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Abstract—This paper present a fast algorithm for synthetic aperture
radar (SAR) image segmentation based on the augmented Lagrangian
method (ALM). The proposed approach considers the segmentation
of SAR images as an energy minimization problem in a variational
framework. The energy functional is formulated based on the statistical
characteristic of SAR images. The total variation regularization is
used to impose the smoothness constraint of the segmentation result.
To solve the optimization problem efficiently, the energy functional
is firstly modified to be convex and differentiable by using convex
relaxing and variable splitting techniques, and then the constrained
optimization problem is converted to an unconstrained one by using the
ALM. Finally the energy is minimized with an iterative minimization
algorithm. The effectiveness of the proposed algorithm is validated by
experiments on both synthetic and real SAR images.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) can penetrate clouds and work
in nighttime, which make it becomes an important tool in remote
sensing field [1]. SAR images have been applied to increasingly wide
fields such as land cover classification [2], target detection [3] and
information retrieval [4]. Segmentation is a key step for interpreting
Synthetic Aperture Radar (SAR) images [1]. Many applications
require segmenting of the SAR images for further processing. Although
many approaches have been proposed to deal with it, SAR image
segmentation is still a challenge task due to the complexity and low
quality of SAR images.

Received 12 January 2012, Accepted 23 March 2012, Scheduled 3 April 2012
* Corresponding author: Zongjie Cao (zjcao@uestc.edu.cn).



374 Feng, Cao, and Pi

Using of variational methods in image segmentation has been
popular in past decades [5–8]. Because variational models can combine
image information and prior information in a unified framework, the
segmentation results are more robust compared to some classical
methods. Furthermore, variational methods have solid theoretic
foundation, and mature mathematical tools can be used to formulate
and solve segmentation problems.

In general, to develop a variational approach for image
segmentation, the energy functional is firstly defined by using various
image features [9]. The minimum of the energy functional corresponds
to the desired segmentation of images. Thus the problem of image
segmentation is equal to an energy minimization problem. The
performance of a variational segmentation approach is decided by two
factors: the ability of used features to describe the image characteristics
and the efficiency of the optimizing method that used to minimize
the energy functional. The first one decides the effectiveness of the
segmentation approach, and the second one decides the efficiency of
the algorithm.

For SAR image segmentation, the statistical property of SAR
image intensity or amplitude is often used to distinguish different
regions. In [10, 11], Gamma distribution based variational active
contour models for SAR image segmentation are presented. The
authors of [12] also consider using the Weibull model. The mixture
of Log-Normal model is used to separate land and water in SAR
images [13]. In this paper, instead of using those models, we use the
G0 model to fit SAR data [14–16]. The reason is that among various
statistical models, the G0 model shows to be a very flexible one which
can describe all kinds of surfaces. It is particularly suitable when
SAR images become very heterogeneous, for example, when urban area
presents in the image or the resolution is high.

Besides the definition of energy functional, another problem is how
to minimize it. The efficiency of SAR image processing algorithms
becomes an important issue as the rapidly increase of the amount of
SAR data. Especially, application of new sensors with high-resolution
cause that even one image has huge amount of data. Fast SAR
image processing approaches are urgently required. For variational
image segmentation, the level set method [18] is prevalent since it
emerged in 1980’s. However, the speed of the standard level set
method is slow, which is a main obstacle for real applications [19].
Recently, there is a trend to develop efficient optimizing methods
for variational image processing approaches [20–23]. Among various
methods, the class of finding global minimum of variational models
has drawn much attention [22, 23]. As the original energy functionals
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are generally non-convex and non-differentiable, they are hard to
be minimized directly. In [22, 23], the original energy functional is
firstly converted to be convex and differentiable. After the converting,
matured convex optimizing tools can be used to minimize the converted
energy functional efficiently.

