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Abstract—In this work, we use the numerical steepest descent path
(numerical SDP) method in complex analysis theory to calculate
the highly oscillatory physical optics (PO) integral with quadratic
phase and amplitude variations on the triangular patch. The Stokes’
phenomenon will occur due to various asymptotic behaviors on
different domains. The stationary phase point contributions are
carefully studied by the numerical SDP method and complex analysis
using contour deformation. Its result agrees very well with the leading
terms of the traditional asymptotic expansion. Furthermore, the
resonance points and vertex points contributions from the PO integral
are also extracted. Compared with traditional approximate asymptotic
expansion approach, our method has significantly improved the PO
integral accuracy by one to two digits (10−1 to 10−2) for evaluating
the PO integral. Moreover, the computation effort for the highly
oscillatory integral is frequency independent. Numerical results for
PO integral on the triangular patch are given to verify the proposed
numerical SDP theory.

1. INTRODUCTION

When the electrical size of objects are on the order of hundreds or
thousands of working wavelength λ, that is, the essential frequencies
k of the wave field are high enough, the physical optics (PO)
approximation has been accepted as an efficient approach for analyzing
the scattering and radiation electromagnetic problems [2–14, 16–19],
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which was suggested by Macdonald [4] early in 1913. The PO current
on a scattering surface lit region is defined by

j
(s)
PO(r) = 2

∂u(i)(r)
∂n

, j
(h)
PO(r) = 2u(i)(r), (1)

JPO(r) = 2n̂×H(i)(r), (2)

where u(i)(r) is the incident wave, j
(s)
PO and j

(h)
PO are the scalar acoustic

currents due to the soft (u|∂Ω = 0) and hard ((∂u/∂n)|∂Ω = 0)
boundary conditions, respectively. JPO defined in Equation (2) is the
electromagnetic wave current in the lit region. In the shadow region of
the scattering surface ∂Ω, this PO current is set to zero. Due to the
soft boundary condition, the acoustic scattered field integral by PO
expression is:

u
(s)
PO(r) = −

∫

∂Ω1

j
(s)
PO(r′)g(r, r′)ds(r′), g(r, r′) =

1
4π

eik|r−r′|

|r− r′| , (3)

where ∂Ω1 is the lit surface of the scatterer and g (r, r′) is the scalar
Green’s function in the homogeneous medium. For electromagnetic
waves, the PO integral has the similar expression as Equation (3), but
we shall use the dyadic Green’s function [1]. To guarantee that the
PO approximation is accurate enough for the full-wave scattering, the
observation point r shall be far away from the scatterer’s shadow and
reflection boundaries [3, 21, 22]. In this situation, the PO scattered
field integral can be represented by a surface integral:

I =
∫

∂Ω
s(r)eikv(r)ds, (4)

where s(r) is a slowly varying amplitude function, and the exponent
of the phase function term, i.e., eikv(r) will become highly oscillatory
as the frequency k increases. Hence, the PO integral kernel is getting
more oscillatory as the electrical size of object becomes larger compared
with the incident wavelength λ. Consequently, the computational cost
by a direct numerical integration scheme [12, 20] for the PO integral is
extremely high.

Due to the importance and challenges of acoustic, elastic and elec-
tromagnetic waves in high frequency applications, efficient numerical
methods have attracted much attentions from mathematicians [23–29].
Bruno et al. employed the full-wave combined-field boundary integral
formulation and asymptotic theories to solve this type of problems.
It is the extension of the stationary phase method for convex and
smooth obstacles [24–26], where the ideas of asymptotic theories are
incorporated into the localized integration method. Engquist and Run-
borg [28, 29] considered the traditional ray tracing technique based on
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the variant of geometrical optics (GO). It is obtained by the asymp-
totic approximations when the wave field frequency tends to infinity.
Furthermore, the eikonal equation and the approximation of the Li-
ouville equation based on GO have been employed for simulating the
high frequency wave propagation.

Traditional asymptotic expansion approximations [3, 18, 38–43]
are widely used in computational electromagnetics, optics, acoustics
and geophysics areas. The asymptotic expansion approximation
for the highly oscillatory PO integral [10, 17–19] is a frequency-
independent approach. However, it generally leads to limited accuracy,
especially when the object is not very large. These challenging
PO type oscillatory integrals are extensively studied in [30–37].
Relevant mathematical theories and error analysis are developed to
provide clearer pictures about their oscillatory behaviors. Some
comprehensive numerical quadratures, such as Filon-type and Levin-
type methods, are developed by the aid of the asymptotic approximate
expansion approach. The SDP or numerical SDP [37, 45] techniques
in the complex plane [1, 17] is very efficient in computing highly
oscillatory integrals by the steepest descent integral path deformation.
Since less approximation is done compared with the traditional
asymptotic expansion, the numerical SDP method opens up a hopeful
way in computing PO integrals frequency independently and error
controllably.

