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Abstract—High speed analog-to-digital (A/D) sampling and a large
amount of echo storage are two basic challenges of high resolution
synthetic aperture radar (SAR) imaging. In this paper, a novel
SAR imaging algorithm which named CS-MTMAB is proposed
based on compressed sensing (CS) and multiple transmitters multiple
azimuth beams (MTMAB). In particular, this new algorithm, which
respectively reconstructs the targets in range and azimuth directions
via CS technique, simultaneously provides a high resolution and wide-
swath two-dimensional map of the spatial distribution of targets with
a significant reduction in the number of data samples beyond the
Nyquist theorem and with an implication in simplification of radar
architecture. The simulation results and analysis show that this new
imaging scheme allows the aperture to be compressed and presents
many important applications and advantages among which include
reduced on-board storage constraints, higher resolution, lower peak
side-lobe ratio (PSLR) and integrated side-lobe ratio (ISLR), less
sampled data than the traditional SAR imaging algorithm, and also
indicate that it has high robustness and strong immunity in the
presence of serious noise. Finally, the real raw airborne SAR data
experiment is performed to validate the proposed processing procedure.

1. INTRODUCTION

Synthetic aperture radar (SAR) is a radar imaging technology that is
capable of producing high resolution images of the stationary surface
targets [1]. The main advantages of SAR are that it can reduce
the effects of clouds and fog and allow them to be independent of
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external sources for imaging, having day and night and all-weather
imaging capability. Traditional compressions of SAR data utilize the
redundancy inherent in sampled data under the Nyquist theorem to
achieve compressed representation and profitable transmission. This
theory claims that one must sample at least two times faster than
the signal bandwidth while capturing it without losing information.
Thereby there are large amounts of onboard data that have to be
stored and it inevitably results in complex computation and expensive
hardware.

On the other hand, future SAR will be required to produce
high-resolution image over a wide area of surveillance. However,
minimum antenna area constraint makes it a contradiction to obtain
both high azimuth resolution and wide-swath simultaneously, which
is derived form the inconsistent requirements for pulse repetition
frequency (PRF). According to the Nyquist Theorem, to reconstruct an
unambiguous azimuth profile, the sampling rate of the azimuth must
not be less than its Doppler bandwidth. A high azimuth sampling
rate could be a restriction on the swath. To address the problems, the
multiple transmitters multiple azimuth beams (MTMAB) SAR has
been proposed in [2–7]. By using MTMAB SAR system, additional
samples are received for each transmitted pulse. This allows for a
reduced pulse repletion frequency thereby enabling a wide swath.

The recently introduced theory of compressed sensing (CS) states
that it is possible to recover sparse images from a small number
of random measurements, provided that the undersampling results
in noise like artifacts in the transform domain and an appropriate
nonlinear recovery scheme is used [8–11]. CS is a new concept allowing
recovery of signals that have been sampled below the traditional
Nyquist sampling rate. In this new framework, it uses a low-
dimensional, nonadaptive, linear projection to acquire an efficient
representation of a sparse signal with just a few measurements, so as to
greatly reduce the sampling rate and enhance the data rate. Because
of its compressed sampling ability, compressed sensing has found many
applications in radar and remote sensing, and other fields. Baraniuk
and Steegh [12] propose lowering the rate of the A/D converter in the
receive based on the notion of CS. In [13], a high resolution radar was
proposed based on CS by transmitting specially designed waveforms.
In [14], sparse signal representation and approximations from complete
dictionaries are explored. Patel et al. [15] use CS to focus inverse
SAR images of airplanes that have already been motion compensated.
Wei et al. [16, 17] analyzed high resolution properties of CS in SAR 2-
D imaging and linear array SAR imaging, but the results demonstrate
that CS method is sensitive to noise, and the exact reconstruction
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requires high SNR level of raw echo. And some major open questions
related with the application of CS to SAR and ISAR are listed in [18].