In this paper, we present a fast variational SAR image
segmentation approach based on the G0 model and the ALM. Based
on the G0 model, a variational SAR image segmentation model which
uses a total variation regularized maximum likelihood formulation
is proposed. Thanks to the flexibility of the G0 model, the
proposed approach can deal with SAR images with different degrees of
homogenous. Then a variable splitting technique is combined with the
ALM to minimize the energy functional. The efficiency of the ALM for
inverse problems in image processing has been demonstrated [24, 25].
In this paper, we use the ALM to minimize the defined segmentation
energy functional.

The rest of the paper is organized as follows. The SAR image
segmentation problem is formulated in Section 2, in which the G0

model is briefly introduced and the energy functional is defined. In
Section 3, the ALM for constrained optimizing problems is reviewed. In
Section 4 we present the proposed SAR image segmentation approach
with detailed algorithm description. Section 5 provides results and
discussion on both synthetic and real SAR images. Finally, this paper
is concluded in Section 6.

2. VARIATIONAL SAR IMAGE SEGMENTATION
MODEL

2.1. The G0 Model of SAR Images

Due to the coherent imaging mechanism, SAR images are inevitably
corrupted by speckle noise. The existence of the inherent speckle noise
degrades the quality of SAR images. It blurs the edges and decreases
the contrast between different regions. Moreover, the multiplicative
and non-Gaussian nature precludes the adopting the state-of-the-art
algorithms that designed to deal with optical images, in which the
noise is often assumed to be additive Gaussian. To develop robust
and effective algorithms for SAR image segmentation, the statistical
property of SAR images must be taken into account.

Statistical modeling of SAR images has been an important
research field for more than thirty years [1]. Goodman derived several
models for SAR images: the Rayleigh distribution for single-look
amplitude images, the Nakagami distribution for multi-look amplitude
images and the Gamma distribution for multi-look intensity images.
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Although those models are prevalent in early years, they are limited to
low and middle resolution SAR images of homogenous surface. Many
other models have been proposed for SAR images, such as the Log-
normal distribution, the Weibull distribution and the K distribution.
However, none of them are flexible enough to model all kinds of
surfaces. In this paper, we use the G0 model to describe the statistical
property of SAR images. The probability distribution function of the
G0 model for amplitude and intensity SAR images can be written
as [14]:

Applitude : pG0
(z)=

2LLΓ(L−α)z2L−1

γαΓ(L)Γ(−α)(γ+Lz2)L−α
− α, γ, L, z > 0

Intensity : pG0
(z)=

LLΓ(L−α)zL−1

γαΓ(L)Γ(−α)(γ+Lz)L−α
− α, γ, L, z > 0

(1)

where L is the number of the looks, γ is the scale parameter, and α
is the parameter related to the homogeneity of the observing scene:
more heterogeneous scene has bigger value of α. The G0 model
has been proven to be a flexible model which can model areas with
different degrees of homogeneity. Especially, it has the ability to model
extremely heterogeneous areas, for which other distributions have bad
fitting performance.

In real applications, the parameters of the G0 model must be
estimated from the data. Although the moment based parameter
estimation method in [14] can be used, but the range of the parameter
is constrained, i.e., only in case of α < −2 correct estimation can
be obtained. That will eliminate the advantage of G0 model to
describe images of extremely heterogeneous areas. Instead of using
moments, the log-moment based estimator has excellent performance
in multiplicative situations [16]. We adopt this method to estimate
the parameters of the G0 model. The parameters of G0 model can be
estimated by solving the following nonlinear equations:




ln(γ/L) + ψ(L)− ψ(α) = c1

ψ1(L) + ψ1(−α) = c2 − c1

ψ2(L)− ψ2(−α) = c3 − 3c1c2 + 2c3
1

(2)

where ψ(s) = d ln Γ(s)/ds is the digamma function and ψm(s) =
dm+1 ln Γ(s)/dsm+1 is the m-th order polygamma function. The m-
th order log-moment can be calculated with the data z1, z2, . . . , zN :

cm =
1
N

N∑

k=1

(log zk)
m (3)
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2.2. The Variational Formulation of SAR Image
Segmentation

