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ROBUST CALCULATIONS OF MAXIMUM RATIO COM-
BINING DIVERSITY GAINS BASED ON STOCHASTIC
MEASUREMENTS
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Abstract—Previous work on maximum ratio combining (MRC)
diversity has derived a closed-form cumulative distribution function
(CDF), referred to as Lee’s formula, for spatially correlated Rayleigh
fading channels. It is usually believed that (due to its singularity)
Lee’s formula will result in large numerical error when two eigenvalues
of a diversity antenna’s covariance matrix are close to each other. This
letter shows that the limit of Lee’s formula converges to the true CDF
as eigenvalues converge to each other, which implies that Lee’s formula
is robust in determining diversity gains of arbitrary antennas based on
stochastic measurements.

1. INTRODUCTION

Diversity antenna techniques have been used to improve the
communication reliability in multipath fading environments for
decades [1, 2]. Consequently the diversity gain has become a parameter
for the characterization of multi-element antennas (MEAs) [1–7]. This
letter focuses on the maximum ratio combining (MRC) diversity
gain [5–7] in rich scattering Rayleigh fading environments. The
cumulative distribution function (CDF) of the MRC output of a
correlated MEA in a rich scattering Rayleigh fading environment was
derived by Lee [5]

F (γ) = 1−
M∑

i=1

λM−1
i exp(−γ/λi)

M∏
k 6=i

(λi − λk)
(1)

where γ is the instantaneous signal-to-noise ratio (SNR), M is the
number of antenna elements, and λi (i = 1 . . . M) as the ith eigenvalue
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of the covariance matrix

R = E[hhH ] (2)

where h is the complex column-vector fading channel. We thereby
refer to (1) as Lee’s (CDF) formula.

Lee’s formula is valid for MEAs with distinct eigenvalues of
covariance matrices, which has been validated by measurements [6].
However, Lee’s formula has apparent singularity when any two
eigenvalues of the MEA’s covariance matrix are equal. Therefore, it is
usually believed that Lee’s formula will result in large numerical error
when two eigenvalues are close to each other. In this letter, however,
we will show that the limit of Lee’s formula converges to the true CDF
as eigenvalues converge to each other when the covariance matrix is
estimated by sample mean,

R̂ =
1
N

N∑

n=1

hnhH
n (3)

where hn is the nth realization of random channel vector h, and N is
the number of realizations. Therefore, it can be used for MRC diversity
evaluations of arbitrary antennas based on stochastic measurements in
Rayleigh fading environments. We hereafter refer to (3) as sample
covariance matrix and its eigenvalue, λ̂i (i = 1 . . . M), as sample
eigenvalues. In a typical diversity antenna measurement, N is always
finite so that λ̂i deviate from λi with large probability.

2. DIVERSITY GAIN

The effective diversity gain (EDG) is defined as the output SNR
improvement of a diversity antenna compared with that of a single
antenna with unity efficiency at 1% outage probability level [1]. For
Rayleigh fading, the output SNR of a single antenna has an exponential
distribution, 1 − exp(−γ) [1]. The CDF of the MRC output SNR in
Rayleigh fading is known for two cases:

• eigenvalues are all different from each other as (1);
• eigenvalues are all equal, λi = λ (i = 1 . . . M), as

F (γ) = 1− exp
(
−γ

λ

) M∑

i=1

(γ/λ)i−1

(i− 1)!
. (4)

The CDF expressions with arbitrary equal eigenvalues are
unknown in general, and have to be approximated by empirical
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CDFs from measured samples. We first consider a two-element
diversity antenna with unity efficiencies and no correlation. The
covariance matrix with perfect estimation R is an identity matrix
with equal eigenvalues of unity. In this case, there would have been
singularity if we use Lee’s formula (1). Nevertheless, in practice MEAs’
covariance matrices and eigenvalues in multipath fading environments
are unknown and have to be estimated from measurement samples.
Thus λ̂1 6= λ̂2 with large probability. The question is if there
will be large numerical error using Lee’s formula? To answer that,
we generate independent and identically distributed (i.i.d.) complex
Gaussian channel, represented by hw, with Frobenius norm satisfying
E[‖hw‖2

F ] = M , where M = 2 in this case. The channel seen by the
diversity antenna can then be expressed as h = R1/2hw where R1/2

is the Cholesky decomposition of R, which is identity matrix I in this
case. The sample covariance matrix R̂ is estimated using (3), which
deviates from I (due to finite sample number N) with large probability.

