Koch-
like curve, so it’s necessary to formulate the ratio of adjacent
resonant frequencies of each iterative of Sierpinski Gasket counterpart.
According to simulation results, as shown in Fig. 12 and empirical
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knowledge, we proposed the formulas for Sierpinski Gasket dipole as
follows.

j+1∏

n=1

βj
n ·

(
γj · s0 +(1− 0.04 · j) · ξ · b0

)
= ζ1

nj ·
λnj

4
= ζ1

nj ·
c0

4 · fnj
⇒

fnj =
c0

4 · ζ1
nj
−1 ·

j+1∏
n=1

βj
n · (γj · s0 +(1− 0.04 · j) · ξ · b0)

(γ = 1.04, ξ = 0.4; βj
1 = 1; βj

2 = 0.2645, ζ1
nj = 1;

βj
3 = 0.314 + 0.13 ·

j∑

k=2

0.1k−2, βj
4 = 0.365 + 0.15 ·

j∑

k=3

(−0.1)k−3; )

limn→j+1,j→+∞ βj
n = 0.365 + 0.15 ·

j∑

k=3

(−0.1)k−3 = 0.5014 ≈ 0.5

(n = 1,2 . . . j + 1; j = 0,1 . . .) (10)

Some symbols shown in formula (10) have their individual
represents as follows: fnj is the nth resonant frequency of Sj iterated
Sierpinski Gasket dipole and total frequency number is n = j + 1,
c0 is speed of light in free space, s0 and b0 is lateral side length
and base side length of the initial isosceles triangle respectively; ζ1

nj

is multiplier of the quarter of wavelength, which denotes the dipole is
half-wavelength (ζ1

nj = 1) or full wave-length (ζ1
ni = 2); γ is the ratio

of EM wave’s active propagating path and lateral side length of the
initial bow-tie, and it is always somewhat larger than 1 (γ = 1.04);

Figure 17. K4S1 at f3 =
7.975GHz.

Figure 18. K4S1 at f4 =
9.375GHz.
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Figure 19. K4S1 at f5 =
26.775GHz.

Figure 20. K4S1 at f6 =
62.7 GHz.

ξ is the ratio of EM wave’s active propagating distance and base side
length of the initial bow-tie because of its fringe or end effect [15],
and it is always ratherish less than 0.5 (ξ = 0.4), which means that
wave travels approaching to middle of the base side but never arrives
there; βj

n (βj
1 = j, βj

2 = 0.264) denotes the ratio of wavelength λnj of
nth resonant frequency fnj of each iterative case to lateral and base
sides of the initial bow-tie, and its infinite case is very approximate to
the geometrical scale factor of Sierpinski Gasket τ = 0.5. Here, the
author’s viewpoint that fractal antenna’s frequency ratio is quite close
to its fractal scale factor δ = χ−1 rather than its fractal dimension
D is proven once again. What should be emphasized is that this rule
is rigorously effective and accurate only when iterative number Sj is
large enough, because fundamental resonant frequency f1 is usually
yielded by the overall geometry rather than fractal iterative process
and significant parasitic phenomenon, such as fringe effect and coupling
exists when Sj is small.

Hereunto, we have acquired the most important fractal electrical
properties of superior Sierpinski Gasket fractal. Next, we will focus on
inferior Koch-like fractal of the multifractal dipole.

2.2.2. KiS1 (KSSG)

Multifractal comprises different monofractals, which interrelate and
interact with each other. When they are unified to form a brand-
new multiple fractal, each individual will presents new traits, which
is different from its original characters in isolated state. Therefore,
Sj = S1 is chosen here so that fractal electrical properties of Koch-
like sided bow-tie will be better revealed because of less impact and
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interference from the concomitant Sierpinski Gasket dominant fractal.
Ki iterated Koch-like side bow-tie has ni = i + 1 resonant frequencies
and Sj iterated Sierpinski Gasket has nj = i+1 resonant frequencies, as
shown in Fig. 10, so we can infer that KiSj KSSG multifractal dipole
should has nij = (i + 1) + (j + 1), i = 1, 2 . . . resonant frequencies
in total. According to simulated results of KiS1 (i = 1, 2, 3, 4), as
depicted in Fig. 10 and formula (10), we deduce the proportional
formula of contiguous resonant frequencies for the multifractal dipole
as hereinafter.