Based on the statistical model of SAR images, we formulate the
segmentation problem in a variational framework. Let I(x) : Ω → R be
the intensity SAR image, where Ω ⊂ R2 is the image domain. We aim
to partition the SAR image into foreground area Ωf and background
area Ωb. In both regions the gray value are assumed to follow the
G0 distribution with different parameters. Then the distribution of
the image depends on the partition P = {Ωf ,Ωb}, which can be
represented as:

p(I|P) =
∏

x∈Ωf

pG0

f (I(x)|θf )
∏

x∈Ωb

pG0

b (I(x)|θb) (4)

where θk = [Lk, γk, αk], k ∈ {f, b} represents the parameter vector
of G0 model for foreground or background area. Then segmentation
of the SAR image is equal to minimize the negative likelihood of the
probability p(I|P), which is:

L(I|P) = −
∫

x∈Ωf

log
(
pG0

f (I(x)|θf )
)
dx−

∫

x∈Ωb

log
(
pG0

b (I(x)|θb)
)
dx (5)

The aim of segmentation is to find an optimal partition P =
{Ωf , Ωb} that minimizes the likelihood. To represent the partition as
variables of the likelihood explicitly, we use a region indicator function
u ∈ {0, 1} to represent the regions. It is defined as:

u(x) =
{

1 if x ∈ Ωf

0 if x ∈ Ωb
(6)

Now the likelihood can be written as:

L(I|u) = −
∫

Ω
u(x) log

(
pG0

f (I(x)|θf )
)
dx

−
∫

Ω
(1− u(x)) log

(
pG0

b (I(x)|θb

)
)dx (7)

We use the total variation (TV) based regularizer to impose the
smoothness constraint on the segmentation result. The TV based
regularization is prevalent in image restoration/reconstruction [26–28].
It is also used to regularize image segmentation problems too. The
total variation norm of the function u(x) can be written as [27]:

TV (u) =
∫

Ωf

|∇u(x)|dx (8)
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Denote the negative logarithm of the probability density function
as:

ϕk(x, θk) = − log
(
pG0

k (I(x)|θk)
)

= − log

(
LLk

k Γ(Lk−αk)I(x)Lk−1

γαk
k Γ(Lk)Γ(−αk)(γk+LkI(x))Lk−αk

)
, k ∈ [f, b](9)

Finally, we can get the variational energy function for SAR image
segmentation as:

E(u,θf , θb) =
∫

Ω
u(x)ϕf (x,θf )dx +

∫

Ω
(1− u(x))ϕb(x, θb)dx

+µ

∫

Ω
|∇u(x)|dx (10)

The segmentation result is obtained by solving(
u∗, θ∗f , θ∗b

)
= arg min

θf , θb, u∈{0,1}
E(u,θf , θb) (11)

The energy functional (10) needs to be minimized with respect
to region indicator function u(x) and distribution parameters θf , θb,
which is very hard to solve. A natural alternative is to minimize
the energy functional iteratively. Firstly, the parameters θf , θb are
estimated with u(x) fixed; then the indicator function u(x) is updated
with the estimated distribution parameters. Those two steps are
implemented iteratively until some convergent criterion is satisfied.
This kind minimization strategy is a common choice in variational
image segmentation algorithms [7, 10].

