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Abstract—In this paper, an improved Li-SVD algorithm based on
noise subspace is presented for direction of arrival (DOA) estimation
using reweighted L; norm constraint minimization. In the proposed
method, the weighted vector is obtained by utilizing the orthogonality
between noise subspace and signal subspace spanned by the array
manifold matrix. The presented algorithm banishes the nonzero entries
whose indices are inside of the row support of the jointly sparse signals
by smaller weights and the other entries whose indices are more likely
to be outside of the row support of the jointly sparse signals by larger
weights. Therefore, the sparsity at the real signal locations can be
enhanced by using the presented method. The proposed approach
offers a good deal of merits over other DOA techniques. It not only
increases robustness to noise, but also enhances resolution in DOA
estimation. Furthermore, it is not very sensitive to the incorrect
determination of the number of signals and can primely suppress
spurious peak in DOA estimation. Simulation results are shown that
the presented algorithm has better performance than the existing
algorithms, such as MUSIC, L;-SVD algorithm.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of far-field narrowband signals
has been of interest in the past few decades [1], which plays a
fundamental role in many applications involving electromagnetic,
acoustic, seismic sensing, etc. An important goal for source localization
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methods is to be able to locate closely spaced signals in the
presence of considerable noise. Many advanced methods [2, 3] for the
localization of point signals attain super-resolution by exploiting the
presence of a small number of signals. The most well-known existing
nonparametric methods include beamforming [4] and its relevant
algorithms [5,6], Capon’s method [7], and subspace based methods
such as MUSIC [8]. Some additional methods (Root-MUSIC and
ESPRIT) [9] are under the assumption that the array of sensors is
linear. Beamforming spectrum suffers from the Rayleigh resolution
limit, which is independent of the SNR. Capon’s method and MUSIC
are able to resolve signals within a Rayleigh cell (i.e., achieve super-
resolution), provided that the SNR is reasonably high, the signals are
not highly correlated, and the number of snapshots is sufficient.

The theme of sparse signal representation has evolved very rapidly
in the last decade, finding application in all kinds of problems.
There has also been some emerging research of these ideas in the
context of spectrum estimation and array processing [10-13]. Sacchi
et al. [10] exploit a Cauchy-prior to achieve sparsity in spectrum
estimation and work out the resulting optimization problem by
iterative approaches. Jeffs [11] makes use of an L,-norm penalty
with p < 1 to enforce sparsity for a plenty of applications, including
sparse antenna array design. Gorodnitsky and Rao [12] use a recursive
weighted minimum-norm algorithm called focal under-determined
system solver (FOCUSS) to enforce sparsity in the problem of DOA
estimation. It was later shown [14] that the algorithm is related
to the optimization of L, penalties with p < 1. The work of
Fuchs [13] is involved in signal localization in the beamspace domain,
under the assumption that the signals are uncorrelated, and the
number of snapshots is abundant. The method tries to represent
the vector of beamformer outputs to unknown signals as a sparse
linear combination of vectors from a basis of beamformer outputs
to isolated unit power signals. It makes use of the L; penalty for
sparsity and the Lo penalty for noise. Prior research has established
sparse signal representation as a valuable tool for signal processing, but
its application to signal localization is very limited in some scenarios.
Recently, a new sparse-representation-based DOA estimation method,
such as the L;-SVD [15], provides another interpretation of array
data by sparsely representing array data in an overcomplete basis,
which emphasizes the fact that DOAs of incoming signals are usually
very sparse relative to the whole spatial domain. In this way, the
estimation problem is put in a model-fitting framework in which DOA
estimation is attained by searching the sparsest representation of the
received data. The L;-SVD method [15] is of particular relevance to
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this work, as it converts DOA estimation problem into a sparse signal
reconstruction one and exploits compressive sensing (CS) approach.
It is carried out by Lj-norm constraint minimization due to it is a
convex problem. However, Li-norm constraint minimization has a
drawback that larger coefficients of signal are punished more heavily
than smaller coefficients, unlike the more impartial punishment of the
Lo-norm constraint minimization [16]. This incurs the degradation
of signal recovery performance based on regular Li-norm constraint
minimization [16]. To surmount this problem, the iterative reweighted
Li-norm constraint minimization is devised for the single measurement
vector (SMV) problem, in which large weights are used to restraint
nonzero entries in the recovered signal [16]. The convergence of
the iterative reweighted Lj-norm constraint minimization is detailed
in [17]. The iterative reweighted L;-norm constraint minimization can
improve not only recoverable sparsity thresholds upon the regular L;-
norm constraint minimization but also the recovery accuracy in the
noisy case [18]. The substance of the iterative reweighted Lji-norm
constraint minimization algorithm is that large weights could be used
to punish the entries whose indices are more likely to be outside of the
signal support, which facilitates sparsity at the right locations [16-18].

