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LINEAR DIFFUSION INTO A FARADAY CAGE
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Abstract—In this paper, linear lightning diffusion into a Faraday
cage is studied. The high-altitude Electromagnetic Pulse (HEMP) and
nearby lightning are used as examples for a uniform field drive and the
direct-strike lightning adjacent to the enclosure is used as a worst-case
configuration of a line source excitation. The time-derivative of the
magnetic field (HDOT ) inside the enclosure for a uniform field drive
with a decaying exponential waveform is analyzed and numerically
determined. The physically relevant time-derivative of the magnetic
field and voltage characterizations of an optimum coupling loop inside
the enclosure for a decaying exponential waveform in a worst-case line
source coupling configuration are numerically determined. First, the
impulse and the unit step response peaks are shown to bound the
decaying exponential peaks. Next, a simple fit function for a decaying
exponential peak HDOT or a voltage bound for a single-turn loop
inside the Faraday cage is constructed from peak responses of the
unit step and impulse limiting cases. Excitations used are from (1) a
uniform field drive of HEMP or nearby lightning and (2) a line source of
direct-strike lightning. Comparisons of HDOT and voltage bounds of
the fit function and actual numerical evaluations are given in Table 3.

1. INTRODUCTION

An impulse is typically used as an idealized waveform for
approximating a HEMP when treating the magnetic diffusion into a
metallic enclosure [1]. A unit step on the other hand is typically used to
calculate the maximum voltage induced on an optimum coupling loop
inside a metallic enclosure and on the opposite side of the enclosure
wall by lightning [2]. The rationale of these treatments is clear. A
thick enclosure wall allows the use of an impulse; a thin wall needs to
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Table 1. ατd values for different enclosure wall thicknesses and for
different lightning decay constants.

∆ (wall

thickness

in inches)

τd (= ∆2µρ)

for 6061

Aluminum Alloy

ατd

α = 3466

(1% lightning)

α = 13864

(50% lightning)

1/2 5.27ms 18.27 73

1/4 1.32ms 4.567 18.27

1/8 329 µs 1.142 4.567

1/16 82 µs 0.2855 1.142

1/32 21 µs 0.0714 0.2855

use a unit step. The questions that arise in deciding which approach
to take are, “What is the quantitative criterion for determining which
one is more accurate? What is the relevant parameter? What errors
are incurred if the criterion is violated?”

The parameter most relevant to the diffusion penetration is the
diffusion time (τd = ∇2µσ) of the enclosure wall where µ, σ and ∆
are the permeability, conductivity and thickness of the wall material.
Table 1 lists various ατd where α is the decay constant of the lightning
waveform. All of these thicknesses are used in various aerospace
applications. The table shows that the diffusion time is both large and
small compared to the fall time of the lightning waveform, depending
on the thickness, so that neither the impulse approximation, nor the
step-function approximation is universally valid. Use of very thin
conducting foils for shielding Electronics is very common; in this case,
the unit-step model is quite adequate.

The decaying exponential waveform characterizes the principal
energy contribution of naturally occurring physical phenomena, e.g.,
lightning. The decaying exponential response closely describes the
transient behavior and is the response of interest in many physical
problems. The decay constant α is inversely proportional to the fall
time of the waveform. Therefore, ατd is proportional to the ratio of
diffusion time to the fall time and is the transition parameter. Limiting
cases are simple and easier to calculate and serve as useful models.
When α → 0 and the fall time goes to infinity, the decaying exponential
becomes a unit step that contains low frequencies. This is considered a
thin limit because low frequencies penetrate the enclosure wall. When
α → ∞ and the fall time goes to zero, the decaying exponential
becomes an impulse that contains high frequencies. In the thick limit,
we consider how high frequencies penetrate the wall.
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2. APPROACH

The Laplace transform of the enclosure interior field for a decaying
exponential waveform in a normalized time (t/τd) is the product of

1
ατd+s′ and the impulse response transform [3]. In the time domain,
we can denote the decaying exponential enclosure interior field as He

in,
where superscript “e” represents decaying exponential and subscript
“in” represents interior. As ατd → 0, He

in becomes Hs
in, which is the

unit step enclosure interior field. The subscript “s” represents unit
step. This is the thin limit and the penetrant interior magnetic field has
a wide pulse. On the other hand, as ατd →∞, He

in becomes H i
in/(ατd).

