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Abstract—Thinning of large arrays in order to produce low side lobes
is a difficult task. Conventional gradient methods often stuck in local
minima and hence are not capable of obtaining optimum solutions. As
a result, global optimization methods are required to thin large antenna
arrays. In this paper, a global evolutionary method, Biogeography
Based Optimization (BBO) is introduced as a new tool for thinning
large linear and planar antenna arrays of uniformly excited isotropic
antennas. The aim is to synthesize linear arrays so as to yield the
maximum relative sidelobe level equal to or below a desired level
while also keeping the percentage of thinning equal to or above the
desired level. The results obtained by BBO are compared with the
previous published results of Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Immunity Genetic Algorithm (IGA) and Binary
Particle Swarm Optimization (BPSO).

1. INTRODUCTION

Thinning of an array means to selectively switch off certain elements
of the array of a uniform spaced array to achieve a pattern with
low sidelobes. Thinning a large array for low sidelobes involves
checking a rather large number of possibilities and these increases
exponentially with number of array elements. Hence checking every
possible combination to find the optimum one is nearly impossible.
Classical optimization methods are not well suited for thinning of
arrays because they often get stuck in local minima and are capable of
optimizing only a few continuous variables. Hence global optimization
tools are a good option to solve these problems. Different global
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optimization methods such as Genetic Algorithm (GA) [1–8], Particle
Swarm Optimization (PSO) [9], simulated annealing [10], Differential
Evolution (DE) [11, 12], Ant Colony Optimization (ACO) [13] etc. have
already been utilized for thinning of arrays and have proven to provide
high-quality results. Unlike classical methods, global methods do not
require initial guess, are capable of escaping the local minima and are
able to find the global minima. However, due to their global nature,
these are slow in converging as compared to local gradient methods.

Haupt [1] used GA in process of thinning a linear array of 200
elements, and resulting sidelobe levels were lower than −18 dB in all
cases shown. Weile and Michielssen have employed a Pareto Genetic
Algorithm (PGA) for the thinning of linear arrays [2]. Johnson and
Rahmat-Samii [3] used GA to thin a 40 elements linear array and
achieved sidelobe levels of somewhat lower than −20 dB. Mahanti et
al. [4] used Real-coded Genetic Algorithm (RGA) to thin a large linear
array of uniformly excited isotropic elements to yield side lobe level
(SLL) equal to or below a fixed level, while keeping the percentage
of thinning equal to or above a fixed value. Hamici and Ismail have
used Immunity Genetic Algorithm (IGA) based on stochastic crossover
evolution to solve the synthesis problem of thinned arrays and have
obtained good results [5]. Fernández-Delgado et al. [6] have proposed
a simple and fast method which accelerates the calculation of the far-
field pattern and consequently the evaluation of the fitness function
in the global optimization methods used in array thinning. They
have reduced the search time of algorithm by 90%. Zhang et al.
have employed Orthogonal Genetic Algorithm (OGA) for thinning
of planar arrays [8]. Jin and Rahmat-Samii [9] have used Binary
Particle Swarm Optimization (BPSO) for the thinning of linear arrays.
Quevedo-Teruel and Rajo-Iglesia have applied ACO for the thinning
of linear and planar arrays for different scenarios [13]. Razavi and
Forooraghi have employed pattern search algorithm for synthesis of
linear arrays [14]. Wang et al. have utilised modified iterative Fourier
technique for thinning of linear arrays [15].

The purpose of this paper is to use an algorithm based on another
global search method known as Biogeography Based Optimization
(BBO) to synthesize thinned arrays with low SLL and desired level
of thinning. BBO has been applied for the design of linear antenna
arrays for obtaining the maximum SLL reduction and null placement
in desired directions in [16]. Results obtained using BBO for the
linear arrays are encouraging. The BBO method produced a lower
value of SLL and better null placement as compared to PSO [17].
BBO has also been used for the optimization of Yagi-Uda and
circular antennas [18, 19]. This algorithm has also been employed



Progress In Electromagnetics Research M, Vol. 24, 2012 143

to solve different problems in different areas such as the power flow
problem [20], optimization of gear trains [21], and satellite image
classification problems [22]. However, it has not been used never before
for thinned array synthesis of linear antennas.