2·
(

i+3∏

n=1

βj=1
ni

)
·σlog(1+0.45i) ·(s0+$1

ni · b0

)
=ζ1

ni ·
λni

4
=

ζ1
ni ·c0

4·fni
⇒

fni =
c0

8 · ζ−1
ni1

·
(

i+3∏
n=1

β1
ni

)
· σlog(1+0.45i) · b0 ·

(
1

2·cos θ + $1
ni

)

(ζ1
1i = 1, ζ1

ni = 2, n ≥ 2;
$1

1i = 0.25− 0.02 · i, $1
2i = 0.129, $1

ni = 0 (n ≥ 3);
β1

1i = 1.19; β1
2i = 0.6926, β1

3i = 1.2365 · χ, β1
4i = 1.0587 · χ,

β1
5i = 1.0865 · χ2, β1

6i = 1.3583 · χ3;

lim
n→i+3,i→+∞

β1
ni

β1
(n−1)i

≈ χ =
α− 1
2 ·α (n = 1,2 . . . i + 3) (11)

According to the formula above, we find coefficients of formula (5)–(9)
as follows:

κ1 = β1
14 = 1.19, ς1 = β1

14 ·$1
14 = 0.2023;

κ2 = β1
24 = 0.6926, ς2 = β1

24 ·$1
24 = 0.0893;

κ3 = β1
34 = 1.2365, κ4 = β1

44 = 1.0587;
κ5 = β1

54 = 1.0865, κ6 = β1
64 = 1.3583;

Some symbols in formula (11) have their individual represents as
follows: fnj is the nth resonant frequency of KiSj KSSG multifractal
dipole and the total frequency number is n = i+3, i = 1, 2 . . .; c0, s0
and b0 are identical with those symbols defined in formula (10); σ is
iterative side length ratio of Koch-like sided fractal bow-tie (physical
scale ratio), as shown in formula (4); ζ1

ni is multiplier of the quarter of
wavelength, which has identical definition with ζ1

ni in formula (10); $1
ni

also has the same definition with ξ in formula (10); β1
ni (β

1
1i = 1.19;

β1
2i = 0.6926, β1

3i = 1.2365χ, β1
4i = 1.0587χ, β1

5i = 1.0865 · χ2,
β1

6i = 1.3583 ·χ3) denotes the ratio of wavelength λni of nth resonant
frequency fnj of each iterative i and lateral and base sides of the initial



414 Li and Mao

Table 2. Simulated f jni vs. calculated f jni of each iterative KiSj.

KiSj f i (GHz) f1 f2 f3 f4 f5 f6

K0S0
Cal 1.364

Sim 1.350

K0S1
Cal 1.341 5.062

Sim 1.325 5.050

K0S2
Cal 1.318 4.982 11.22

Sim 1.325 4.985 11.08

K0S3
Cal 1.293 4.890 10.70 20.78

Sim 1.300 4.900 10.88 20.78

K0S4
Cal 1.268 4.796 10.49 20.99 41.97

Sim 1.275 4.775 10.65 20.98 42.40

K1S1
Cal 1.249 4.676 8.697 10.46

Sim 1.250 4.775 8.700 10.45

K2S1
Cal 1.228 4.526 8.152 9.679 28.22

Sim 1.225 4.525 8.150 9.675 28.23

K3S1
Cal 1.218 4.412 7.956 9.472 27.57 65.22

Sim 1.200 4.425 7.950 9.475 27.53 65.20

K4S1
Cal 1.213 4.319 7.968 9.377 26.79 62.71

Sim 1.200 4.400 7.975 9.375 26.78 62.70

(Note: Cal-calculated, Sim-simulated)

bow-tie unit cell, β1
ni

β1
(n−1)i

≈ χ = α−1
2·α indicates that KiS1 KSSG has an

adjacent frequency ratio of which infinite case in high frequency band
is very approximate to fractal scale factor of its inferior component
monofractal Koch-like sided bow-tie δ = χ−1 = 2·α

α−1 rather than its
fractal dimension D; σlog(1+0.45·i) denotes wavelength of fni is not equal
to the fractal physical length σi = (α−1+sec

α )i, so the frequency ratio of
the multifractal dipole is not approximate to its physical length scale
ratio σ but the fractal scale factor δ = χ−1. Likewise, this rule is
sufficiently accurate only when iterative number Ki is large enough.

According to the formulas above, now we calculate fni and
tabulate them with the simulated results for validation of our
viewpoints in Table 2.