H i
in is the impulse enclosure interior field and subscript “i” represents

impulse. Note that 1/(ατd) is the moment of the time domain moment
of the impulse. This is the thick limit and the penetrant interior
magnetic field has a comparative narrow pulse. This consideration
applies to the time-derivative magnetic field or the induced voltage on
a loop inside the enclosure.

We vary ατd through the transition range from thin to thick.
Figure 1 illustrates the peak interior HDOT for nearby lightning
enclosure interior fields. Strictly speaking, the unit step response is
only valid for ατd = 0 and the impulse response is only valid for
ατd →∞; however, each of the models can be used to approximate the
problem under study. The peak HDOT determines the peak induced
voltage and therefore we will emphasize HDOT in our discussion. For
voltage calculations in an externally uniform field drive like HEMP
and nearby lightning, the spatial variation of the nearby lightning H
and HDOT inside the enclosure is assumed to be constant. For direct
strikes, the spatial variation of the HDOT waveform is, in general,
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Figure 1. This figure shows the peak decaying exponential response
compared to the peak unit step and the peak impulse responses for
nearby lightning.
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unknown and therefore the direct calculation of a voltage bound is
also included.

The HDOT and the loop voltage are of the greatest significance
in shielding and are the main parameters of our discussion.

3. MAIN RESULT

First, we note that both unit step and impulse responses give bounds
for the decaying exponential response: Convolution integrals and
elementary Calculus are used to prove two inequalities.

HDOT s
in(t)−HDOT e

in(t) =
∫ t

0

[
1− e−αt′

]
HDOT i

in

(
t− t′

)
dt′

=
[
1− e−αt0

] ∫ t

0
HDOT i

in

(
t′
)
dt′ >

[
1− e−αt0

]
HDOT s

in(t) > 0. (1)

HDOT i
in can only be negative after HDOT s

in (t) already attains the
peak and therefore the integrand in (1) is strictly positive for the range
of interest. The key step is the application of the mean-value theorem
for integrals where 0 < t0 < t [4]. Also,
HDOT e

in(t) =∫ t

0
e−α(t−t′)HDOT i

in(t
′)dt′<HDOT i

in(tp)
∫ t

0
e−α(t−t′)dt′<

1
α

HDOT i
in(tp), (2)

where tp is the time corresponding to peak HDOT i
in. From (1) and (2),

peakHDOT e
in<peak HDOT s

in; peak HDOT e
in<

1
α

peakHDOT i
in. (3)

Note that, if normalized time t/τd is used as an independent variable,
the only modification to (3) is the replacement of α by ατd.

Next, we compared the unit step, impulse, and decaying
exponential responses and found that approximate HDOT peaks for
decaying exponentials can be obtained by combining the unit step
coupling and the impulse coupling (treating them as independent,
for the former is dominated by low frequencies and the latter is
dominated by high frequencies). A parallel “combination” of the unit
step coupling and the impulse coupling yields an approximate formula
for peak HDOT :

1
HDOT e

in

=
1

HDOT s
in

+
1

HDOT i
in

, (4)

where superscript “e” is for decaying exponential, superscript “s” is
for unit step and superscript “i” is for impulse and subscript “in” is
for interior field.
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The inequalities (3) and the approximate fit function (4) are
applicable to other physical quantities such as voltage bounds.

3.1. An Example of Fit Function for Uniform Field Drive

Figure 1 shows the peak decaying exponential response compared to
the peak unit step and the peak impulse responses for nearby lightning.
Note that 0.8876 is the peak response of coupling from the unit step,
5.7118 is the slope of the peak response of the coupling from the unit
impulse and 1/(ατd) is the impulse moment. These numerical values
are obtained from solving the limiting cases. Note the unit step and
impulse intersect at ατd = 6.4351 where each waveform overestimates
the peak derivative compared to the decaying exponential†. ξ = 6.088
is used for obtaining peak responses. The scale factor ξτd is the product
between the enclosure geometric factor (defined as ξ = µ0

µ
V

S∆) [1] and
diffusion time. As an example, we consider a cylindrical enclosure
with diameter of 2a = 2 ft (0.61 m), length of b = 6 ft (1.83 m) and
∆ = 20 mils (0.5 mm), ξ = 257.3. Scaled peak responses are not very
sensitive to the ξ value. In [3], small variations for different ξ’s are
discussed.