2. THINNED ARRAY SYNTHESIS

Thinning an array means turning off some elements in a uniformly
spaced or periodic array to generate a pattern with low SLL.
Thinning an array to produce low sidelobes is much simpler than
unequally spacing the elements for generating pattern with low SLL [1].
Moreover, thinning of array results in reduction in cost, weight and
power consumption. In this work, the elements positions are assumed
to be fixed. All the elements have two states either “on” (if the element
is fed) or “off” (if the element is passively terminated to a matched
load). The linear antenna having 2N elements placed symmetrically
along the z-axis is given in Figure 1. The array factor (AF) for this
antenna can be written as [13]:

AF(θ) = 2
N∑

n=1

In cos[π · (2n− 1) · cos θ] (1)

where n is the element number, In is the excitation amplitude of the
n-th element. In our case, In is 0 if the state of the n-th element is
“off” and 1 if it is “on”. The distance between the elements is λ/2
and all the elements have same excitation phase. The elements are
numbered from the array center and array center is assumed to be at
the origin.

Figure 2 shows a planar array structure 2N × 2M of elements.
The array factor for this structure is given by (assuming the same

Figure 1. Geometry of a 2N -element symmetric linear array along
the z-axis.
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Figure 2. Geometry of a 2N × 2M -element symmetric planar array.

considerations as in the linear array) [13]:

AF(θ, φ) = 4
N∑

n=1

M∑

m=1

Inm cos[π(2n− 1) sin θ cosφ]

· cos[π(2m− 1) sin θ sinφ] (2)

Therefore, the aim of optimization is to find out which array elements
should be enabled or disabled (Inm = 1 or Inm = 0) to get the desired
radiation pattern characteristics.

3. BIOGEOGRAPHY THEORY

Biogeography is the study of distribution of biodiversity over space
and time. The science of biogeography was sown by naturalists like
Alfred Wallace and Charles Darwin. Till 1967, biogeography was
mainly descriptive study. But the work carried out by MacAurthur
and Wilson [23] changed this perception. They were able to construct
a mathematical model for biogeography and made it feasible to predict
the number of species in a habitat.

In the science of biogeography, a habitat is an ecological area
that is inhabited by a particular plant or animal species and which is
geographically isolated from other habitats. Each habitat is classified
by Habitat Suitability Index (HSI). Areas or habitats which are well
suited as living places for biological species have high HSI while
habitats that are not good have low HSI. The value of HSI depends
upon many features of habitat like rainfall, temperature, diversity of
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vegetation, land area, safety and security. If each of the features is
assigned a value, HSI is a function of these values. Each of these
features that characterize habitability is known as Suitability Index
Variables (SIV). SIVs are the independent variables while HSI are the
dependent variables.

Habitats with high HSI have large population, high emigration
rate µ, simply by virtue of large number of species that migrate to other
habitats. The immigration rate η is low for these habitats as these are
already saturated with species. On the other hand, habitats with low
HSI have high immigration rate η, low emigration rate µ because of
sparse population. The value of HSI of low HSI habitat may increase
with the influx of species from other habitats as suitability of a habitat
is function of its biological diversity. But if HSI does not increase
and remains low, species in that habitat go extinct and this leads to
additional immigration. For sake of simplicity, it is safe to assume
a linear relationship between a habitat HSI and its immigration and
emigration rate and also that the rates are same for all the habitats.
The immigration and emigration rate depends upon the number of
species in the habitats. These relationships are shown in Figure 3.

The values of emigration and immigration rates are given as:

η = I

(
1− k

n

)
(3)

µ =
E

n
(4)

where I is the maximum possible immigration rate; E is the maximum
possible emigration rate; k is the number of species of the k-th
individual and n is the number of species.

Figure 3. Habitat migration rate vs. habitat suitability index.
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4. BIOGEOGRAPHY-BASED OPTIMIZATION

BBO is novel population based global optimization algorithm
stimulated by science of biogeography. The candidate solutions for
a problem are considered as habitats. Each solution is associated with
the fitness which is analogous to HSI of a habitat. A good solution is
analogous to a habitat with high HSI and a poor solution represents a
habitat with a low HSI. Good solutions share their features with poor
solutions by means of migration. Good solutions have more resistance
to change than poor solutions. On the other hand poor solutions are
more dynamic and accept a lot of new features from good solutions.

Consider a global optimization problem and population of possible
solutions. In an Nvar — dimensional optimization problem, a habitat
is a 1 × Nvar array. Each solution is represented by N -dimensional
integer vector as [SIV1...,SIVNvar ]. In BBO, an SIV is a solution feature
corresponding to “gene” while habitat is similar to “chromosome” in
other population-based optimization algorithm like GA. The variable
values or SIVs in the habitat are represented as binary numbers. The
set of all such vectors is the search space from which the optimum
solutions are to be found. The value of HSI of a habitat is value
of objective function associated with that solution. The value of
HSI is found by evaluating the cost of function at the variables
[SIV1,...SIVNvar ]. Therefore,

HSI = f(Habitat) = f(SIV1, . . .SIVNvar) (5)

These solutions are made to share features among themselves by
applying migration operator. For each SIV, in each solution, it is
decided probabilistically whether or not to immigrate. If immigration
is selected for a given solution feature, the emigrating habitat is
selected for a given solution probabilistically using roulette wheel
normalized by µ. The mutation operator is probabilistically applied
to the habitat which tends to increase the biological diversity of the
population. The mutation rate m is inversely proportional to the
solution probability which is given by:

m = mmax

(
1− P

Pmax

)
(6)

where mmax is a user-defined parameter.
As in other population-based optimization algorithms, elitism is

introduced so that the best solutions are retained in the population
from one generation to the next. The BBO algorithm is shown in
Figure 4.