The solution of the first step, i.e., minimizing (10) with respect to
distribution parameters, is the maximum likelihood (ML) estimation of
the parameters. However, as the ML estimation of the G0 distribution
is hard to get, so we adopt the log-moment based method to estimate
the parameters in each region. This can be done by using Equation (2).
The log-moment for the foreground and background can be computed
by using (3), which leads to the following equations:

cf, m =

∫
Ω log(I(x))u(x)dx∫

Ω u(x)dx
, cb, m =

∫
Ω log(I(x))[1− u(x)]dx∫

Ω [1− u(x)]dx
(12)

Then with the current estimated parameters, u(x) is updated by
minimize the energy functional with respect to u(x). With the model
parameters fixed, the gradient descent algorithm can be used to solve
the minimization problem. Nevertheless, directly using of the gradient
descent algorithm can be inefficient due to the non-convex and non-
differentiable property of the energy functional. In this paper, those
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two problems are tackled by convex relaxing and variable splitting
techniques [23, 24]. As a result, the optimizing problem becomes a
constrained one. Then the ALM is used to solve the constrained
minimization problem efficiently. In next section, the ALM is briefly
reviewed before the segmentation approach is presented.

3. THE AUGMENTED LAGRANGIAN METHOD (ALM)

The augmented Lagrangian method [29, 30] is a refinement of the
penalty method (PM) [31], which is often used for solving constrained
optimizing problems. They share the similarity of converting a
constrained optimizing problem into an unconstrained one. But the
ALM is different from the PM as it adds an additional term to the
unconstrained objective function. Consider a constrained optimizing
problem

min f(v) s.t. gk(v) = 0, k = 1, 2, . . . ,K (13)

where f(v) is the objective function, and gk(v) = 0 are K linear
equality constraints. The penalty methods convert this constrained
problem into an unconstrained one by [31]:

minΦn(v) = f(v) + λn

K∑

k=1

gk(v)2 (14)

The unconstrained formulation (14) is an approximation of the
original problem (13). In order to enforce the constraints exactly,
the penalty function weights λn, n = 1, 2, . . . , N must be an increase
sequence that goes to infinity. In real applications, finally the weights
become extremely large. Unfortunately, in most cases the problem
becomes more ill-conditioned as the penalty weights increase. Also,
the steps for increasing λn must be small, making the PM less efficient.

To overcome the disadvantages of the PM, the ALM adds another
term. The ALM uses the following objective function [30]:

minΦn(v, η, λ) = f(v) +
λ

2

K∑

k=1

gk(v)2 −
K∑

k=1

ηkgk(v) (15)

The parameter vector η = (η1, η2, . . . , ηK)T is an estimation of the
Lagrange multiplier. With the formulation (15), the optimization can
be executed in an iterative way: firstly minimizing Φn(v, η, λ) with
respect to x , keeping η fixed; and then updating η according to the
following equation:

η ← η − λg (16)
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where g = (g1(v), g2(v), . . . , gK(v))T . The iteration procedure stops
until some convergence criterion is satisfied. The algorithm of ALM
can be summed as:

Algorithm for ALM:

1. Set t = 0, λ > 0 and η0

2. vt+1 = arg minx Φ(v, ηt, λ)
3. ηt+1 = ηt − λg
4. If convergence criterion is not satisfied, repeat 2 and 3.

As the ALM shows its efficiency on solving constrained optimizing
problems, it has been introduced into the image processing field to
solve many inverse problems [24, 25], such as the total variation based
image restoration/ reconstruction and compressing sensing. Those
problems are often formulated as energy minimization problems in the
variational framework. The connection of the ALM and other recently
proposed efficient optimizing methods has also be noticed [24]. In this
paper, we use the ALM to solve the minimization problem of SAR
image segmentation.

4. SAR IMAGE SEGMENTATION BASED ON THE ALM

4.1. Convex Relaxing and Variable Splitting for the Energy
Model

The energy functional is minimized by iteratively estimating the
distribution parameters and updating the function u(x). By using
Equations (2) and (12), the distribution parameters can be estimated
accurately. This section deals with the problem of updating u(x) with
distribution parameters fixed. When the distribution parameters are
fixed, the energy functional becomes:

E(u) =
∫

Ω
u(x)[ϕf (x, θf )− ϕb(x, θb)]dx+µ

∫

Ω
|∇u(x)|dx + C (17)

where C =
∫
Ω ϕb(x, θb)dx is a constant. To minimize the energy

functional with respect to u(x) is equal to find a solution of the
following optimization problem:

u∗ = arg min
u∈{0,1}

E(u) (18)

Even when the distribution parameters are fixed, to minimize the
energy functional (17) is still difficult as it is not a convex optimizing
problem. The reason is that the function u(x) takes value from the set
{0, 1} which is not convex. As a result, the minimization process can
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stuck in any local minimum which correspond to bad segmentation
results. Furthermore, the non-convexity of the minimizing problem
also makes the adoption of efficient convex optimizing algorithms
impossible. To overcome this problem, Chan et al. [22] and Bresson et
al. [23] proposed a convex relaxing technique to convert the non-convex
minimization problems in the form of (17) into convex ones. The
admissible set of the solution is relaxed to [0, 1], which is a convex set.
As a result, the minimization problem becomes a convex optimization
problem, which can be written as:

u∗r = arg min
u∈[0,1]

E(u) (19)

where the energy function is in the form of Equation (17). The solution
of the relaxed minimization problem and the solution of the original
problem are related by the following theorem [22, 23]:

Theorem 1: If u∗r is any minimizer of (19), it is a global
minimizer of (19) because of the convexity of the minimization
problem. Moreover, for almost every ξ ∈ (0, 1), the threshold function

u∗ (x) =
{

1, if u∗r(x) > ξ
0, otherwise (20)

is also global minimizer of (19), and the original problem (18) as well.
According to Theorem 1, we can solve the relaxed minimization

problem (19) instead of solving the original problem (18). Because of
the convexity, the result is not affected by the minimization strategy. A
simple algorithm is the gradient descent method which is widely used.
Nevertheless, because of the L1 norm of the gradient of u(x) in the total
variation term, the energy functional is non-differentiable and gradient
descent algorithm will very slow due to the need of regularization in
numerical realization. So the variable splitting technique is used to
avoid this problem [24]. This is done by introducing a new vectorial
function d (x) as follows:

E(u,d) =
∫

Ω
u(x)ϕf (x,θf )dx+

∫

Ω
(1− u(x))ϕb(x, θb)dx

+µ

∫

Ω
|d(x)|dx such that d(x) = ∇u(x) (21)

By doing this, the energy functional is differentiable now. And
the minimization of the energy functional becomes a constrained
optimizing problem, which can be solved with the ALM.

4.2. Use of the ALM

The ALM in Section 3 uses scalar valued linear constraints. However,
in the SAR image segmentation energy model, the equality constraint
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is vector valued, and is defined on the continuous image domain. That
means the number of the constraints is infinite. Thus some adaptation
of the ALM is required.

For the vector p and q, denote (p, q) and ||p||2 the Euclidean
inner product and the L2 norm respectively. Let v = [u d],
g(v) = d − ∇u, then the constraint d(x) = ∇u(x) is the same as
g(v(x)) = 0. The unconstrained object function of the ALM method
for Equation (21) is:

Φ(v, η) = E(v) +
λ

2

∫

Ω
||g(v(x))||22dx−

∫

Ω
(η(x),g(v(x))) dx (22)

The first term in the right side is the SAR image segmentation
energy functional. The second and the third term are the penalty
term and the augmented Lagrangian term respectively. Compared to
Equation (15), the integration is used instead of the summation as the
constraint is defined on the continuous image domain. And the L2

norm and inner product is used to impose the constraint g(v(x)) = 0
as the constraint at each pixel is vector valued.

