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Abstract—An efficient higher order MLFMA is developed by using an
“extended-tree”. With this extended-tree, the size of the box at the
finest level is reduced, and the cost associated with the aggregation
and disaggregation operations is significantly decreased. The sparse
approximate inverse (SAI) preconditioner is utilized to accelerate the
convergence of iterative solutions. The Cholesky factorization, instead
of the often used QR factorization, is employed to construct the SAI
preconditioner for cavity scattering analysis, by taking advantage of
the symmetry of the matrix arising from electric field integral equation.
Numerical experiments show that the higher order MLFMA is more
efficient than its low-order counterpart.

1. INTRODUCTION

Among many full-wave numerical methods, the algorithms based on
the method of moments (MoM) [1] have been widely used due to
its high fidelity and superior capability to handle arbitrary shaped
targets. A typical MoM solution procedure begins with generating a
proper mesh for the target of interest and selecting basis functions to
model the equivalent electric and magnetic currents. After modeling
a target with a set of N expansion functions and performing the
traditional Galerkin testing for the integral equations, a N ×N dense
impedance matrix is generated. The typical basis functions which
are selected for discretizing the target are the RWG [2]; in order to
achieve accurate solutions with RWG the average size of each element
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is typically on the order of 1/10 wavelength (λ). Consequently, the
size of the associated MoM matrix grows very rapid as the object size
becomes larger with respect to wavelength; this challenges the MoM
for a variety of applications. In addition, it is very costly to obtain
high accuracy by using RWG basis functions, because they exhibit a
low-order convergence rate — the solution accuracy increases slowly
with the number of unknowns. A remedy is to employ higher order
basis functions.

The development of higher order basis functions for modeling
electromagnetic fields has received intense attention recently because
of their faster convergence, permitting more accurate results with less
efforts than the low-order basis functions. Different kinds of high
order basis functions were studied comprehensively in [3–11]. Their
efficiency and reliability have already been approved. Higher order
electromagnetic modeling is definitely becoming an attractive approach
of activity in computational electromagnetics. It is well known that
the matrix system arising from MoM is a full matrix. Direct solvers,
such as LU, often fail in providing a solution to engineering problems
because of limited computational resources. This is the reason why
iterative solvers rather than direct ones are always employed in the
MoM, especially for applications in real-life where the targets are
generally large. To accelerate the matrix-vector multiplication (MVM)
in the iterative solution, a higher order multilevel fast multipole
algorithm (MLFMA) was developed in [4, 5]. However, implementing
higher order discretizations to reduce the number of unknowns and to
decrease the computational complexity are somewhat contradictory.
Namely, since the number of levels in the MLFMA is determined by
the size of elements in the model, the use of large elements associated
with the use of higher order basis functions, implies the reduction of
the number of levels and thus limited performance of the higher order
MLFMA in conjunction with Galerkin-type solutions. As a result,
the operations on aggregation and disaggregation become expensive.
A solution is to implement the MLFMA based on point-to-point
interactions, instead of the traditional basis-to-basis interactions [4].

At the same time, an effective preconditioner is always helpful
or even unavoidable for the iterative solution of the higher order
MLFMA. If the shape of the target is simple, the block diagonal (BD)
preconditioner [12, 13] can perform well. But when the target becomes
complex in shape, or when the target involves open structure and
electric field integral equation (EFIE) must be used, the resultant MoM
matrix would be very ill-conditioned. The BD preconditioner loses its
effectiveness. Therefore, a more effective and robust preconditioner
is unavoidable. Among many developed preconditioning techniques,
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the sparse approximate inverse (SAI) preconditioner is one of the
most effective and robust [14, 15]. Compared with the LU/ILU typed
preconditioners [16, 17], the SAI preconditioner represents an inherent
parallelism; incorporating it into the well developed parallel MLFMA
is easy. However, an effective SAI preconditioner is always expensive
in constructing, especially when the MoM matrix system is extremely
ill-conditioned and many nonzero entries are required in the SAI
preconditioner.