Mutation and migration operators in BBO are similar to GA and
PSO and therefore it is also applicable to same type of problems as GA
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Figure 4. The BBO algorithm.

and PSO are used for. BBO is different in some respects with the other
global optimization techniques, e.g., as compared with GA it does not
involve reproduction and it keeps the solution set while moving from
one iteration to the next [24].

5. DESIGN EXAMPLES

5.1. Linear Array Thinning

In this section, three different examples of linear array thinning by
BBO are presented. The objective of all the three examples is to
minimize the SLL by thinning the linear array to a desired level. The
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fitness function used for this purpose is given as:

Fitness = (SLLo − SLLd)2H(X) + (THo − THd)2H(Y ) (7)

where SLLo and SLLd are obtained, and desired values of sidelobe level
in dB, THo and THd, are obtained and desired values of thinning.
H(X) and H(Y ) are Heaviside step functions given by

X = (SLLo − SLLd), Y = (THo − THd) (8)

[H(X), H(Y )] =
{

[1, 0], if X ≥ 0, Y > 0
[0, 1], if X < 0, Y ≤ 0

}
(9)

For the first example, consider a linear array of 100 isotropic antennas
symmetrically spaced 0.5λ apart along z-axis with its center at the
origin. The aim is to generate a symmetric pattern with desired SLL
of −20 dB or below and percentage of thinning equal to 22 or above.
Since it is a uniform linear array, the current excitations of elements
on the left hand and right hand sides of the origin will be same or are
symmetric. Therefore, only 50 amplitudes are to be optimized. The
following BBO parameters are used for this optimization:
• Number of islands or population: Npop = 100.
• Iterations or Generations = 100.
• Island modification probability = 1.
• Mutation probability: mmax = 0.005.
• Elitism parameter p = 2.

The results of the BBO optimization are shown in Table 1. The
maximum SLL obtained by BBO is −20.84 dB. For comparison, the
results of RGA [4], ACO [13] and IGA [5] thinned linear array are
also shown in the same table. The maximum SLL obtained by RGA,
ACO and IGA algorithms is −20.56 dB and −20.50 dB and −20.24 dB
respectively. Hence, the SLL of BBO thinned array is lower than RGA,

Table 1. Element excitations of a 100-element thinned linear antenna
array.

Method
Element

No.
Array Weights SLL (dB)

% of

Thinning

RGA [4]

ACO [13]

IGA [5]

BBO

n = 1, 2, ..., 50

n = 1, 2, ..., 50

n = 1, 2, ..., 50

n = 1, 2, ..., 50

11111111111111111111111111101111001110100001011001

11111111111111111111111111011110010100111110010011

11111111111111111111111111111011011101000011101011

11111111111111111111111111101111010110000100110110

22

22

20

22

-20.56

-20.50

-20.24

-20.84
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Figure 5. Convergence characteristics of BBO for thinning of a 100-
element linear antenna array.

Figure 6. Radiation pattern
of a 100-element thinned linear
antenna array.

Figure 7. Zoomed radiation
pattern with phi angle from 80◦
to 100◦ for the radiation pattern
of linear array shown in Figure 6.

ACO and IGA thinned linear arrays by 0.28 dB, 0.34 dB and 0.60 dB
respectively. The convergence characteristics for BBO are shown in
Figure 5. It is to be noted that the BBO converges to best solution
very quickly after 40 generations only. The radiation pattern of BBO
optimized array is shown in Figures 6 and 7.

In the next example, a 200-element symmetric linear array is
synthesised for the same objective as in the above example. As it
is symmetric array, hence number of elements amplitudes optimized is
only 100. The desired level of SLL and thinning are taken as −23 dB
and 22% respectively. The optimized results of BBO are given in
Table 2 along with the results of the GA [1], the IGA [5], the BPSO [9]
and the PGA [2] algorithms. The maximum SLL obtained by BBO
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Table 2. Element excitations of a 200-element thinned linear antenna
array.