In this paper, we introduce a novel synthetic aperture radar
imaging algorithm which named CS-MTMAB based on compressed
sensing (CS) theory and multiple transmitters multiple azimuth
beams (MTMAB) techniques. Our approach is in contrast to other
compressive radar related algorithms that have only considered using
CS as part of one-dimensional analog-to-information conversion. The
key idea in our approach is to use CS to reconstruct two-dimensional (2-
D) target in the range dimension and azimuth dimension, respectively.
This radar system randomly transmits fewer pulses in azimuth
direction and samples fewer data than traditional systems at random
intervals in range direction. In addition, the proposed algorithm can
reduce the required receiver analog-to-digital (A/D) conversion band-
width so that it need operate only at the reflectivity’s potentially
low “information rate” rather than at its potentially high Nyquist
rate [12]. We present two extraordinary and innovative applications
of CS for MTMAB SAR. 1) The algorithm achieves 2-D imaging of
the targets via constructing the range measurement matrix and the
azimuth measurement matrix using CS. 2) The MTMAB technology
is used in this algorithm to resolve the contradiction between high
resolution and wide-swath. This will directly impact A/D conversion,
and has the potential to reduce the overall data rate and to simplify
hardware design. Meanwhile, it provides the potential to achieve higher
resolution between targets. More importantly, our method does not use
a matched filter and enhances some of these suggestions and provides
a proper framework along with general reconstruction techniques.

The rest of this paper is organized as follows. In Section 2,
the basic theory of compressed sensing is presented. In Section 3,
the signal model and the image formation algorithm using CS are
discussed in detail. The results of performance analysis and the real
data experimental results are presented in Section 4. Finally, Section 5
concludes this paper.

2. COMPRESSED SENSING

The Shannon-Nyquist sampling theorem requires a signal to be
sampled at a frequency of twice its bandwidth to be able to reconstruct
it exactly. In CS framework, it uses a low-dimensional, nonadaptive,
linear projection to acquire an efficient representation of a sparse signal
with just a few measurements, so as to greatly reduce the sampling
rate and enhance the data rate. According to the compressed sensing
theory [8–10], there are three important ingredients: sparse signal
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representation, measurement operator, and sparse reconstruction
algorithms. Consider a discrete signal expressed as a vector x ∈ CN of
length N . Suppose x is K-sparse if at most K ¿ N of its coefficients
are nonzero in a basis or more generally a frame Ψ, so that x = Ψs,
where Ψ ∈ CN×N is a sparsity basis matrix and s ∈ CN is a vector.
The signal is acquired through linear projections:

y = Φx = ΦΨs = Θs (1)

where y ∈ CM is the measurement vector and Φ ∈ CM×N is the
measurement matrix with M < N . Since M < N , the recovery of
signal x from the measurement vector y is ill-posed in general. But
when the matrix Θ has the Restricted Isometry Property (RIP) [19],
it is possible to reconstruct x from a set of M = O(K log(N/K)) linear
measurements. The RIP requires that

(1− δK) ‖s‖2
2 ≤ ‖Θs‖2

2 ≤ (1 + δK) ‖s‖2
2 (2)

where s is any vector having K nonzero coefficients, and δK ∈ (0, 1).
The signal x can be perfectly recovered via its coefficients s with high
probability, by solving the following l0 minimization problem:

ŝ = arg min ‖s‖0 s · t · y = ΦΨs = Θs (3)

Unfortunately, solving (3) is an NP problem and minimum l0 norm
is too sensitive to noise. Consequently, the researchers [19] present that
the recovery of sparse coefficients s can be achieved using optimization
by searching for the signal with a l1 minimization problem:

ŝ = arg min ‖s‖1 s · t · y = ΦΨs = Θs (4)

The optimization problem (4) is often known as Basis Pursuit
(BP) and Orthogonal Matching Pursuit (OMP) which can be solved
by linear programming methods.