In this paper, the methodology of the iterative reweighted Li-norm
constraint minimization is expanded from the SMV case to the multiple
measurement vectors (MMYV) case for DOA estimation. Making use of
the orthogonality between noise subspace and signal subspace spanned
by the array manifold matrix, the objective of weighted Li-norm
constraint minimization can be achieved, namely, the nonzero entries
whose indices correspond to the row support of the jointly sparse
signals are punished by smaller weights and the other entries whose
indices are more likely to be outside of the row support are punished
by larger weights.

This paper is organized as follows. Section 2 briefly represents
the problem of DOA estimation in the sparse signal framework. The
proposed method is given in Section 3. Section 4 presents several
simulation results to verify the performance of the proposed method.
Section 5 provides a concluding remark to summarize the paper.

2. BACKGROUND

Assume that L far-field stationary and narrowband signals impinge
on a uniform linear array (ULA) of M (M > L) sensors from distinct
direction angles {6;,l = 1,...,L}, which are corrupted by additive
Gaussian white noise. The array output at time ¢ can be expressed as

yv(t) = A()u(t) + n(t), t=1,2,...,T (1)
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where u(t) = [ui(t),...,ur(t)]’ is a zero-mean signal vector;
the superscript (-)7 stands for transpose operation; n(t) =
[n1(t),...,nar(t)]T with n;(t) denoting the additive noise of the ith
sensor, where n;(t) is a complex Gaussian random process with zero-
mean and equal covariance o2I;; T is the number of data samples;
A(0) is an M x L array manifold matrix, whose [th column is the [th
signal array steering vector as follows

a(f;) = [l,exp(—j2nfdasinf;/c),... ,exp(—j2n fdpy1sinb;/c),

ey exp(—j?wfdMl sin 91/0)]T

where f is the carrier frequency of the signals, d,,1 the distance between
the mth sensor and the first sensor, and ¢ the velocity of propagation.

Because the distribution of the actual signals is sparse in
space domain, reference [15] has formulated the DOA estimation
problem into a sparse signal reconstruction problem. Introducing an
overcomplete representation ® in terms of all possible signal locations.
Let {¢1,...,¢K} be a sampling grid of all signal locations of interest,
e.g., from —90° to 90° with 1° intervals. The number of potential signal
locations K will typically be much greater than the number of signals
L or even the number of sensors M. Constructing a matrix composed
of steering vectors corresponding to each potential signal location as
its columns: ® = [a(1),...,a(px)] € CM*E In this framework, ®
is known and does not depend on the actual signal locations. The data
model (1) can be reformulated as

y(t) = ®s(t) + n(t), t=1,2,...,T (2)

where s(t) € CK*! is the expanded snapshot of the arriving signals,
whose ith entry is equal to the jth entry of u(t) if ¢; = 6;, otherwise
is 0. Therefore, DOA information of the signals is converted into the
positions of the non-zero entries in s(t).

Now recovering s(¢) from the under-determined linear equation
system (2) reduces to a sparse reconstruction problem similar to many
treated in the CS application. Given sparsity of s(t) and various
restrictions on ®, theorems [19-21] claim that s(¢) can be almost surely
recovered through Lg-norm constraint minimization

(Po) minfs(lo st y(t) = @s(t)

Unfortunately, (Pp) is an NP-hard problem. A remedy is to use the
Li-norm constraint minimization instead

(P) minfs@l st y(t) = @s(t)

The convexity and effectiveness of (P;) has made it very popular in CS
and sparse signal reconstruction.
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With multiple measurement vectors (MMV), the model (2) can
be rewritten as [15]
Y=®S+N

where Y = [y(1),...,y(T)]andN = [n(1),...,n(T)]. T is the number
of snapshots, and S = [s(1),...,s(7T)] is the expanded snapshots of the
arriving signals.