The approximation in Figure 1 makes use of (4) in combining the
unit step contribution with the impulse contribution.

Peak HDOT e
in(ξτd/Hex) ≈ 1

1
0.8876 + ατd

5.7118

. (5)

At the intersection value of ατd (6.4351), the error is approximately a
factor of 2 in either the impulse or step responses. Large errors can
incur if the unit step is applied to the thick wall (ατd is large) or if the
impulse response is applied to thin wall (ατd is small). HEMP has a
decay constant α = 4× 106 [5]. The intersection point corresponds to
τd = 1.61µs, or approximately 9mil (0.23 mm) aluminum foil. For
the impulse response to be accurate, the enclosure wall has to be
at least 20 mils (0.5mm) in thickness. Note that ξτd = ∆µ0σV

S is
proportional to ∆ and therefore the peak HDOT for a unit step is
inversely proportional to ∆.

Consider now a HEMP (Electric FieldPeak = 50 kV/m and
Magnetic FieldPeak = 133A/m) incident on the cylindrical enclosure
discussed before (2a = 0.34m and b = 1.83m). We assume a wall
thickness of ∆ = 20 mils (0.5 mm), a magnetic field perpendicular to
the axis of the cylinder, and an optimum coupling loop oriented to
capture a maximum penetrant magnetic flux. The induced voltage
† The corresponding intersection for peak H response is ατd = 0.1458. An adequate
formula for describing HDOT may not be adequate for describing H and vice versa.
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is the time derivative of the magnetic flux through the loop. Let
us use an impulse model as shown in Figure 1. The 5 mm (20 mil)-
aluminum alloy wall has τd = 8.4µs, ατd = 33.6 and the geometric
factor ξ = 257.3,

V = µ0
dH

dt
2ab = µ0HDOT in2ab =

µ0Hex

ξτd

5.7118
ατd

2ab ≈ 14.5mV.

Equation (2) for calculating the voltage of a decaying exponential
waveform gives 12.2mV.

Similarly, let us assume that the peak magnetic field from the
nearby lightning is 320 A/m. Using the same cylindrical enclosure for
the HEMP problem, the induced voltage for the maximum coupling
loop as defined before is 35 mV for the impulse model and 29.3 mV for
the more accurate decaying exponential.

3.2. An Example For Line Source

The direct lightning model assumed is one for which the lightning
current is adjacent to the enclosure but electrically insulated from the
enclosure (Figure 2) [2]. The lightning channel may have high potential
and the assumed lightning line source is not easily realizable for a small
separation between the lightning carrying cable and the enclosure.
However, the worst-case coupling can be approached when lightning
strikes a well-insulated cable that is isolated from the enclosure but
their separation is sufficient to withstand the high potential. The
relevancy of the model should be based on the potentially physical
configuration that might be susceptible to this particular threat.

Figure 2. Direct lightning strike to an insulated cable parallel to the
enclosure wall and a maximum coupling loop.
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Figure 3. HDOT peak (ρ = ∆) for the decaying exponential and an
approximation are compared to the unit step and impulse responses
(µ = µ0).

Peak HDOT for a direct strike next to the enclosure is given
in Figure 3. This figure is used to determine the maximum voltage
induced on an optimally coupled loop. The unit step coupling peak is
0.2516 and the slope of the unit impulse coupling peak is 4.1608. The
approximation in Figure 3 makes use of (4) for and ρ = ∆ and µ = µ0

as

Peak HDOT e
in(τd∆/I) ≈ 1

1
0.2516 + ατd

4.1608

. (6)

Here “I” is the direct strike peak current. Peak HDOT for a unit step
is inversely proportional to ∆.

Note that the intersection of the unit step and the impulse peaks
occurs at ατd = 16.5374 (Figure 3). For 1-percentile lightning, the
decay constant is determined to be α = 3466. A 1/2-inch aluminum
wall thickness has ατd = 18.27 (Table 1). At this value of ατd, 1.83 m
(6 ft) is b as defined in Figure 2.