In this paper, we propose an alternative approach to implement
the higher order MLFMA. Our approach creates so-called “extended
levels” below the finest level of the MLFMA-tree constructed in the
traditional basis-to-basis implementation. The resultant tree structure
is denoted as “extended-tree”, which has more levels than the original
one. The aggregation and disaggregation matrices are assembled
based upon the finest level in the extended-tree. Therefore, the
finest extended-tree level is where the aggregation operation begins
from while the disaggregation operation ends at. Meanwhile, no
translation is carried out at extended levels. Other than improving the
efficiency of the aggregation/disaggregation operations, the extended-
tree approach makes preconditioners in the higher order MLFMA
more effective and efficient. In particular, the sparse approximate
inverse (SAI) preconditioner based on the Cholesky factorization is
developed for analysis on large cavities. Numerical experiments are
conducted to investigate the performance of the higher order MLFMA.
The effectiveness of the SAI preconditioner is validated by computing
the radar cross section (RCS) of a large cavity.

2. FORMULATION OF THE HIGHER ORDER MLFMA

2.1. Higher Order Basis Functions

In this paper, the higher order basis functions are divergence-
conforming interpolatory vector basis functions on generalized
triangles. The p-order functions can be seen as the product of 0-order
RWG functions and p-order interpolatory polynomials with specially
arranged arrays of interpolation points.

A generalized triangle is commonly represented in terms of simplex
coordinates, ξ1, ξ2 and ξ3. These basis functions are based on the 0-
order RWG functions. As shown in Figure 1, the RWG associated with
edge 1 has the form of [6]

Λ1(ξ1, ξ2, ξ3) =
1
=(ξ2l3 − ξ3l2) (1)

where = is the Jacobian, and l1, l2 and l3 represent the edge vector
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Figure 1. A curvilinear triangle patch.

opposite to the vertex 1, 2 and 3, respectively. Analogous expressions
hold for the functions for the other two edges. The higher order basis
functions are obtained by forming the cross product of the RWG basis
functions with a set of polynomial functions, which are complete to the
specified order. The basis function of order p for edge 1 corresponding
to the interpolation node (i, j, k) is given by [6]

Λ(1)
ijk(ξ1, ξ2, ξ3) = C

(1)
ijkRp+2

i (ξ1)R̂
p+2
j (ξ2)R̂

p+2
k (ξ3)Λ1(ξ1, ξ2, ξ3)

0 ≤ ξ1, ξ2, ξ3 ≤ 1; i = 0, 1, . . . , p; j, k = 1, 2, . . . , p + 1;
i + j + k = p + 2

(2)

where C
(1)
ijk is the normalization factor chosen to make the normal

component of Λ(1)
ijk unity along edge 1, and R̂K

m are shifted Silvester-
Lagrange interpolation polynomials in the form of

R̂K
m(ξ) =





1
(m−1)!

m−1∏
i=1

(Kξ − i), 2 ≤ m ≤ K + 1

1, m = 1
(3)

and RK
m(ξ) are the Silvester-Lagrange interpolation polynomials in the

form of

RK
m(ξ) =





1
m!

m−1∏
i=0

(Kξ − i), 1 ≤ m ≤ K

1, m = 0
(4)

The interpolatory higher order basis functions, in general, have
better orthogonality properties than its hierarchical counterparts [6].
In addition, there is a direct physical interpretation of every current- or
field-distribution coefficient in the model, since only one basis function
is nonzero at every interpolation point.
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2.2. MLFMA

For perfectly electric conducting (PEC) objects, discretization and
testing of surface integral equations yield a N × N dense matrix
equation in the form of

Z · J = Ei, (5)
where Z is the impedance matrix, N the number of unknowns, and J
the coefficients of equivalent current. Ei corresponds to the discretized
incident wave. The matrix Equation (5) can be solved iteratively, and
the required MVM can be accelerated by the FMM or MLFMA [13].
The FMM/MLFMA decomposes MVM into two parts: near-field
interactions (NFI) and far-field interactions (FFI). The former is
computed directly, while the latter is accelerated by FMM/MLFMA.
The matrix equation in the context of FMM has a form of

Z · J =
∑

p∈Bq

Zqp · Jp + Vq

∑

p/∈Bq

αqp ·V∗
p · Jp, (6)

where Jp is the coefficients of the RWG basis functions in the box
p, Zqp the impedance matrix corresponding to the observation box
q and source box p, Bq the near neighbors of the box q, αqp the
translator, and Vq and V∗

p the disaggregation and aggregation matrix,
respectively. The disaggregation represents a symmetric operation of
the aggregation.