The L;-SVD method as presented in [15] consists of three steps:
computing the singular value decomposition (SVD) of Y = UAVH:
taking the first L columns of U which is denoted by Ygy = UADy, =
YVD;, € CMXL where Dy, = I, O]T, here Iy, is a L x L identity
matrix, and 0 is a L x (T — L) matrix of zeros. In addition, let
Ssy = SVDy, and Ngy = NVDy,; solving the following optimization
problem

winlSl st [Ysy - Sev]} < 57

where Sgyy € CE*L is the first L columns of SV; § € CK*! is the
estimated spatial spectrum whose entries are defined to be the 2-norm
of the corresponding rows of SV; ( is the pre-given regularization
parameter [15].

3. THE PROPOSED METHOD

The L;-SVD algorithm enforces sparsity by the regular Li-norm
constraint minimization [15]. However, the regular L;-norm constraint
minimization can not obtain exact recovery in signal recovery
processing [16]. To solve this problem, Candes et al. designed an
iterative reweighted formulation of Li-norm constraint minimization
that large weights are appointed to the entries of the recovered signal
whose indices are outside of the signal support [16]. The iterative L;
reweighted is given as

wgpﬂ) = [:EEPH) +5]_1
where x; denotes the ith entry of the recovered signal; w; is the
corresponding weighted value; ¢ > 0 is an application-dependent
parameter and must be carefully designed; p is the iteration count
number.

Now, the idea of iterative reweighted Lj-norm constraint
minimization is expanded from the SMV problem to the MMV
problem. This idea can be achieved by utilizing the orthogonality
between noise subspace and signal subspace spanned by the array
manifold matrix. By taking advantage of the singular value



114 Liu et al.

decomposition (SVD) on the data matrix {y(¢)}{2;, the following
equation can be obtained

(1), = UAV = [Ug UpJAV"

where {y(¢)}22; is the received data matrix; ¢ is from 1 to oco; U and
V are the matrixes, which consist of the left singular vectors and the
right singular vectors of {y(t)}72,, respectively. A is a diagonal matrix
which consists of the singular values of {y(¢)}72,, and the singular
values are nonnegative and arranged in descending order. Ug is the
signal subspace, which is the first L columns of U and U is the noise
subspace, which is the last M — L columns of U. According to [8], it
is easy to know that

AHUy =0 e clxM-1) (3)

Considering the relation between the overcomplete basis matrix ®
and the array manifold matrix A, ® can be rewritten as ® = [A B],
where B € CM*(K-L),

Utilizing the property in (3), we have the following equation

afuy = [UfA UiB]" = [0¥ DY)

where DZ(ZQ) > 0, DEZZ) denotes the ith entry of D2 D(2) is the
column vector that denotes the Lo-norm of each row of D. In actual
application, we have to substitute the sample data matrix Y for

{y(t)}22,. Substituting Uy for Uy yields that
- N . H
1Ty = [UﬁA UEB] = wi wi" =w
The weighted vector can be obtained as follows

wi2) — [WXQ)T W(é2)T]T

when the snapshot T' — oo, then WXQ) — 0(2) ¢ REXT and Wj(gb) —
D(2) ¢ ]R(K_L)Xl, and then the entries of WXQ) are smaller than those

of Wg2).
Define
G = diag{w()} (4)

Consequently, we can employ G as a weighted matrix to achieve the
idea that the nonzero entries whose indices are inside of the row
support of the jointly sparse signals are punished by smaller weights
and the other entries whose indices are more likely to be outside of
the row support of the jointly sparse signals are punished by larger
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weights. Lastly, we can formulate the noise subspace weighted Li-
norm constraint minimization for sparse signal reconstruction

min [GS1 st Yy - ®Sgy |7 < 52 (5)
SV

The equation (5) can be calculated by SOC programming software
packages such as CVX. DOA estimation is then obtained by plotting
§, solved from (5).

The procedure of the proposed method is concluded as follows

(1) Collect received data Y and construct the overcomplete basis
matrix ®.