To minimize the unconstraint object function (22), let us rewrite
it as:

Φ(u,d,η) = E(u,d) +
λ

2

∫

Ω
||d(x)−∇u(x)||22dx

−
∫

Ω
η(x)T (d(x)−∇u(x))dx (23)

The goal is to find the optimal solution (u∗,d∗, η∗) which minimize
Φ(u,d, η). Because the variable u and d is decoupled in the energy
functional E(u,d), the minimization procedure can be decomposed
into the following iteratively solved subproblems by using the algorithm
of ALM:



ut+1 = arg min
u∈[0,1]

∫

Ω
u(x)ϕf (x, θf )dx+

∫

Ω
(1−u(x))ϕb(x,θb)dx

+
λ

2

∫

Ω
||d(x)t−∇u(x)||22dx−

∫

Ω

(
η(x)t

)T (d(x)−∇u(x))dx

dt+1 = arg min
d

µ

∫

Ω
|d(x)|dx +

λ

2

∫

Ω
||d(x)−∇ut+1(x)||22dx

−
∫

Ω

(
η(x)t

)T (d(x)−∇ut+1(x))dx

η(x)t+1 = η(x)t − λ
(
d(x)t+1 −∇u(x)t+1

)

(24)
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For the first subproblem, the optimal condition is:

λ∆ut+1(x) = ϕf (x, θf )− ϕb(x, θf )

+λdiv(d(x)t)− div(η(x)t), u ∈ [0, 1] (25)

This equation can be solved by the Gauss-Seidel iteration
efficiently. Denote the right side of the equation as r(x), then for
every pixel x = (i, j), the function u(x) is updated by:

uu(i, j) =
1
4

(
ut+1, n(i− 1, j) + ut+1, n(i, j − 1) + ut+1,n(i + 1, j)

+ut+1, n(i, j + 1)− 1
λ

r(i, j)
)

ut+1, n+1 = max {min {uu, 1} , 0} (26)

where n = 0, 1, 2 . . . is the number of iteration and ut+1, 0 = ut. The
second equation is used to ensure that u ∈ [0, 1].

For the second subproblem, the closed form solution can be
obtained as:

d(x)t+1 =
∇u(x)t+1+λ−1η(x)t

||∇u(x)t+1+λ−1η(x)t||2 max
(||∇u(x)t+1 + λ−1η(x)t||2−λ−1µ, 0

)
(27)

At last, the third subproblem is computed directly.

4.3. The Algorithm

The proposed G0 model and ALM based SAR image segmentation
approach can be summarized as:

Algorithm for SAR image segmentation based on G0 model and
ALM:

1. Initialize the region indicator function u0, set parameters µ, λ,
TOLi, TOLo, let k = 0

2. Estimate the G0 model parameters θk+1
f , θk+1

b with (2) and (12)

3. Solve (19) by using the ALM
1). Let t = 0, uk+1,0 = ut, d0 = ∇ut, η0 = 0
2). Compute uk+1, t+1 with Equation (26)
3). Compute dt+1 with Equation (27)
4). Compute ηt+1 with the third equation in Equation (25)
5). If

∫
Ω

∣∣uk+1,t+1(x)− uk+1,t(x)
∣∣ dx > TOLi, repeat 2).–5).;

otherwise, uk+1 = Th(uk+1, t+1)
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4. If
∫
Ω

∣∣uk+1(x)− uk(x)
∣∣ dx > TOLo, go to 2; otherwise, stop the

algorithm.

The parameter TOLi, TOLo is the error tolerance that used to
test the convergence condition for the inner and outer iteration. And
the function Th(·) is the threshold function (20) with ξ = 1/2.

5. EXPERIMENTAL RESULTS

In this section, the performance of the proposed SAR image
segmentation approach is validated by experiments on both synthetic
and real SAR images. All experiments are performed on a Pentium(R)
Dual-Core 2.7 GHz workstation under Windows XP professional
without any particular code optimization. The parameters need to
be specified for numerical realization of the algorithm. The parameter
µ controls the smoothness of the segmentation results. Bigger value
of µ is required for smoother segmentation results. The parameter
λ has significant impact on the speed of the algorithm. Too small
or too big value of λ will slow down the algorithm. The parameters
TOLi, TOLo have little effect on the segmentation results when they
are small enough. But when they are too small, the algorithm needs
much more iterations to get convergent. Following those principles, the
parameters are generally set as µ = 0.1, λ = 1, TOLi = TOLo = 0.1 if
there is no special declaration. Those parameters are found to give
good segmentation results for most situations. Nevertheless, those
parameters are still need adjustment to get optimal segmentation
performance.