Method Element No. Array Weights SLL (dB)
% of

Thinning

GA [1]

IGA [5]

BPSO [9]

PGA [2]

BBO

n = 1, 2, ..., 50

n = 51, ..., 100

n = 1, 2, ..., 50

n = 51, ..., 100

n = 1, 2, ..., 50

n = 51, ..., 100

n = 1, 2, ..., 50

n = 51, ..., 100

n = 1, 2, ..., 50

n = 51, ..., 100

11111111111111111111111111111101111110111111111011

10110111110011101110110010110110100010111111111111

11111111111111111111111111111111111111110111111101

01001111111011111000110100111001010001111011001101

11111111111111111111111111111111111111111111011111

10110101110111101011001011010101000001011100110011

11111111111111111111111111111111111111111111111111

10011110111101101110000110100000110011001001010111

11111111111111111111111111111111111111111111111110

11110110111001110001110110100100000101010100011011

-22.09

-22.4

-22.4

-22.79

-23.20

23

23

20

23

24

Figure 8. Radiation pattern
of a 200-element thinned linear
antenna array.

Figure 9. Zoomed radiation
pattern with phi angle from 80◦
to 100◦ for the radiation pattern
of linear array shown in Figure 8.

is −23.20 dB and that by GA, IGA, BPSO and PGA is −22.09 dB,
−22.4 dB, −22.4 dB, and 22.79 dB respectively. Clearly, BBO has
obtained better results than GA, IGA, BPSO and PGA optimized
antennas. The radiation pattern of BBO optimized array is shown in
Figures 8 and 9.

For some applications, the region of interest is only near the main
beam of the radiation pattern. So in this case, SLL in the region
around the main beam is to be reduced, i.e., ±30◦ on both sides of
the main beam (from 60◦ to 120◦). Again for this example, a 100-
element linear antenna array is considered. The desired level of SLL
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Table 3. Element excitations of a 100-element thinned linear antenna
array optimized for SLL in the region 60◦ to 120◦.

Method
Element

No.
Array Weights SLL (dB)

% of

Thinning

ACO [13]

BBO

n = 1, 2, ..., 50

n = 1, 2, ..., 50

11111111111111111111101110110101101010110010001001

11111111111111111101110110110101101010010010001001

-25.17

-26.15

30

32

Figure 10. Radiation pattern
of a 100-element thinned linear
antenna array optimized for SLL
in the region 60◦ to 120◦.

Figure 11. Zoomed radiation
pattern with phi angle from 60◦
to 120◦ for the radiation pattern
of linear array shown in Figure 10.

is taken as −25 dB with the desired level of thinning equal to 22%.
The optimized results obtained by BBO are shown in Table 3. For
comparison purpose, the results of ACO [13] optimized arrays are also
given. The maximum SLL obtained by BBO is lower than achieved by
ACO in the desired region. The SLL obtained is −26.15 dB which is
lower by 1.41 dB than ACO optimized antenna array. The radiation
pattern of the thinned antenna array obtained after optimization is
shown in Figures 10 and 11.

5.2. Planar Array Thinning

In this section, a planar array with 20 × 10 elements is taken for
thinning. The aim is to minimize the SLL in all φ planes of the array.
For this the fitness function is taken as follows:

Fitness = min (|SLL (dB)|)for all φ planes (10)
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Figure 12. Convergence characteristics of BBO for thinning of a
20× 10-element planar array optimized in all the planes.

Figure 13. Element configura-
tion for one quadrant of a 20×10-
element planar array optimized
for SLL in all the planes; X in-
dicates the presence of element.

Figure 14. Radiation pattern
of a 20 × 10 element thinned
planar antenna array optimized
using BBO in all the planes.

The same problem has been dealt with OGA [8]. As it is a symmetric
array, there are only 50 current amplitudes that are to be optimized
using BBO. The convergence graph of the BBO is shown in Figure 12.
The maximum SLL achieved by the BBO algorithm for the planar
array for all φ planes is −20.49 dB while that achieved by OGA is
−19.44 dB. Hence, the SLL is reduced by 1.05 dB for BBO optimized
planar array as compared to OGA array. The element configuration of
one quadrant of planar array optimized by BBO is given in Figure 13.
The radiation pattern of the optimal array having maximum SLL of
−20.49 dB in φ all planes is shown in Figure 14.
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6. CONCLUSIONS

This paper presents a novel algorithm for designing a thinned linear
and planar antenna array with fixed percentage of thinning using BBO.
Results clearly show a very good agreement between the desired and
synthesized specifications. The results obtained by BBO are better
than other global optimization techniques, such as GA, RGA, PGA,
IGA and BPSO, which have been employed for thinning. The BBO
method is an alternative to existing popular global algorithms. The
main advantage of this method is its simplicity that provides an easy,
quick and effective resolution of medium/large problems. BBO is
applied to the thinning of arrays in this work, but it can also be applied
to other antenna problems which include other parameters such as
spacing, amplitudes, and phase of the elements.
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