(2) Compute the SVD of Y,S,N and obtain Ygv,Ssv, Nsv,
respectively.

(3) Acquire the regularization parameter [ according to [15].

(4) Obtain the weighted matrix by (4).

(5) Estimate DOA by calculating (5).

4. SIMULATION

In this section, we will provide many simulations to testify the
performance of the presented method. In the following simulations,
we employ a uniform linear array (ULA) of M = 8 sensors whose
separation distances are half a wavelength.

4.1. DOA Estimation for Uncorrelated Signals

Consider four uncorrelated equal power signals that arrive from [—30°,
—25°, 30°, 87°] impinging on the array. The direction grid is set to
have 181 points sampled from —90° to 90° with 1° intervals, and the
number of snapshots is 64, the signal-to-noise-ratio (SNR) is 5dB.
Figure 1 shows the spatial spectra of MUSIC, L1-SVD and proposed
method. From Figure 1, we can find that when the angle spacing
is large, all the algorithms can resolve the signal which is from the
direction of 30°. When the signal is near the edges of the angle
sector [—90°, 90°], for example 87°, MUSIC can not acquire DOA
estimation. When the separation distance between the signals is small,
for example 5°, MUSIC can not distinguish the two close signals, and
L1-SVD algorithm not only can not obtain the true signal localization
accurately, but also has serious spurious peaks. The main reason
is that: on one hand, we usually substitute Li-norm constraint for
Lg-norm constraint in the recovery processing, because the Lg-norm
constraint optimization is an NP-hard problem; on the other hand,
the problem we want to solve is not absolutely sparse when there
exists noise in actual application; in addition, the coherence of the
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Figure 1. Spatial spectra of Figure 2. Spatial spectra of
MUSIC, L;-SVD and proposed MUSIC, L;-SVD and proposed
method for uncorrelated signals.  method for coherent signals.

columns is usually so high in the overcomplete basis matrix that it is
hard to satisfy the restricted isometry property (RIP), so there exists
serious spurious peaks; while the proposed method not only has higher
resolution and more sharp peaks, but also can suppress spurious peaks
because of the weighted operation.

4.2. DOA Estimation for Correlated Signals

Suppose that there are four equal-power signals that arrive from [—40°,
—20°, 10°, 40°]. The first signal is the same as the second one, and the
third signal is the same as the fourth one. The second and third signals
are uncorrelated. The SNR is set to 0 dB, and the number of snapshots
is 64. In order to estimate correlated signals, a spatial smoothing [22]
preprocessing scheme should be added to the proposed method. Then
the noise subspace can be acquired to construct the weighted vector.
The forward /backward spatial smoothing (see reference [22]) is applied
to MUSIC to decorrelate the coherent signals, using a 6-element
smoothing subarray. Figure 2 shows that the proposed method has
higher resolution than that of MUSIC and no spurious peak compared
with L;-SVD.

4.3. Sensitivity of MUSIC and Proposed Method to the
Assumed Number of Signals

The presented algorithm has a crucial advantage that it is not very
sensitive to the incorrect determination of the number of signals.
An illustration of this statement is given in Figure 3 and Figure 4.
The actual number of signals is L = 4, which arrive from [—30°,
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—10°, 20°, 40°] impinging on the array, and the SNR is 5dB; the
number of snapshots is 128. In Figure 3, we plot the spatial spectra
acquired by MUSIC when we change the assumed number of signals.
Underestimating the number of signals results in a strong deterioration
of the quality of the spatial spectra, including widening and possible
disappearance of some of the peaks. A large overestimate of the
number of signals leads to the appearance of spurious peaks due to
noise. In Figure 4, we plot the spatial spectra acquired using the
proposed approach for the same assumed numbers of signals, and the
alteration in the spatial spectra is very small. The importance of
the low sensitivity of the proposed method to the assumed number
of signals is twofold. First, the number of signals is usually unknown,
and low sensitivity provides robustness against mistakes in estimating
the number of signals. Second, even if the number of signals is
known, low sensitivity may allow one to reduce the computational
complexity of the presented method by taking a smaller number of
singular vectors. Our formulation uses information about the number
of signals L, but we empirically observe that incorrect determination of
the number of signals in our approach has no catastrophic consequences
(such as complete disappearance of some of the signals as may happen
with MUSIC). The main reason is that the proposed method is not
relying on the structural assumptions of the orthogonality of the signal
and noise subspaces, but depending on sparse recovery theory for
obtaining DOA estimation in signal recovery processing. Though the
weighted vector in this framework is obtained by making use of the
orthogonality between noise subspace and signal subspace, it is only
used for enhancing sparsity, suppressing spurious peak, obtaining more
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accurate DOA estimation.