The first term in the right hand side of (6) accounts for the
contribution from the self-coupling of box q and its near neighbors.
While the second one collects the contribution from the rest boxes. To
conduct FFI by the MLFMA, a hierarchical tree structure (MLFMA-
tree) is always constructed by a recursive subdivision of the spatial
domain. All computations in the FMM/MLFMA are organized by
boxes in the MLFMA-tree. FFI in the FMM is realized through three
stages: the aggregation, the translation and the disaggregation. In
the MLFMA, the interpolation/anterpolation combined with center-
shifting operations is required to transfer far-field patterns (FFPs)
from a child-box to the parent-box, and vice versa [12, 13, 18]. The
operations associated with aggregation can be written as

V∗
l−1,p(k̂l−1,n′) = e−jk̂l−1,n·rpp′

Kl∑

n=1

V∗
l,p(k̂l,n)W l−1,l

n′,n (7)

where Kl is the number of FFPs for boxes at level l; rpp′ denotes
the distance vector between centers of box p and its parent p′;
V∗

l−1,p(k̂l−1,n′) and V∗
l,p(k̂l,n) are aggregation matrices for level (l− 1)

and l; k̂l−1,n′ and k̂l,n are the directions of FFPs; n′ and n are positive
integers; W l−1,l

n′,n is the interpolation matrix.
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(a) Level (L - 1) (b) Level (L) (c) Level (L + 1) (d) Level (L + 2)

Figure 2. Extended-tree structure (the (L+1)-th and (L+2)-th level
are extended levels).

3. EXTENDED-TREE AND SAI PRECONDITIONER

3.1. Extended-tree

In the MLFMA, truncation number at the l-th level is given by [13]

Ll = kdl + 1.8d2/3
ε (kdl)1/3 (8)

where k is wave-number, dl the diameter of the box size at the l-th
level, and dε (equal to log(1/ε)) the number of digits of accuracy ε.
The number of FFPs Kl for boxes at l-th level is equal to (2L2

l + 4).
Obviously, Kl increases rapidly as the box size grows. In the Galerkin-
based MoM using the RWG basis function, the box at the finest
MLFMA-tree is about a quarter of a wavelength since the edge length
is about λ/10. However, the number of levels in the higher order
MLFMA is at least one or two less than that in the low-order MLFMA
because of the large patch size. The efficiency of the MLFMA for the
higher order MoM tends to decrease as the memory for aggregation
and disaggregation matrices increase. To overcome this problem,
the MLFMA based on point-to-point interactions was implemented
instead of the traditional basis-to-basis interactions in [4]. Since the
Gaussian quadrature is used to calculate the matrix elements when the
testing and source bases are not close to each other, the corresponding
interactions were replaced by interactions among points associated
with the Gaussian quadrature. The point-to-point implementation
utilized the MLFMA to calculate electromagnetic fields at these Gauss
quadrature points. Thus the number of levels used is not limited
by the size of patches, making MLFMA more efficient. At the same
time, the near interaction part of the MoM matrix is redefined as the
difference between the original matrix and the interactions calculated
by MLFMA.
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1. At the (L + e)-th level, map currents of each box to the corresponding 

FFPs;

2. Generate FFPs at the L-th level accroding to FFPs at the (L + e)-th  

level by the interpolation and shifting (it is done recursively if e > 1.);

3. Carry out aggregation, translation and disaggregation operations of the

traditional MLFMA from the 2nd to the L-th level;

4. Generate FFPs at the (L + e)-th level accroding to FFPs at the L-th   

level by the anterpolation and shifting (it is done recursively if e > 1.);

5. At the (L + e)-th level, map FFPs of each box back to the

corresponding  currents.

Figure 3. Implementation of the MLFMA with extended-tree.

In this paper, another approach is proposed by using the so-
called “extended-tree”. Figure 2 shows a portion of such an extended-
tree, where the (L + 1)-th and (L + 2)-th level are extended levels.
The original MLFMA-tree is based on the traditional basis-to-basis
implementation. The extended-tree is obtained by recursively dividing
the finest boxes of the original tree until the box size at the finest
extended level reaches about 0.25λ.