3. CS APPLIED FOR MTMAB SAR

3.1. Signal Model

Figure 1 (an example of three antennas) shows the geometry of
MTMAB SAR and how received data are placed in a three-dimensional
(3-D) signal model. Compared to a single-aperture system, each
antenna of MTMAB SAR system receives and transmits signals.
Multiple receivers gather for the same PRF in azimuth dimension,
thereby ensuring constant performance over a clearly extended PRF
range. As the radar moves along its path in azimuth direction, it
transmits pulses at microwave frequencies at a random pulse repetition
interval (PRI) which is defined as 1/PRF. Instead of sampling in range
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Figure 1. Geometry of 2-D random sparse sampling for MTMAB
SAR.

direction with a regular interval, we propose to sample fewer data than
traditional systems at random intervals.

Suppose K is the antenna number, according to the theory of
MTMAB SAR, there are 2K−1 equivalent phase centre positions [20].
The antenna positions are governed by the spacing d of the K receivers
in combination with the distance between subsequent pulses given
by the sensor velocity v and PRF. Consequently, a uniform sample
distribution is obtained only if the following timing requirement is
fulfilled [20]:

d =
2v

(2K − 1)× PRF
(5)

Thus, the virtual uniform linear array is composed of the
equivalent phase centre positions, as shown in Figure 2. By this,
the equivalent phase centre positions of the MTMAB SAR system are
adjusted from pulse to pulse in order to match them to the PRF, thus
increasing the usable PRF range.

3.2. Imaging Formation Algorithm Using CS

As shown in Figure 1, a scatter within that scene is located at
P = (x, y, 0). RT (η; P) and RR (η; P) denote the slant ranges from
scatterer P to the transmitter and the receiver, respectively, where η
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Figure 2. MTMAB SAR system with uniform displaced phase center
sampling.

represents the slow time. Suppose the k -th antenna transmits signals
and the l -th antenna receives echo signals. The sum of the range from
the k -th transmitter and the l -th receiver to the target P can be written
as

Rkl(η;P) = RT (η;P) + RR(η;P)

=
√

R2
T0 + (vη − kd− x)2 +

√
R2

R0 + (vη − ld− x)2 (6)

where RT0 and RR0 are the transmitted and received range to the
sensor position at η = 0, respectively, and v represents the sensor
velocity, d represents the space of received antennas, x is the azimuth
coordinate of target P. Suppose the transmitted signal is linear
frequency modulated (LFM) signal which can be described as

sT (τ) = rect
(

τ

Tp

)
exp

{
j2πfcτ + jπkrτ

2
}

(7)

where Tp is the pulse duration, τ is the fast time, fc is the
carrier frequency, kr is the chirp rate and rect (·) is the stand for
the unit rectangular function. After mixing down and quadrature
demodulation, the received radar signal is given by

sR(τ, η) = rect
(

τ −Rkl (η;P) /c

Tp

)

× exp

{
jπkr

(
τ − Rkl (η;P)

c

)2

− j
2πRkl (η;P)

λ

}
(8)
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where c is the speed of light, and λ is the wavelength of the transmitted
signal.

On the other hand, from the signals and systems of view, suppose
sT (τ) is the transmitted signal and the target is described by u (τ),
then the received signal sR (τ) can be written as [12]

sR(τ) = G

∫
sT (τ − ξ)u(ξ)dξ (9)

where G represents attenuation due to propagation and reflection.
Consider a target reflectivity generated from N Nyquist-rate samples
x (n) via x(n) = u(∆t), n = 1, . . . , N . We sample the received radar
signal sR (τ) not every ∆t seconds but rather random ω(m)∆t seconds,
where M = [N/D] and M < N , ω (m) is a random sequence of size
1×M , to obtain the M samples, m = 1, . . . , M

y(m) = sR(τ)|τ=ω(m)·∆t = G

∫ N∆t

0
sT (ω(m) ·∆t− ξ)u (ξ) dξ

=G

N∑

n=1

sT (ω(m)·∆t−n)
∫ n∆t

(n−1)∆t
u (ξ)dξ=G

N∑

n=1

sT (ω(m)−n)x(n) (10)

where sT (n) is the discrete transmitted signal. The low-rate
samples y contain sufficient information to reconstruct the signal x
corresponding to the Nyquist-rate samples of the reflectivity u (τ) via
linear programming or a greedy algorithm.