As shown in Table 2, the calculated f jni and the simulated f jni agree
with each other well. Relative error between them is less than 1.5%. So,
the formulas extrapolated for the resonant frequencies of KiSj above
are precise and more reasonable than that in [16, 17]. Heretofore, we
can conclude that proportional coefficient δ of contiguous resonant
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frequencies of the KSSG multifractal dipole is very approximate to
fractal scale factor δ = χ−1 = 2α

α−1 of Koch-like fractal in high
frequency band rather than its fractal dimensions Ds = 1 + log σ

log χ−1 ≈
1.2382 and physical scale ratio σ. In addition, ζ1

ni = 1, 2 unveils that
f11i is half-wavelength and f1ni (n ≥ 2) is full-wavelength. The radiation
patterns shown in Fig. 25 can also prove this standpoint. Compared
with K0Sj (j = 1, 2 . . .) and KiS0 (i = 1, 2 . . .), KiSj (i, j = 1, 2 . . .)
KSSG multifractal dipole has better S11 in corresponding resonant
frequencies than the former and has lower resonant frequencies in high
frequency band than the latter.

The formulas (10) and (11) suggest that KiSj present two stagger

frequency ratios f jni

f j
(n−1)i

≈ 2 and
f j
(n+1)i

f jni

≈ τ−1 only when n is

approximate to (i + j + 1) and i, j is large enough.

3. K4S1 KSSG MULTIFRACTAL DIPOLE ANTENNA

3.1. Physical Design of the Multifractal Dipole

KiS1 KSSG dipole manifests remarkable multifractal impedance
property, significant size reduction and enhanced radiation patterns
with Koch-like fractal’s iterative i growing, as shown in Fig. 10, Table 1
and Figs. 9–15. Meanwhile, the fractal geometry gets more exquisite
and complex as i increases. Thereupon, we have made a compromise
between performances and complicacy and we chose K4S1 as the
physical antenna solution. For omni-directional radiation patterns in
H-plane (XOZ), the pragmaticK4S1. multifractal antenna is designed
as a dipole etched on Taconic TLY (tm) dielectric substrate with size
of 75mm×60mm×1.0mm (L×W×T, with 35µm copper cladding),
εr = 2.2, and tan δ = 0.0009. We endowed the multifractal dipole
with a set of optimum parameters yielded by optimization utilities
Genetic Algorithm (GA) and Parametric Sweep of Ansoft HFSSTM

v.13 Optimetrics as: θ = 60◦, ϕ = −45◦, ν = 14.75 mm, α=1.8,
ι = 0.0485mm, L = 61.1mm, W = 29.5mm. It is fed by 50Ω
SMA connector through coplanar stripline (CPS) with dimension of
40mm× 0.75mm× 0.3mm (L×W×G) at the vertexes of the upper
Koch-like sided isosceles triangle unit cells, as shown in Fig. 21. The
dipole prototype, as shown in Fig. 22 is fabricated by photolightprocess
with a photolaser, which emits laser beam with facular diameter of
25µm. We measured S11 with HP8722ES vector network analyzer
within band 1.5GHz–14 GHz, as shown in Fig. 24 (purple dash). Then
we tested the radiation patterns in a commercial 3D anechoic chamber,
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which is appropriate for measurement of mobile phone antenna and its
upper frequency limit is about 7 GHz, so we can only measure f1, f2
and f3, as shown in Figs. 25–30 (purple contours).

3.2. Advantages over the Monofractal Counterparts

In order to ulteriorly reveal the proposed multifractal antenna’s
superiority over monofractal one in performance, we choose its
component fractals K0S1 Sierpinski Gasket and K4S0 Koch-like
sided bow-tie as its comparative counterparts because the two fractal
dipoles have most similar electrical properties with it. We model
the monofractal dipoles identically with the proposed K4S1 KSSG

75.0 z61.1

2

y

z

40.0

60.0

29.5

45
o

90
o

60
o

x

0.75

0.30

Figure 21. Geometry of
K4S1 KSSG multifractal dipole
(unit: mm).

Figure 22. Prototype of K4S1

KSSG multifractal dipole.

Figure 23. Input impedance Zin (f) of KiSj (red-simulated K4S1,
green-simulated K0S1, blue-simulated K4S0; solid-Rin, dash-Xin).
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Figure 24. Reflection coefficient S11 of KiSj (red solid-simulated
K4S1, purple dash-measured K4S1, green solid-simulated K0S1, blue
solid-simulated K4S0).