V <

∫ ∞

∆
µ0HDOT in|ρ=∆

∆2bdρ

ρ2
= µ0HDOT in|ρ=∆b∆

=
µ02× 105

0.00527
0.2516× 1.83 ≈ 21.95V (7)

for the unit step case. The spatial dependence of 1
ρ2 is assumed for

this unit step example. Equation (6) gives 10.4 V for the decaying
exponential.

HDOT values in the enclosure indicate what induced voltage on
a given loop might be. However, because the spatial dependence of
the HDOT for a general excitation is unknown, the induced loop
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Figure 4. Peak voltage bound for direct strikes.

voltage waveform (that is the integration of the HDOT waveform on
the loop area) cannot be accurately calculated. The voltage bound
on an optimally coupled loop is a useful alternative for describing the
enclosure interior direct strike lightning coupling (Figure 4). Note the
close agreement between the unit step response of 0.2516 for HDOT
(Figure 3) and the unit step response 0f 0.2552 for the voltage bound
(Figure 4). This is because the HDOT for the unit step has an
approximate spatial variation of (≈ 1

ρ2 ). The voltage bound in this
case is inversely proportional to ∆2.

Note that the intersection of the peak unit step voltage and the
peak impulse voltage occurs at ατd = 11.4263. Nevertheless, the
unit step induced voltage for the direct strike problem (Figure 2) just
discussed can be calculated by (Figure 4)

V = 0.2552
µ0

τd
Ib ≈ 0.2552× µ0

0.00527
2× 105 × 1.83 ≈ 22.27V

The peak impulse voltage (Figure 4) is somewhat smaller than the
voltage obtained from peak HDOT (Figure 3) because HDOT from
the impulse drops off much faster than 1

ρ2 . The approximation in
Figure 4 is a formula similar to (6):

V τd/µ0Ib ≈ 1
1

0.2552 + ατd
2.916

. (8)

The more accurate decaying exponential voltage bound (8) gives V ≈
0.0982µ0Ib

τd
≈ 8.57V.

HDOT for ρ = ∆ that gives the maximum induced voltage of
an optimally coupled loop is a universal response and can be scaled
for any enclosure wall thickness ∆: The impulse solution is scaled by
(τd)2∆ and thus is inversely proportional to ∆5. Similarly, the unit step
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HDOT solution is inversely proportional to ∆3. The corresponding
induced voltage is scaled ∆−4 by for the impulse and ∆−2 for the
unit step, which agrees with voltage bound (8). As an example, the
induced voltage (4) for a 1/8-inch (3.175-mm) aluminum enclosure
(ατd = 1.142) with the same geometry and 1/8-in wall thickness is
V ≈ 0.232µ0Ib

τd
≈ 324V.

We must emphasize at this point that there is no reliable way
to know which one of the two models (the unit step or impulse) to
use because the intersection point in Figures 1, 3 and 4 cannot be
determined a priori. For example, how do we know ατd of 1.142 is too
small for using the impulse model? If the impulse model is used for
calculating the peak voltage bound, the resulting estimated voltage is
approximately a factor of 11 too high.

The procedure for deriving the approximate expression (4) for the
enclosure interior peak HDOT as a function of ατd can be used to
address this situation. When both the unit step and impulse HDOT
are known, an accurate fit function is available for use. Furthermore,
the technique of using a fit function is applicable to other diffusion
problems. For instance, the insulated conductor that is struck by
lightning can be only a small distance away from the enclosure. In this
case, solving for the unit step and impulse responses is considerably
simpler than the decaying exponential response. The fit function for
decaying exponentials can thus be constructed with the simpler unit
step and impulse responses.

4. FIT FUNCTIONS FOR PEAK RESPONSES

Let us summarize the fit functions (5), (6) and (8) as

ge =
1

ατd
l + 1

m

, gi =
l

ατd
, gs = m. (9)

where the subscript “e” for the decaying exponential, “i” for impulse
and “s” for unit step and the parameters given in Table 2. “b” is the
length of the loop in the direction of the lightning current as defined
in Figure 2.