It is well known that (10) is equal to a CS problem. In terms
of (10), suppose Dr represents the down-sampling times in range
direction, the range measurement matrix can be expressed as

Φr(m,n)=sT (ω(m)−n)=rect
(

ω(m)−n

Tp

)
exp

{
jπkr(ω(m)−n)2

}
(11)

where Φr ∈ CM×N , M = N/Dr, m = 1, . . . M , n = 1, . . . N . After
the targets being reconstructed in range dimension via CS, the signal
can be approximated as

scs (τ, η) ≈ sin c

(
τ − Rkl (η;P)

c

)
exp

{
−j

2πRkl (η;P)
λ

}
(12)

where sin c (·) is the Sinc function. The second factor of (12) is the
Doppler phase factor. Similarly, suppose Da represents the down-
sampling times in azimuth direction, the azimuth measurement matrix
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can be given by

Φa(q, p) = exp
{
−j2π

Rkl (q, p;P)
λ

}

= exp



−j2π

√
R2

T0 + [v(w(q)− p)− kd− x]2

λ

−j2π

√
R2

R0 + [v(w(q)− p)− ld− x]2

λ



 (13)

where Φa ∈ CQ×P , p = 1, . . . P is the Nyquist sampling sequence
in azimuth, Q = P/Da, q = 1, . . . Q is the down-sampling sequence,
ω (q) is the random sequence of size 1×Q. After constructing Φr and
Φa, the Equation (4) can solve by OMP or BP in range and azimuth
dimension, respectively. The procedure of MTMAB imaging algorithm
using CS is shown in Figure 3. Obviously, the amount of Nyquist-rate
data is N × P and the amount of CS-MTMAB data is M ×Q. Thus
the amount of data is reduced by Dr × Da times compared to the
traditional imaging algorithm.

Figure 3. MTMAB SAR system with uniform displaced phase center
sampling.
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4. SIMULATION RESULTS

Simulated data have been used to validate the algorithm in this
paper. Before the simulations, there are three key points to be aware
of with this approach. First, the target space can be regarded as
sparse in some special applications in which only a small number of
strong scatters distribute in the illuminated scene, and the relatively
few large coefficients of the scatterers can capture most of the
information of scene, such as ocean ships monitoring, aircraft and
spacecraft detecting, space debris imaging, and so on. The sparsity
of the target scene is important in this proposed algorithm. Second,
the measurement matrixes can be constructed by Equations (11)
and (13). Third, we use the solution method of optimization directly
as OMP [14]. In following experiments, we set the simulation radar
parameters as listed in Table 1.

4.1. Point Scatterers Simulation

The simulated scene consists of five point targets. Point O is located
in the center of the scene, and the other four targets are located
on the vertices of a 500m × 500m square. The relative coordinates
are listed as follows (m, m): O (0, 0), A (−100, −100), B (100, −100),
C (−100, 100), D (100, 100).

Using the parameters of Table 1, the 5 point targets are
reconstructed via traditional MTMAB SAR imaging algorithm and
CS-MTMAB algorithm, respectively. The results are shown in
Figure 4. Figure 4(a) shows the SAR imaging results with traditional
imaging algorithm based on Nyquist theory. The result of the

Table 1. Simulated radar parameters.