Figure 25. Gain patterns of KiSj at f1 (red-f1 = 2.137GHz-
simulated K4S1, purple-f1 = 2.078GHz-measured K4S1, green-f1 =
2.17GHz-K0S1, blue-f1 = 2.311GHz-K4S0; bold-Phi = 0◦-XOZ,
medium-Phi = 90◦-Y OZ, thin-Theta = 90◦-XOY ).

Figure 26. Gain patterns of KiSj at f2 (red-f2 = 4.1027Hz-
simulated K4S1, purple-f2 = 4.109GHz-measured K4S1, green-f2 =
4.267GHz-K0S1, blue-f2 = 4.528GHz-K4S0; bold-Phi = 0◦-XOZ,
medium-Phi = 90◦-Y OZ, thin-Theta = 90◦-XOY ).
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Figure 27. Gain patterns of KiSj at f3 (red-f3 = 5.596GHz-simulated
K4S1, purple-f3 = 5.578GHz-measured K4S1, green-f3 = 5.947GHz-
K0S1; bold-Phi = 0◦-XOZ, medium-Phi = 90◦-Y OZ, thin-Theta =
90◦-XOY ).

Figure 28. Gain patterns of KiSj at f4 (red-f4 = 7.546GHz-
simulated K4S1, green-f4 = 7.576GHz-K0S1, blue-f3 = 7.304GHz-
K4S0; bold-Phi = 0◦-XOZ, medium-Phi = 90◦-Y OZ, thin-
Theta = 90◦-XOY ).

multifractal dipole, as shown in Fig. 21 and simulate them with the
same software analysis setups. The simulated and measured results of
K4S1 KSSG dipole and simulated results of K0S1 and K4S0 dipoles
are merged into corresponding plots for discrepancy comparison and
redundancy avoidance, as shown in Figs. 23–30.

As shown in Fig. 24, the reflection coefficient curves of K4S1,
K0S1 and K4S0 seem as if they all have six true or dummy
resonant frequencies corresponding to S11 ≤ −10 dB within band
1.5GHz–14GHz. But only K4S1 has six true resonant frequencies
corresponding to S11 ≤ −14 dB and each f1n4 is lower than that of
K0S1 and K4S0 except f154. Distinctly, KiSj KSSG multifractal dipole
has more uniform and consistent impedance property and further size
reduction than its component monofractal counterparts K0Sj and
KiS0. Also as shown in Fig. 24, measured S11 (purple dash) and
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(a) (b)

(c)

Figure 29. Gain patterns of KiSj at f5 (red-f5 = 10.415GHz-
simulated K4S1, green-f5 = 10.108GHz-K0S1, blue-f4 = 9.3GHz-
K4S0, cyan-f5 = 11.004GHz-K4S0). (a) Phi = 0◦-XOZ. (b) Phi =
90◦-Y OZ. (c) Theta = 90◦-XOY .

simulated S11 of K4S1 KSSG (red solid) agree well with each other
though the former shows smaller values and slight upper shifting at
all resonant frequencies. This could be mainly imputed to large ohmic
loss of CPS and copper cladding in high frequency, substrate dielectric
permittivity εr declination, fabrication tolerance and inherent error of
the measurement systems.

Next, we will show radiation patterns of those frequencies f jni of
KiSj, which are adjacent to each other in S11 curves, as shown in
Fig. 24, in one rectangular plot for comparison, as depicted in Figs. 25–
30. In these plots, boldface, medium, lightface represents Phi = 0◦,
Phi = 90◦, Theta = 90◦ principle cut-plane respectively and red,
purple, green, blue denote simulated and measured K4S1, K0S1,
K4S0 in sequence. For distinct display of these patterns, adaptive
dynamic range is chosen for these plots, as shown in Fig. 30.