The 1st, 2nd and 6th row of data in Table 2 correspond to fit
functions (5), (6) and (8), respectively. In Table 2, the numerical
values l for are obtained from peaks of impulse responses, and those
for m are from peaks of unit step responses, respectively.

Figure 5 as summarized in the 3rd row of data (ρ = 10∆) in
Table 2 is relevant to the coupling loop located away from the enclosure
wall. The intersection of the unit step and the impulse peaks occurs
at ατd = 7.15, which is not very different from the nearby lightning
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value shown in Figure 1 but very different from the direct strike value
for ρ = ∆ (Figure 3). The closeness of these values in these two cases
is closely related to the pulse widths of their unit step and impulse
HDOT responses.

Table 2. Parameters for approximate formula (9) for peak HDOT
and voltage bounds.

Environment
Physical

Quantity
Field point Permeability

Approximation Parameters

Nearby
 

Lightning HDOT

Everywhere
inside

enclosure
5.7118 0.8876

Direct 

Lightning
HDOT

 
4.1608

 
0.2516

Direct 

Lightning 
HDOT

    2  
 

 
2.0997

 
0.2938

Direct 

Lightning 
HDOT

 
4.7065 0.2281

Direct 

Lightning 
HDOT

 2
11.8978 1.1272

Direct 

Lightning 

Voltage 

Bound 

Single-Turn

 Loop 
2.916 0.2552

Direct 

Lightning 

Voltage 

Bound 

Single-Turn

 Loop 
6.949 0.5167

≤

 

 

µ 10 0
µ

τdξ

 

HDOTin

Hex

g l m

ρ = ∆ =µ
0

µ

ρ = 10 ∆

τdHDOTin

I

∆

=µ
0

µ
τdHDOTinρ

I ∆

ρ = ∆ =µ 0
10µ

τdHDOTin

I

∆

τdHDOTinρ

I ∆
ρ = 10 ∆ =µ 0

10µ

=µ
0

µ

=µ 0
10µ

µ Ib0
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Figure 5. HDOT peak at ρ =
10∆ for decaying exponential and
an approximation are compared
to those of the unit step and the
impulse excitations (µ = µ0).
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Figures 6 and 7 or Row 4 and 5 of data in Table 2 give the
corresponding comparison for µ = 10µ0 and are applicable to magnetic
steel with low permeability. Figure 8 gives the peak voltage bounds
for µ = 10µ0.

5. NUMERICAL RESULTS

The detailed analysis that leads to the numerical results reported in
this section is given in [3]. For a magnetic uniform field drive, residue
expansions of Bedrosian and Lee [1, 6] of the transient magnetic field
transfer function into a metallic enclosure are numerically evaluated to
give the enclosure interior magnetic field and its time derivative caused
by a decaying exponential excitation.

For a direct strike scenario, the previous enclosure interior
solutions for a worst-case line source configuration shown in Figure 2 [2]
are extended to obtain numerical results for the magnetic field, its time
derivative and the voltage bound for an optimally coupled single-turn
loop inside the enclosure for a decaying exponential waveform. Table 3
provides the actual numerical value followed by the value from the fit
function for various HDOT and voltage bounds.

The loop voltage of the HEMP example given previously was
estimated to be 12.2 mV using the fit function (2). Notice the
discrepancy between the actual numerical value and the approximation
for ατd = 30 is 2% higher for the actual numerical value, resulting in
a more accurate loop voltage 12.4mV.

The loop voltage of the lightning problem for 1/2-in enclosure
is estimated from (7) to be 8.57 V. The discrepancy between the
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numerical value and the approximation for a voltage bound with
ατd = 20 is 1.6% higher for the numerical value, resulting in a loop
voltage of 8.69 V.

Fit functions of peak H for nearby and direct lightning have also
been constructed [3]; however, they are not as accurate as (6) for
HDOT.

Table 3. Comparison of HDOT and voltage actual peaks with
approximate formula (9). The actual peak is followed by the
approximation indicated by (A) in each data entry.