4.4. RMSE Curves of All the Algorithms Versus SNR

Figure 5 shows a comparison of root-mean-square-error (RMSE) of
DOA estimation of the aforementioned methods versus SNR. In this
simulation, we consider three uncorrelated sources at 20°, —10° and
—45°. The number of snapshot is taken as T' = 128, and all the results
are averaged over 100 Monte Carlo runs for each SNR. The RMSE of
DOA estimation is defined as

100 L

1 . 2
RMSE = | | 10— ; lz; (91(71) - 9,)

where 6;(n) is the estimation of ; for the nth Monte Carlo trial, and L
is the number of signals. From Figure 5, we can see that the proposed
method has better performance than MUSIC and L;-SVD algorithm.
Especially when SNR is low, the superiority is more apparent.

4.5. RMSE Curves of All the Algorithms Versus Angular
Separation

A comparison of RMSE of DOA estimation for MUSIC, L;-SVD and
the proposed method versus angular separation is shown in Figure 6.
Assume that two uncorrelated signals impinge on the array from
01 = —40° and 6, = —40° + A#, respectively, where A6 is varied from
2° to 10° in 1° steps. The SNR is set to 5dB, and the snapshot is 256.
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Figure 5. RMSE curves of Figure 6. RMSE curves of

MUSIC, L;-SVD and proposed MUSIC, L;-SVD and proposed

method versus SNR. method versus angular separa-
tion.
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Table 1. Elapsed CPU time of different algorithms with different
signals.

Algorithm Two Signals | Three Signals
MUSIC 0.1242s 0.1295s
L1-SVD 2.2857s 2.3372s

Proposed Method 2.2971s 2.3505s

The RMSE versus angular separation is obtained via 100 independent
Monte Carlo trials for each angle spacing in Figure 6. Under the
test condition, the bias curves in Figure 6 show that the proposed
algorithm tends to become unbiased when A# is greater than about
6°, that the unbiased angle spacing is about 8° for MUSIC, and that
L1-SVD cannot become unbiased even the angle spacing is about 10°.
In addition, the proposed method and L;-SVD has higher resolution
than MUSIC when the angle spacing is less than 5°. In other words,
the proposed method shows better performance than the other two
approaches in angular resolution.

4.6. Execution CPU Time

In this part, TIC and TOC are used to count the execution CPU time in
Matlab. Then we chose ASUS K42JR as a convenient platform, which
has a modest CPU (2.27 GHz Intel Core i3-350M) and a moderate
memory space (2GB RAM) for data processing. Assume that the
number of snapshots is 64 and SNR 5dB. We compute elapsed CPU
time with 1000 repeating runs for MUSIC, L;-SVD and the proposed
method in Table 1. From Table 1, the computational complexity of
the proposed method is higher than MUSIC and the same as L1-SVD.
However, the advantages of the proposed method outweigh the cost of
additional computation: the proposed method has higher resolution
than MUSIC and L;-SVD, can suppress spurious peaks to obtain
accurate DOA estimation, and is not very sensitive to the correct
determination of the number of signals.

5. CONCLUSION

In this paper, an improved L1-SVD algorithm based on noise subspace
is developed for DOA estimation, in which the weighted vector is
obtained by utilizing the orthogonality between noise subspace and
signal subspace spanned the array manifold matrix. The proposed
algorithm penalizes the nonzero entries whose indices correspond to
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the row support of the jointly sparse signals by smaller weights and
the other entries whose indices are more likely to be outside of the row
support of the jointly sparse signals by larger weights, and therefore it
can encourage sparsity at the true signal locations. Through the above
simulations, it can be demonstrated that the proposed method not
only has supper-resolution in DOA estimation, but also can effectively
suppress spurious peak. Furthermore, it is not very sensitive to the
incorrect determination of the number of signals.
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