Gain patterns of KiSj KSSG at f1 and f2 are omnidirectional in
XOZ (Phi = 0◦, H-plane) and doughnut-shaped in Y OZ (Phi = 90◦,
E-plane) and XOY (Theta = 90◦), as depicted in Figs. 25, 26.
Gain patterns of K4S1 and K0S1 at f3 are also very alike, which are
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(a) (b)

(c)

Figure 30. Gain patterns of KiSj at f6 (red − f6 =
13.208GHz-simulated-K4S1, green-f6 = 13.262GHz-K0S1, blue-
f6 = 13.301GHz-K4S0). (a) Phi = 0◦-XOZ. (b) Phi = 90◦-Y OZ.
(c) Theta = 90◦-XOY .

quasi-omnidirectional in XOZ (Phi = 0◦, H-plane), cloven doughnut-
shaped in Y OZ (Phi = 90◦, E-plane) and doughnut-shaped in
XOY (Theta = 90◦). K4S1 and K4S0 are quasi-omnidirectional,
doughnut-shaped in XOZ (Phi = 0◦, H-plane), dented doughnut-
shaped, quatrefoil-shaped in Y OZ (Phi = 90◦) and dented doughnut-
shaped in XOY (Theta = 90◦, E-plane) at f4 and f3 respectively
while K0S1 is quatrefoil-shaped in XOZ (Phi = 0◦, H-plane), cloven
doughnut-shaped in Y OZ (Phi = 90◦, E-plane) and dented doughnut-
shaped in XOY (Theta = 90◦) at f4, as depicted in Fig. 28. K4S1,
K0S1 and K4S0 are quatrefoil-shaped, quasi-omnidirectional in XOZ
(Phi = 0◦, H-plane), clove doughnut-shaped, dented doughnut-shaped
in Y OZ (Phi = 90◦, E-plane) and cloven doughnut-shaped, doughnut-
shaped in XOY (Theta = 90◦, E-plane for K4S0 at f5) at f4 and
f4, f5 respectively, as depicted in Fig. 29. Gain patterns of K4S1 are
multi-peaked and multi-null, which resemble that of both K0S1 and
K4S0 at f6, as shown in Fig. 30. Gain patterns of K4S1 are more
like that of K0S1 at low frequencies f1, f2, f3 and high frequency
f6 and more resemble that of K4S0 at medium frequencies f4, f5.
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Those radiation properties of K4S1 above corroborate the intuitive
supposition that electromagnetic wave of different wavelength utilizes
the main geometry and its vertexal Koch-like sided fractal region in
low and high frequency respectively, so it both behaves like its main
mono-fractal K0S1 and minor mono-fractal K4S0.

Measured gain patterns of f1, f2 and f3 agree well with the
simulated results, as shown in Figs. 25–27. The measured radiation
efficiency of f1, f2 and f3 is tabulated in Table 3.

Measured results show that the maximum radiations are in the
vicinity of the normal direction and the radiation efficiency η decreases
with f, because loss increases in high frequency. The measured gain
patterns are very approximate to the simulated gain patterns but have
higher gain values. The K4S1 KSSG doesn’t degrade in performance
like bandwidth, gain and efficiency as the conclusions drawn for Koch
monopole in [18]. At the end, we tabulate the comprehensive electrical
properties of the KiSj dipole for summary in Table 4.

As shown in Table 4, K4S1 KSSG also has more uniform input
impedances than K0S1 and K4S0 just as it does in free space without
feedline. K4S1, K0S1 and K4S0 have almost the same gains at f1,
but K4S1 is 0.06 dBi, 0.1 dBi and 0.39 dBi, 6.48 dBi higher at f2 and
f3 than K0S4 and K4S0 respectively. E-plane transfers from Y OZ
in low frequency to XOY in high frequency because of existence of
the CPS feedline. Likewise, the frequency ratio δ decreases with
f from 3.67 in free space without feeding to 1.245 of physical case
also owing to existence of the CPS feedline. We will extrapolate
formulas of operating frequency and adjacent frequency ratio later
on. The K4S1 KSSG multifractal dipole has six matched bands
for S11 ≤ −14 dB within band 1.5 GHz–14GHz, though only three

Table 3. Measured gain and efficiency of f1, f2 and f3 (E, H-plane).

f
Gain

(E, dBi)

HPBW

(E,◦)

Gain

(H, dBi)

HPBW

(H, ◦)

Efficiency

(η )

2.08 4.27 18 4.17 — 95.66%

2.12 4.05 26 4.05 — 95.15%

2.16 3.57 24 3.29 — 93.54%

3.85 4.31 16 2.91 83.78%

3.9 4.76 13 3.13 86.06%

3.95 4.56 14 2.93 88.57%

5.55 5.82 10.8 2.29 11 82.53%

5.60 5.68 10.5 2.48 11 81.97%

5.65 5.74 10.5 2.54 11 80.49%
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Table 4. Simulated resonant properties and gain of KiSj (+Z-axis).