Parameters Value
Antennas numbers 3
Carrier frequency 10 GHz

Transmitted signal bandwidth 150 MHz
Platform height 20 km
Platform velocity 1350m/s
Pulse duration 10µs

PRF 350 Hz
Range undersampling 4 times

Azimuth undersampling 4 times
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proposed CS-MTMAB algorithm is shown in Figure 4(b). The results
demonstrate that the proposed algorithm can give an exact recovery
of the reflectivity function although the amount of data is reduced by
4 × 4 times, and also show that the presented CS-MTAMB method
outperforms the conventional imaging algorithm based on matched
filter method.

Furthermore, a point target located at the central scene is used
for measurement. The results of the range and azimuth profile are
shown in Figure 5. It illustrates that this method has better imaging
performance in lower PSLR and ISLR than traditional reconstruction
and also enhances the imaging quality.

(a) (b)

Figure 4. Comparison of imaging results obtained via two different
methods. (a) 3-D reflectivity with traditional reconstruction. (b) 3-D
reflectivity with the CS-MTMAB imaging algorithm.

(a) (b)

Figure 5. Range and azimuth compression simulation results.
(a) Comparison of the range profile. (b) Comparison of the azimuth
profile.
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Figure 6. Simulated scene with three point targets.

4.2. Resolution Analysis

We show an important capability of this proposed method that is high
resolution, which means that it can reconstruct image details under
bandwidth limitations. To demonstrate this property, we apply our
method on a synthetic scene composed of three point scatterers which
are in different range and azimuth location. The coordinates of targets
are listed as follows (m, m): E (0, 1), F (0, 0), G (−1, 0) as shown in
Figure 6.

This experiment uses the parameters of Table 1 and sets the
traditional radar range resolution of 1.5 m, and azimuth resolution
of 1.5 m. In this case, the traditional imaging algorithm can not
distinguish the three point targets which their range and azimuth
distance are 1 meter as Figure 7(a) shows. On the contrary, the
proposed CS-MTMAB algorithm can clearly distinguish the targets
as Figure 7(b) shows(after 8-times interpolation). In particular, the
side-lobe image of Figure 7(b) is caused by the interpolation, and
the original side-lobe image using CS-MTMAB is very small. This
experiment illustrates CS theory would allow the implementation
of wide-swath modes without reducing the resolution and have an
enormous potential application in improving radar resolution.

4.3. Robustness and Noise Immunity

Using the parameters of Table 1 and setting 1 point target in
simulated scene, the results in different signal to noise ratio (SNR)
with traditional reconstruction and CS-MTMAB reconstruction are
shown in Figure 8. Figures 8(a) and (c) show that the original
targets are reconstructed when they separately probed with −10 dB
and −20 dB additive white Gaussian noise (AWGN) via traditional
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(a) (b)

Figure 7. Comparison of contour plots using traditional and
CSMTMAB algorithm. (a) Contour plots of targets E, F , and G
using traditional algorithm after 8-times interpolation. (b) Contour
plots of targets E, F and G using CS-MTMAB algorithm after 8-times
interpolation.

imaging algorithm. Figures 8(b) and (d) illustrate their respective
results in the presence of −10 dB and −20 dB of AWGN using CS-
MTMAB algorithm. Compare the four figures, we can find out
targets can be well reconstructed in presence of serious noise using
CS-MTMAB algorithm. Therefore, the results clearly show that the
performance of CS-MTMAB is high robustness and strong immunity
in the presence of serious noise.

4.4. Performance Analysis

As mentioned above, Dr represents the range down-sampling times
and Da represents the azimuth down-sampling times. And the total
down-sampling times β is defined as Dr ·Da. The reconstruction error
is calculated as ‖x̂− x‖2

2/‖x‖2
2, where x̂ and x are the estimated and

true coefficient vectors, respectively. The experiment was repeated for
different values of β and signal to noise ratio (SNR). The relationships
between β, SNR and reconstruction error are depicted in Figure 9(a).
As shown in Figure 9(a), it is clear that the CS-MTMAB algorithm
can reconstruct targets in the case of serious down-sampling and low
SNR level. Note that the error is extraordinary small for β < 10
and SNR ≥ −10 dB, and then increases rapidly for larger values of
β and smaller values of SNR. Therefore, the proposed algorithm has
high robustness in the presence of serious noise. Meanwhile, it is
strongly immune to noise interference and has the characteristic of high
noise immunity. These experimental results show that the proposed
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(a) (b)