In general, suppose the L-th level is the finest level at an
original tree and the (L + e)-th level is the finest extended level
with e denoting the number of extended levels. The MLFMA with
extended-tree can be described in Figure 3. As described in this
figure, the aggregation and disaggregation operations are performed by
starting from and ending at the finest extended level. The translation
remains unchanged and is only carried out at the original MLFMA-
tree levels. Thus the memory can be reduced significantly for the
aggregation/disaggregation matrices. If e > 1, operations associated
with step 2 and 4 can be implemented in a hierarchical manner similar
to the aggregation/disaggregation operations in the MLFMA.

The extended-tree is constructed in a way that the one-buffer-
box criterion [12, 13] is strictly guaranteed, making the proposed
higher order MLFMA error-controllable. As depicted in Figure 3, no
translations are done on those auxiliary extended levels. Compared
with traditional MLFMA, additional errors in the proposed scheme
are those arising from the interpolation/anterpolation operations from
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(L + e)-th to L-th levels. Mathematically speaking, those errors
are controllable, which can be reduced by increasing the number
of interpolation points [13]. As consequence, there is no practical
constraint on how far the patches can stick out of the boxes at the
extended levels, which in turn makes the scheme error-controllable.

As is known, the NFI matrix is filled according to NFI lists [13, 19].
The lists can be set up either based on the original tree or based on
the extended-tree in our proposed MLFMA. We suggest the former
because it admits a larger spacious domain to be treated by the NFI
computations. Compared with the approach to calculate NFI matrix
based on the extended-tree, our recommendation requires more NFI
matrix entries to be filled. However, the additional cost is not an
issue in the higher order modeling since the number of unknowns in
the finest boxes at the original tree is generally less than 50. In fact,
memory for NFI matrix can still be cut down greatly in our proposed
higher order MLFMA compared with that in the low-order MLFMA,
as will be shown by the numerical experiments. Conversely, a more
effective preconditioner can be constructed if the NFI lists are based
on the original MLFMA-tree. This is sometimes of vital importance,
especially when the target becomes complex in shape, or when the
target involves open structure and EFIE must be used. In our higher
order MLFMA, the robust SAI preconditioner is utilized. To take
advantage of the symmetry in the matrix arising from EFIE, we have
developed an efficient approach to construct the SAI preconditioner.

3.2. SAI Preconditioner

It is known that the preconditioner sparse matrix M for A is usually
computed by minimizing the Frobenius norm ‖I −MA‖2

F , where I is
the identity matrix, M is constrained by the certain sparsity pattern S.
The Frobenius norm is usually chosen since it decouples the constrained
minimization problem into independent linear LS problems [14, 15]:

min
M∈S

‖I−MA‖2
F =

N∑

i=1

min
Mi∈Si

‖ei −miA‖2
F (9)

where ei and mi are the row vectors of the matrices I and M.
Thus, each mi can be solved independently. To solve (9), the QR
factorization is generally carried out for a very small matrix Ai reduced
from A based on the sparsity pattern Si corresponding to the i-th row
of S, then mi is computed from the obtained QR factorization.

When A is symmetric, Cholesky factorization is more efficient
than QR factorization to solve (9) [20]. Suppose t denote the number
of nonzeros in row mi of M. Thus, the number of floating-points
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operations required by the QR factorization for the row mi is at
least 4t3/3, while the number of operations required by the Cholesky
factorization is t3/3. The latter is at least 4 times faster than the
former in constructing a SAI preconditioner.

4. NUMERICAL RESULTS

To validate our proposed higher order MLFMA, numerical experi-
ments, based on the sequential implementation of the algorithm, are
carried out on an IBM sever with one Xeon 3.0GHz CPU and 16.0 GB
memory. Our code utilizes GMRES as the iterative solver, where the
iteration process is terminated when the 2-norm of the residual vector
is reduced to 10−3. In all computations, the largest box enclosing the
targets is indexed by the 0-th level.

4.1. Validations on the Extended-tree

Two examples, namely, a sphere and an airplane model, are presented
to demonstrate the accuracy and efficiency of our proposed extended-
tree scheme.

Firstly, the scattering from a perfect electrical conducting (PEC)
sphere of 40λ diameter is calculated. The sphere requires 1,116,300
and 217,150 unknowns for RWG and the first-order interpolatory basis
functions to obtain accurate results. A 7-level tree is used in the
low-order (RWG) MLFMA. And a 6-level tree is constructed for the
higher order MLFMA based on the basis-to-basis implementation.
The tree is extended to a 7-level one in our proposed scheme. The
finest boxes at the 5th and 6th level are 0.62λ and 0.31λ in size,

Table 1. Statistics on computational resources for the sphere.