K4S1

f i

(GHz)

f1 f2 f3 f4 f5 f6

2.137 4.103 5.596 7.546 10.415 13.208

Rin

(Ω)
76.52 60.52 38.3 68.58 34.38 52.17

S11

(dB)
−20.3 22.45 17.28 18.11 14.47 38.30

BW

(MHz)

309,

14.46%

374

9.12%

180

3.22%

647

8.58%

282,

2.71%

543

4.11%

Gain

(dBi)
2.09 4.12 5.85 3.0 3.8 16.20

K0S1

f i

(GHz)

f1 f2 f3 f4 f5 f6

2.17 4.267 5.947 7.576 10.108 13.262

Rin

(Ω)
61.36 44.63 79.56 34.18 62.31 70.74

S11

(dB)
19.60 24.92 −12.811 −14.52 19.17 −15.30

BW

(MHz)

313,

14.42%

373,

8.74%

196

3.94%

265

3.5%

536

5.31%

600

4.52%

Gain

(dBi)
2.14 4.06 5.75 2.70 3.1 17.45

K4S0

f i

(GHz)

f1 f2 f3 f4 f5 f6

2.311 4.528 7.304 9.3 11.004 13.301

Rin

(Ω)
53.74 77.48 53.48 72.94 66.93 38.09

S11

(dB)
25.695 −12.28 −23.49 13.46 17.67 −18.615

BW

(MHz)

284,

12.29%

548

12.1%

540

7.39%

296

3.18%

394

3.58%

323

2.43%

Gain

(dBi)
2.06 3.73 0.63 1.82 −0.65 10.63

of them are commonly used: f1 = 2.137GHz (1.978 GHz–2.287 GHz,
309MHz, 14.46%, PCS1900+UMTS+IMT−2000), f2 = 4.103GHz
(3.916GHz–4.29GHz, 374 MHz, 9.12%, WiMAX), f3 = 5.596GHz
(5.499GHz–5.679GHz, 180MHz, 3.22%, WLAN + WiMAX).

We assumed that KiS1 KSSG operates as a ζg
ni times half-

wavelength dipole with half arm length of Larm. Instinctively, Larm

comprises some fractal side length of KiS1 and a part of LCPS−lCPS =
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3.2mm (CPS width, gap and CPS–Bow-tie joint segment), we can
derive the following formulas.

2 · Larm = ζg
ni ·

λg
ni

2
= ζg

ni ·
λ0

ni√
εr

2
=

ζg
ni√
εr
· λ0

ni

2
(12)

Larm = lCPS +
(
γ1
ni · Sni + $1

ni ·Bni

)
(13)

f1ni =
ν

λg
ni

=
c0√
εr

λ0
ni√
εr

=
c0

4 ·
(

ζg
ni√
εr

)−1
·
[
lCPS +

(
γ1
ni · Sni + $1

ni ·Bni

)]

=
c0

4·
(

ζg
ni√
εr

)−1
·
[
lCPS+

(
β1

ni ·χ
Ψ1

ni
−1√

εr

)
·σi ·B0 ·

(
γ1
ni · 1

2·cos θ +$1
ni

)
] (14)

(lCPS = 3.2mm; ζg
ni = 1, $1

ni = 0, γ1
1i = 2, γ1

ni = 1;

n = 2,3 . . . [1 + i · √εr]m ; β1
1i = 0.611, β1

2i = 0.542,

β1
3i = 0.92, β1

4i = 1.47, β1
5i = 0.672, β1

6i = 0.615;
Ψ1

1i=Ψ1
2i=1; Ψ1

3i=2; Ψ1
4i=Ψ1

5i=3; Ψ1
1i=4; Ψ1

ni=[1+i·√εr]m)

According to formulas (13) and (14), we get adjacent frequency ratio:

δni=

[
lCPS+

(
β1

ni · χ
Ψ1

ni−1√
εr

)
·σi ·B0 ·

(
γ1
ni · 1

2·cos θ +$1
ni

)
]