 

value 

Nearby

HDOT 

Peak 

Direct
HDOT 
Peak 

Direct
HDOT

 

Peak

Direct
HDOT

Peak
 

, 

Direct

HDOT
 

Peak

Direct 

Voltage 

Bound 

Direct 

Voltage 

Bound 

0.05
 0.8730 

0.8808 (A)

0.2507 

0.2508 (A)
 
 

0.2904 

0.2918 (A) 
 

0.2275 

0.2275
 
(A)

1.1208 

1.1219
 
(A)

 
0.2537 

0.2541
 
(A)

 
0.5142 

0.5148
 
(A)

 

0.066
 0.8688 

0.8786 (A)
 

0.2504 
0.2506 (A)

0.2894 

0.2911 (A)
 

 

0.2273 

0.2274
 
(A)

1.1182 

1.1202
 
(A)

 
0.2532 

0.2537
 
(A) 

0.5134 

0.5142
 
(A)

 

0.1
 0.8602 

0.874
 
(A)

0.2498 

0.2501 (A)
 

 

0.2871 

0.2897 (A)
 

0.2269 

0.2270
 
(A)

1.1138 

1.1166
 
(A)

 
0.2522 

0.253 (A)
 

0.5117 

0.5129
 
(A)

 

0.2
 

0.8371 

0.8608 (A)
 
 

0.2480
 

0.2486 (A)  

0.2811
 

0.2858 (A)
 

 

0.2257
 

0.2259
 
(A)

1.1005
 

1.1062
 
(A)

 
0.2492

 

0.2508
 
(A)

 
0.5069

0.5091
 
(A)

 

0.33

 
0.8103

 

0.8443 (A) 

0.2458 

0.2467 (A)
 

 

0.2739
 

0.2808 (A)
 

 

0.2242
 

0.2245
 
(A)

1.0839
 

1.0930
 
(A) 

0.2455
 

0.248
 
(A)

 
0.5009

 

0.5053
 
(A)

 

0.5
 0.7805 

0.8236 (A)

0.2430 

0.2442 (A)
 

 

0.2654 

0.2746 (A)  

0.2221 

0.2227
 
(A)

1.0636 
1.0762

 
(A)

 
0.2410 

0.2445
 
(A) 

0.4933 
0.4982

 
(A)

 

0.66 0.7562 

0.805 (A)
0.2403

 

0.2419 (A) 
 

0.2581
 

0.269
 
(A)

0.2203 
0.2210 (A)

1.0458
 

1.0609
 
(A)

 0.2371
 

0.2413 (A)
 0.4865

 

0.4925
 
(A)

 

1 0.7111
0.7682 (A)

 
 

0.2351 
0.2373 (A) 

0.2446 
0.2577 (A)  

0.2166 
0.2176

 
(A)

1.0097 
1.0297

 
(A)

 0.2292 
0.2347

 
(A)

 0.4730 
0.4809

 
(A) 

2
0.6155

0.6771 (A)
 

0.2214

0.2245 (A)
 

 

0.2144

0.2296 (A)
 

 

0.2066
 

0.2079
 
(A)

0.9220
 

0.9476
 
(A)

 
0.2099

 

0.2172
 
(A) 

0.4389
 

0.4498
 
(A)

 

3.3
0.5325

0.5867 (A) 

0.2064
 

0.2097 (A)
 

 

0.1871
 

0.201
 
(A)

0.1951
 

0.1966
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6. CONCLUSIONS

Faraday cages constructed as metallic enclosures must be evaluated
for their attributes of shielding effectiveness against external electrical
insults. In the case of transient insults such as HEMP and lightning,
the enclosure interior HDOT and voltage induced in a loop inside the
enclosure are the most direct attributes for characterizing shielding.

Fit functions of peak HDOT for a uniform magnetic field drive
(such as nearby lightning) and for a line source (such as lightning
attached to a metallic cable that is insulated from the enclosure) have
been shown to give an accurate approximation to the actual numerical
calculation. Fit functions of voltage bounds for a single-turn optimum
coupling loop for a line source (such as from direct strike lightning)
have been found to be accurate. These functions can be constructed
from the unit step peak and impulse peak, which are considerably
easier to obtain than the peak from a decaying exponential waveform.

These simple fit functions provide yardsticks for shielding
effectiveness characterizations of metallic enclosures of varying
thicknesses.
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