Case1 Case2 Case3

Levels of Tree 7 6 7

Time Filling Matrix (s) NFI 2781 2216 2224

Aggregation 29 49 18

Iteration Time (s) 653 535 567

Memory for Matrix (MB) NFI 1960 298 298

Aggregation 1260 669 245

Total Memory (MB) 4290 1364 940
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respectively. The statistics on computational resources are listed in
Table 1 for the three cases: 1) RWG; 2) higher order with original
tree; 3) higher order with extended-tree. It is shown that the memory
for the aggregation/disaggregation matrices are reduced from 670 MB
to 245MB as the truncation number is decreased from 10 to 6.
Figure 4 presents the RCS results with and without the extended
level. Compared with Mie series, the root mean square errors in these
three cases are 0.21 dB, 0.18 dB and 0.19 dB. It also worth noting that
memory for the NFI matrix is significantly cut down from 1960MB
in the RWG MLFMA computation to 298MB in the higher order
MLFMA (both with and without extended levels) although NFI lists
are constructed according to the original tree. Our proposed scheme
takes good advantage of the higher order basis functions.

The second example is a large airplane model with a 96λ long
fuselage. It requires 1,143,057 and 220,510 unknowns for the RWG
and the first-order basis functions to obtain accurate results. A 9-level
tree is used in the low-order MLFMA. An 8-level tree is constructed
for the traditional higher order MLFMA, while it is extended to a 9-
level one in our proposed approach. The sizes of finest boxes at the
7th and 8th level are 0.75λ and 0.375λ, respectively. The statistics on
computational resources are listed in Table 2 for the three cases: 1)
RWG; 2) higher order with original tree; 3) higher order with extended-
tree. It is shown that the memory for the aggregation/disaggregation
matrices are reduced from 976 MB to 437 MB as the truncation number
is decreased from 12 to 8. At the same time, memory for the NFI
matrix is cut down from 3113 MB to 534 MB. Figure 5 presents the
RCS results with and without the extended level.

Figure 4. Bistatic RCS from a
conducting sphere.

Figure 5. Bistatic RCS from the
airplane model.
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Table 2. Statistics on computational resources for the airplane.

Case1 Case2 Case3

Levels of Tree 9 8 9

Time Filling Matrix (s) NFI 3447 3314 3317

Aggregation 17 71 32

Iteration Time (s) 1600 1951 2091

Memory for Matrix (MB) NFI 3113 534 534

Aggregation 2268 976 437

Total Memory (MB) 6432 1899 1361

Table 3. Performane of the BD preconditioner on the sphere and
airplane.

Iteration Counts Iteration Time (s)

Sphere Airplane Sphere Airplane

Nopre
RWG 44 113 653 1600

Higher order 57 240 567 2091

BD
RWG 31 33 478 481

Higher order 24 34 247 312

4.2. Validations on the Preconditioners

In our higher order MLFMA, the NFI lists are based on the original
tree instead of the proposed extended-tree. This strategy permits
effective preconditioners for the iterative solutions. In the following,
effectiveness of the BD and SAI preconditioners for our higher order
MLFMA is studied.

4.2.1. The BD Preconditioner

The sphere and the airplane examples in the Section 4.1 are used to
show the effectiveness of our strategy. Table 3 presents the iteration
counts with and without the BD preconditioner. It can be seen
from this table that the cases with BD preconditioner converge quite
faster than those without preconditioner. Additionally, a higher
acceleration rate is obtained in the higher order MLFMA than in
the RWG counterpart. The reason lies in that the NFI lists in
our implementation is based on the original MLFMA-tree. More
information is reserved to construct the preconditioner in our higher
order MLFMA than in the low-order MLFMA. It should be noted
that the shape of the above two targets are relatively simple and the
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resultant MoM matrices are well-conditioned to some extent. If the
MoM matrix becomes very ill-conditioned, the BD preconditioner will
lose its effectiveness as shown in the following cavity calculations.