5.1. Simulated Data

In this section, simulated SAR images are used to test the proposed
approach. First, to show the advantage of using the G0 model, we
compare segmentation results by using the G0 model with results by
using the Gamma model. This is done by replacing the G0 model with
the Gamma model in the proposed approach. About the expression
and parameter estimation of the Gamma model, we refer to [1]. The
comparison is made by using three synthetic images.

The used three images are generated according to the G0 model.
The number of looks is fixed to 4 for all images. The mean amplitude
is 64 for the foreground region, 144 for the background region. The
roughness parameter α is set to be {−25,−5,−1.5} for three images
respectively. When α = −25, the simulated data is of low roughness,
and the G0 model is very like Gamma model. That means the
Gamma model can fit the data well. However, with the value of
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 1. Segmentation results with the Gamma model and G0

model. (a)–(c) Initial segmentation. (d)–(f) Segmentation results with
Gamma model. (g)–(i) Segmentation results with G0 model.

α increases, the Gamma model is more and more incapable to fit
the data. The simulated images are shown as Figs. 1(a)–(c) with
the initial segmentation represented by the white rectangle. The
final segmentations for the G0 model based approach are shown as
Figs. 1(d)–(f). Figs. 1(g)–(i) are the results with the Gamma model.We
can observe that the Gamma based approach can give good result when
the image is of low roughness. But as the degree of the roughness
increases, the Gamma model based approach is not suitable. However,
with the G0 model, satisfied segmented results are obtained for all
three images.

We also give the segmentation accuracy in Table 1. The
segmentation accuracy is defined as:

SA =
Num(Ωf ∩ ΩS

f ) + Num(Ωb ∩ ΩS
b )

Num(Ω)
× 100

where Ωf , Ωb are the two regions of the ground truth image, and ΩS
f ,
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Table 1. Segmentation accuracy comparison of Fig. 1.

α = −25 α = −5 α = −1.5
The Gamma Model

Based Approach
99.12 97.41 94.33

The G0 Model
Based Approach

99.03 98.87 98.14

(a) (b) (c) 

Figure 2. Comparison of segmentation results with level set method
and ALM. (a) The initial segmentation. (b) Segmentation result with
the level set method. (c) Segmentation result with the ALM.

ΩS
b are the segmented regions. Num(·) is the total pixels in that region.

The comparison result shows that the G0 model based approach is more
flexible than the Gamma model based approach to cope with images
with different degree of roughness.

The next experiment is performed to show the advantage of using
the ALM instead of the level set method. The level set method is a
popular tool for variational image segmentation. In [17], the level set
method is used to minimize the G0 model energy model. To show
the advantage of using the ALM for energy minimization, a simulated
image is used to compare the performance of the proposed method and
the method in [17]. The results are shown in Fig. 2. The segmentation
result with the level set method is not satisfactory as the narrow
channel between two rectangles and the small rectangle far from the
initial curve is not detected. This is because that at each iteration, the
energy functional is not convex with respect to the level set function,
which makes the evolving contour sticking in some local minimums
which correspond to the bad segmentation results. On the contrary,
the proposed ALM based approach can get good segmentation result.
The two regions are separated well. The reason is that adoption of the
convex relaxing technique can alleviate the problem caused by local
minimum.
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5.2. Real Data

We also test the proposed approach on various real SAR images. Four
real amplitude SAR images are chosen. The first one is a COSMO-
SkyMed multilook SAR image with a lake located in the center. The
second one is a single look SAR image chip picked out from the MSTAR
public dataset. The other two SAR images are obtained by domestic
airborne SAR sensors. Except the first one, the other three images are
with resolution less than 1 m. The information about the used SAR
images is given in Table 2.