Fig. 1 shows the EDG (as a function of the number of channel
realizations) obtained using Lee’s formula with sample eigenvalues λ̂i of
R̂ against that obtained using empirical CDF from generated channel
realizations. Surprisingly, the EDG converges to the true value, i.e.,
11.7 dB, much faster than that of the empirical CDF. It is surprising to
see that there is no noticeable error due to close-to-singularity problem
in spite of the fact that the estimation error of sample eigenvalues
reduces (and thereby become closer to each other) with increasing
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Figure 1. Numerically simulated
EDG as a function of number
of realizations for two-element
antenna with unity efficiency and
no correlation.
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Figure 2. Numerically simulated
effective diversity gain as a func-
tion of number of realizations for
three-element antenna with unity
efficiency and a uniform correla-
tion of 0.5.
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sample number.
We then consider a three-element antenna with a covariance

matrix

R =

[ 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

]
, (5)

so that two of the eigenvalues are equal (λ1 = 2, λ2 = λ3 =
0.5). Repeat the same simulation procedure as above, the EDGs are
calculated and shown in Fig. 2 as a function of the number of channel
realizations. Similar results are observed, i.e., EDG obtained using
Lee’s formula with sample eigenvalues not only converge to the true
value but also converge much faster than that obtained from empirical
CDF. The faster convergence of Lee’s formula is because that the
sample eigenvalues converge faster the empirical CDF at 1% level.

3. CONVERGENCE IN DISTRIBUTION

Although the fact of that the limit of Lee’s formula converge to the true
CDF as eigenvalues converge to each other was not found or shown in
previous literature, its proof is straightforward. First we consider the
case when M = 2, and λi → λ (i = 1, 2). In this case, Lee’s formula
reduces to

FLee(γ) = 1− λ1 exp(−γ/λ1)− λ2 exp(−γ/λ2)
λ1 − λ2

; (6)

the true CDF, i.e., the distribution of the MRC output of a two-element
antenna with unity efficiency and no correlation, is

F (γ) = 1− exp
(
−γ

λ

)(
1 +

γ

λ

)
. (7)

Namely, we need to show that FLee(γ) → F (γ) as λi → λ.
Proof : Without loss of generality, let λ2 = λ and λ1 = λ + ε for

any ε > 0 (λi → λ is equivalent to ε → 0), and substitute these into
(6),

FLee(γ) = 1− λ

ε

[
exp

(
− γ

λ + ε

)
− exp

(
−γ

λ

)]
− exp

(
− γ

λ + ε

)
(8)

Using Taylor expansion to the first order,

lim
ε→0

FLee(γ) = lim
ε→0

{
1− λ

ε

[ γ

λ2
exp

(
−γ

λ

)
ε + o(ε)

]

−
[
exp

(
−γ

λ

)
+

γ

λ2
exp

(
−γ

λ

)
ε + o(ε)

]}

= 1− γ

λ
exp

(
−γ

λ

)
− exp

(
−γ

λ

)
= F (γ) (9)
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where o(ε) → 0 as ε → 0.
It is, however, difficult to prove that the limit of Lee’s formula

converges to the true CDF with arbitrary antenna element number
(and therefore arbitrary number of equal eigenvalues) from CDF
formula directly. We have to resort to characteristic function for more
general proof. The characteristic function of the MRC output with an
arbitrary MEA is [8]

φ(z) = E[exp(jzγ)] =
1

det(I + zR)
=

M∏

i=1

1
1 + zλi

. (10)

It is self-evident that φ(z) converges as λi → λ (i = 1 . . . M).
Since φ(z) is the Fourier transform of the probability density function
(PDF) of γ, to show that the limit of Lee’s formula converges to the
true CDF is equivalent to show that the convergence of φ(z).

Proof : Let Fi (i = 1 . . . M) be the CDF of γ when i eigenvalues
of the covariance matrix of the MEAs are equal. Namely, F1 denotes
Lee’s formula, FLee, (1) and FM represents the classical MRC output
CDF with i.i.d. antenna branches (4). Due to bijection between CDF
and characteristic function, there exists one φi(z) for each Fi uniquely.
The continuity theorem [9] states that if φ1(z) converges to φi(z), then
F1 converges to Fi.

This is a general proof, yet it is rather abstract, for this reason,
we would like to keep the proof for M = 2 case for better convergence
illustration.

4. CONCLUSION

In this letter, we showed that EDGs obtained using Lee’s formula with
sample eigenvalues not only converge to the true values for MEAs
with arbitrary number of equal eigenvalues, but also converge much
faster than the EDGs obtained from empirical CDF. A proof of limit-
convergence was given. This work verified that Lee’s formula can
be used in diversity measurement with arbitrary MEAs without any
singularity problem.
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