[
lCPS+

(
β1

(n+1)i ·χ
Ψ1

ni
−1√

εr

)
·σi ·B0 ·

(
γ1

(n+1)i · 1
2·cos θ +$1

(n+1)i

)] ,(15)

in which v is velocity of wave in substrate, λg
ni, λ0

ni are wavelength
of f1ni in substrate and free space respectivel, ζ1

n4 (= 1, 2 . . . n) is
coefficient of half-wavelength, which has similar definition with ζ1

nj

and ζ1
ni in formula (13) and (14), here ζ1

n4 = 1 denotes K4S1 KSSG
operates as a half-wavelength dipole, γ1

ni = 1, 2 is number of isosceles
unit cell got across by λg

ni and Sni is its corresponding length on the
lateral side, $1

ni, Bni is the proportional coefficient of length of λg
ni

on base side and its overall length in several and $1
ni = 0 means that

end or fringe field is infinitesimal on base sides, B0 = 14.75mm is
base side length of the isosceles triangle unit cell, LCPS = 40 mm is
the length of the CPS feedline, Ψ1

ni = b1 + i · √εrcm denotes ceiling
integer exponent of fractal scale ratio χ and β1

ni is its coefficient. The
extrapolated formulas above for K4S1 KSSG are also applicable to its
monofractal counterpart K4S0 but the arguments should have another
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Table 5. Calculated f1ni and frequency ratio δ1
ni of K4S1.

f i (GHz) f1 f2 f3 f4 f5 f6
Sim 2.137 4.103 5.596 7.546 10.415 13.208
Cal 2.03 4.112 5.614 7.542 10.461 13.185
δn − 2.026 1.365 1.343 1.387 1.261

(Note: Sim-simulated, Cal-calculated)

set of appropriate values as follows:

(B0=29.5mm; ζg
ni=1, $1

ni=0, γ1
ni=1; β1

1i=0.576, β1
2i=0.655,

β1
3i=0.806, β1

4i=1.272, β1
5i=0.771, β1

6i=0.745; Ψ1
1i=1;

Ψ1
2i=2; Ψ1

3i=3; Ψ1
4i=Ψ1

5i = 4; Ψ1
6i=5; Ψ1

ni=[1 + i · √εr]m)

According to formulas (13) and (14), f1ni and their adjacent ratio δ1
ni

of K4S1 are calculated and the results are tabulated in Table 5.
As shown in Table 5, calculated f1ni is very approximate to

simulated f1ni and the relative error is less than 5%. So, the supposition
that K4S1 KSSG behaves like a half-wavelength dipole in multi-bands
is reasonable and accurate. It also clearly revealed that adjacent ratio
δ1
ni is very close to the fractal ratio τ−1 = 2 of K0S1 in low frequency

and approaches to fractal ratio β1
ni ·χ

1−Ψ1
ni√

εr = β1
ni ·( 2·α

α−1)
Ψ1

ni−1√
εr of K4S0

in high frequency.

4. CONCLUSION

The monofractals Sierpinski Gasket and Koch-like curve have coalesced
into one multifractal in manner of main-minor, forming so called
Koch-like sided Sierpinski Gasket multifractal dipole KiSj KSSG.
It has been investigated in free space without feedline for unveiling
multifractal traits by simulation with Ansoft HFSSTM v.13. Then
a pragmatic multifractal dipole K4S1 KSSG with CPS feeding is
designed, fabricated and measured. Compared with its monofractal
counterparts K0S1 and K4S0, K4S1KSSG not only manifests more
uniform impedances and more prominent size reduction but also
reserves their merits and surmounts their demerits simultaneously.
It behaviors like the main fractal in low frequency and resembles
the minor one in high frequency. The multifractal antenna is
closely relevant to its component monofractals’ properties and their
combinative way. Consistent results are acquired from measurement
and simulation of the physical K4S1 KSSG. Six matched bands
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with moderate gain (2 dBi–6 dBi) and high efficiency(75%–95%) are
obtained within band 1.5 GHz–14GHz, of which f1 = 2.137GHz
(14.46%), f2 = 4.103GHz (9.12%), f3 = 5.596GHz (3.22%) are
generally useful. All the bands are almost omnidirectional or quasi-
omnidirectional in H-plane (Phi = 0◦, XOZ) and doughnut-shaped or
dented doughnut-shaped in E-plane (Phi = 90◦, Y OZ or Theta=90◦,
XOY ), which denotes better gain patterns and higher gains than that
of [19–22] at f1, f2, and f3 respectively. So it is attractive to PCS, IMT-
2000, UMTS, WLAN, WiFi, WiMAX and other wireless multiband
communication systems.

Multifractal antenna is not simply combined with several
different monofractals as in [20] and it has brought forth significant
advantages over its monofractal counterparts, such as multiband with
multiple frequency ratios, further dimension shrinkage and directivity
enhancement. Therefore, it deserves to be ulteriorly explored and
developed.
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