Figure 3 shows the segmentation result of the four real SAR images
with the proposed method. The Gamma model is also used to model
those images and the segmentation results with the Gamma model
are demonstrated for comparison too. As we can see, for the first
two images, both of G0 model based approach and Gamma based
approach can get good segmentation results. Only slight difference can
be observed. For the lake image, the multilook processing reduces the
resolution, making the SAR image very homogenous. So the Gamma
model has good fit performance to this SAR image. The MSTAR
dataset is collected by the Sandia National laboratories for automatic
target recognition (ATR). Each target chip contains three parts:
target, shadow and background. Segmentation of the target chips
are used for extracting target information such as the orientation and
shape of targets. As the proposed method is a two region segmentation
approach, only the target part is extracted in this study. There are
many researches show that the Gamma model is a suitable model for
modeling the MSTAR deta. Nevertheless, as the segmentation results
shown, good segmentation results can also be obtained by using the
G0 model.

Two domestic high-resolution SAR images are also used test the

Table 2. Information of the used SAR images.

Image Size Band
Polarization

Type
ENL Image Source

Lake 257× 260 X HH 14.915 ASI

Target 1 128× 128 X HH 5.138
Sandia National

Laboratories

Target 2 437× 403 X HH 2.727
A domestic airborne

radar imaging data

Airplane 128× 218 X HH 2.199
A domestic airborne

radar imaging data
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(a) (b) (c) 

(e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(d)

Figure 3. Segmentation results of three real SAR images with
the proposed approach and the Gamma based approach. (a), (d),
(g), and (j): The initialization segmentation. (b), (e), (h), and
(k): Segmentation results with the proposed approach. (c), (f), (i),
and (l): Segmentation results with the Gamma model and the ALM.
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Figure 4. Computation time and iterations comparison: The solid
line shows the iterations needed for each method to converge to
segmentation result (in times), the dashed lines show the corresponding
computation time (in seconds).

algorithm. The resolution is less than 1m for both SAR images. It
can be observed that due to the high resolution, strong reflectors and
textures are presented in the SAR image, which makes the SAR images
more heterogeneous. Using the G0 distribution to model the SAR
image respectively, the segmentation results are shown in Figs. 3(h)
and (k). The results obtained by using the Gamma model is shown in
Figs. 3(i) and (l). The results demonstrate that with the G0 model,
targets are detected without false alarm. But with Gamma model,
many pixels with brighter gray level are segmented to be target pixel.
It is clearly shows that by introducing the G0 model into the energy
functional, the proposed method is more suitable for segmentation
high-resolution SAR images. The results demonstrate the effectiveness
of the proposed approach and it’s adaptively to different kinds of SAR
images.

At last, to show the computational efficiency of the proposed
approach compared to the level set based SAR image segmentation
approaches, we resize the image of Fig. 1(b) to different scales and
run different approaches on those images. The proposed ALM based
approach and the level set based approach is applied. Moreover, we
also minimize the energy functional (17) with the gradient descent
algorithm. The number of iterations and the time consuming that
needed for the algorithm convergence of each method are shown in
Fig. 4. It’s find that the proposed method needs less iterations and
computational time compared to the other two methods. This justifies
the using of the ALM for energy minimization.
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6. CONCLUSION

We present a variational SAR image segmentation approach based on
the G0 statistical model and the augmented Lagrangian method. The
flexibility of the G0 model makes that the proposed approach can
adaptively deal with different kinds of SAR images. The ALM is used
to minimize the relaxed convex energy in the segmentation procedure.
Compared to the level set based approaches, the proposed approach is
less likely to fall into local minimums. The proposed approach is also
proved to be faster compared to the level set method based SAR image
segmentation approaches.
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