(c) (d)

Figure 8. Comparison of reconstruction results with SNR.
(a) Traditional reconstruction with −10 dB AWGN. (b) CS-MTMAB
reconstruction with −10 dB AWGN. (c) Traditional reconstruction
with −20 dB AWGN. (d) CS-MTMAB reconstruction with −20 dB
AWGN.

(a) (b)

Figure 9. The results of performance analysis. (a) Reconstruction
error for different β and SNR. (b) Relation between information
entropy and SNR.
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(a) (b)

Figure 10. The results of real raw data with CS-MTMAB and
conventional algorithm. (a) The conventional algorithm with full
sampled data. (b) CS-MTMAB with 25% sampled data.

algorithm is valid under certain conditions.
The following will be given a new evaluation method based on

information entropy. The information entropy can be calculated as

Γ = −
P∑

i=1

N∑
j=1

pij log pij , where pij = |A(i, j)| /
P∑

i=1

N∑
j=1

|A(i, j)| and

A (i, j) represents the amplitude of the reconstructed results based
on CS. The information entropy is the measured standard of the
information. The smaller value of the information entropy we get,
the higher experiment measurement quality of the results will be. The
relationship between information entropy and different SNR level is
shown in Figure 9(b). From Figure 9(b), we can see that the noise in
the echo may be restrained with increasing of SNR. It is because the
information redundancy of the measured echo signals is declining with
the increasing of the SNR, so the reconstructed performance would be
better. Moreover, we can also get the conclusion that the proposed
CS-MTMAB SAR imaging results are far better than the traditional
MTMAB SAR imaging results.

4.5. Imaging with Real Raw Data

Some experimental results as shown in Figure 10, obtained by
processing real raw airborne SAR data with CS-MTMAB and
conventional approach are presented. The real raw data scene is an
airport with two aircrafts which can be seen as strong scattering
targets in the scene. Thus the target scene is sparse and we can
apply the propose method to the real raw data. The transmitted
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signal bandwidth is 200 MHz, the pulse duration is 30µs, the platform
velocity is 105 m/s, and the PRF is 1000 Hz.

Figure 10(a) shows the result with traditional imaging algorithm.
The result with 25% sampled data using CS-MTMAB are shown in
Figure 10(b). Compared with the Figure 10, we can find that the
proposed algorithm can accurately focus the aircrafts in the sparse
scene although the sampled data is reduced by 4 times. This real
raw data experiment illuminates that this proposed method is of great
significance to the sparse targets imaging such as sea ship targets
imaging, aircraft and spacecraft detecting and space debris imaging.
It can storage space and transmission bandwidth in many application
fields, particularly in systems having real-time imaging capability.

5. CONCLUSION

In this paper, a novel 2-D SAR imaging algorithm is proposed
based on constructing measurement matrixes in range and azimuth
dimensions via compressed sensing techniques, respectively. And
the MTMAB technology is used in this algorithm to resolve the
contradiction between high resolution and wide-swath. This radar
system randomly transmits fewer pulses in azimuth and samples fewer
data than traditional systems at random intervals in range. Thereby,
this method provides a new approach of receiving echo data via 2-D
random sparse sampling with a significant reduction in the number
of sampled data beyond the Nyquist theorem. This will directly
impact A/D conversion, and has the potential to reduce the overall
data rate and to simplify hardware design. The simulation results,
real raw airborne SAR data experiment and performance analysis
verify the validity of the proposed CS-MTMAB imaging algorithm
which is lower PSLR and ISLR, less sampled data, higher resolution,
stronger robustness and higher noise immunity than the traditional
SAR imaging algorithm.
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