4.2.2. The SAI Preconditioner

Scattering from a cylindrical cavity is computed to demonstrate the
effectiveness of the SAI preconditioner in the higher order MLFMA.
The cavity is 5λ in radius and 12λ in height. It requires 157,684
and 32,890 unknowns for the RWG and first-order basis functions,
respectively. A 6-level tree is used in the low-order MLFMA. In the
higher order calculation, the MLFMA tree is extended from 5 levels
to 6 levels. The sizes of boxes at the 4th and 5th level are 0.75λ and
0.375λ, respectively. For this target, the BD preconditioned systems
fail to converge for both RWG and higher order cases and the SAI
preconditioner is necessary. To study the convergence, four cases are
investigated: 1) RWG; 2) RWG with SAI; 3) higher order; 4) higher
order with SAI. The sparsity pattern of the SAI preconditioner is
obtained by filtering off 20% entries of

∑
p∈Bq

Zqp with small absolute

values.
The θθ-polarized (the cavity is opened along positive z-axis)

monostatic RCS is presented in Figure 6. The convergence histories
for different cases are presented in Figure 7 with the (0◦, 0◦) incident.
Figure 8 presents the iteration counts for all the 31 incident angles. The
iteration is accelerated by setting the solution of the previous incident
angle as the initial guess of the next angle. The computational statistic
is listed in Table 4. The iteration time is obtained by adding up the
time for all 31 incident angles together.

Figure 6. Monostatic RCS of the cylindrical cavity.
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Figure 7. Convergence history. Figure 8. Iteration counts for
different incident angles.

Table 4. Statistics on computational resources for the cavity.

Case1 Case2 Case3 Case4

Levels of Tree 6 6 6 6

Time Filling Matrix (s) NFI 637 637 358 358

SAI – 845 – 113

Iteration Time (s) 15053 4842 8423 1088

Memory for Matrix (MB) NFI 880 880 156 156

SAI – 683 – 124

Total Memory (MB) 1316 1999 257 381

It can be found that the higher order MLFMA computation
converges a little more slowly than that of the RWG based MLFMA
when no preconditioner is employed. However, after the SAI
preconditioner is applied, the higher order computation converges
much faster than the RWG one although the same filtering parameter,
to say 20%, is used to construct the SAI. The faster convergence results
from our strategy to fill the NFI matrix. As is known, coupling between
well-separated regions may be still very strong because of the multiple
reflections in the cavity computations. The larger the finest box is, the
more effective a preconditioner can be obtained. In our computations,
the finest box in the proposed higher order MLFMA is twice larger
than that in the RWG case. Consequently, a much more effective SAI
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preconditioner can be constructed.
At the same time, our experiments indicate that constructing

a SAI preconditioner becomes much cheaper in the higher order
computation than in the low-order case. As shown in Table 4, more
than 800 s are used to construct the SAI preconditioner in the RWG
case. However, it is decreased to 113 s by a factor of about 8.0. This
is because the higher order MLFMA has a much smaller NFI matrix
than the low-order one does. This experiment also implies that it
is impractical to obtain an effective SAI preconditioner by increasing
the finest box size in the low-order MLFMA because of the high
construction cost of the SAI preconditioner.

5. CONCLUSIONS

An efficient higher order MLFMA is proposed by constructing
the so-called “extended-tree”. Memory required by the aggrega-
tion/disaggregation matrix is thus reduced a lot. In the proposed
higher order MLFMA, the near-field interaction lists are still defined
in terms of the original tree. This makes it possible to construct an
effective preconditioner. The sparse approximate inverse (SAI) pre-
conditioner is employed to accelerate the iterative solution where the
block diagonal preconditioner fails. To take advantage of symmetry of
the matrix arising from electric field integral equation, the Cholesky
factorization, instead of the QR factorization, is used to accelerate the
construction of the SAI preconditioner. Numerical experiments show
that the proposed higher order MLFMA is much more efficient than
its low-order counterpart. Calculations on the large cavity reveal that
the proposed SAI preconditioner can accelerate the convergence signif-
icantly.

ACKNOWLEDGMENT

This work was supported by the NSFC under Grants 10832002,
60901005 and by the Excellent Young Scholars Research Fund of
Beijing Institute of Technology under Grant 2010YS0502.

REFERENCES

1. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods
for Electromagnetics, IEEE Press, Piscataway, NJ, 1998.

2. Rao, S. M., D. R. Wilton, and A. W. Glisson, “Electromagnetic
scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas
Propag., Vol. 30, No. 3, 409–418, May 1982.



Progress In Electromagnetics Research, Vol. 126, 2012 99
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