Analytical expressions for reducing the highly oscillatory double
PO integral to a line integral were given by Gordon [6, 7]. Based
on the standard far-field approximation, the Kirchhoff formula was
used for the scattered field under the assumption that the amplitude
and phase functions vary linearly. Then closed form formulas were
obtained on flat patches. In [8–10], Ergin used the radon transform to
develop the closed form expression of the PO integral on the triangular
patch and even NURBS surface, the proposed method is efficient for
electromagnetic scattering problems. Cátedra et al. [15] and Vico et
al. [17] extended the phase and amplitude variation by using quadratic
functions. Different approximated closed forms were developed from
it. In [17], the PO integral on a surface is presented by a decomposition
of the surface into small triangles. In each triangle, a path deformation
in the complex plane is used to accelerate the integration.

The proposed numerical steepest descent path method in this
manuscript comes from the physical meaning of the PO integral.
Physically, we know the dominant terms of the PO integral shall
be the stationary phase point contribution, which agrees well with
geometry optics (GO) theory. In order to capture the stationary phase
point contribution, we consider the phase function with quadratic
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variation. Once the stationary phase point exists in the PO integrand,
the resonance point contribution and Stokes’ phenomenon related
to the reflection and shadow boundaries of GO theory can also be
captured. For the PO integrand with linear phase variation, the
stationary phase point does not exist. And the size of λ/10 meshes
shall be used to compute the PO integral while the mesh size does not
dependent on the wavelength by the quadratic phase variation. In this
paper, the starting problem is similar to [17]. We deal with highly
oscillatory PO integrals with the quadratic variation of amplitude and
phase functions on triangular patches. Double integrals are reduced
into line integrals in terms of complementary error functions. For
each linear integral, the numerical SDP method and Stokes lines are
used to achieve the frequency independency in computing the highly
oscillatory line integral. Compared with [17], our new contributions
in this paper are: Stokes lines are comprehensively studied to extract
the stationary phase point (SPP) contributions; Resonance point and
vertex point contributions are also exactly extracted, and compared
with the asymptotic results in [18]; Cancellation of the internal
resonance and vertex points contributions are mathematically proved
when we assemble triangle meshes together for practical engineering
applications. Thus, we just need to consider the triangle patches
that contain the stationary phase point, the boundary resonance
points, and the boundary vertex points. Thus, the number of
considered triangles shall be significantly reduced for the realistic
objects. New mathematical theories and formulas for all cases of PO
integrals on edges are developed depending on the relative locations
of endpoints, Stokes lines and stationary phase points. We employ
the complementary error function instead of the n-repeated Fresnel
function. Only two trapezoidal decompositions of each triangle
are needed instead of six trapezoidal decompositions in [17]. Both
improvements give rise to elegant mathematical formulas. All new
derivations are verified by the brute force method and compared with
the asymptotic approximation approach.

To our best knowledge, this is the first time that comparisons
of the point contributions by using the numerical SDP method and
traditional asymptotic approximation approach for highly oscillatory
PO integrals have been given. Since the numerical SDP method
uses less approximation, its numerical result is more accurate than
the asymptotic approximations. Detailed numerical results and
comparisons with [18] are provided. When the frequency k is around
50, our numerical SDP method can significantly improve the point
contributions accuracy to one to two digits (10−1 to 10−2), which is
very valuable for engineering. Moreover, the computation efforts by
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the numerical SDP method retains frequency-independent as in [44].
This paper is organized as follows: the highly oscillatory PO

integral on right-angled trapezoid domains are discussed in Section 2.
The two dimensional integral is reduced to several line integrals.
Steepest descent paths are used and different cases PO integral
formulas are given. In Section 3, we extend the PO integral to
the triangular patch. Mathematical formulas of the PO integrals
are decomposed as the resonance point, vertex point and stationary
point physically contributions. The formulations are analyzed to
compare these point contributions results with leading terms of
traditional asymptotic approximation in Section 5. In Section 6,
numerical results of PO integrals on a trapezoid domain and triangular
patch are compared by the asymptotic approximation approach, the
brute force and the numerical SDP methods. The comparisons
show that the proposed numerical SDP method is error-controllable
and frequency-independent. The detailed mathematical closed-form
formula derivations are documented in the Appendix.

2. HIGHLY OSCILLATORY PO INTEGRALS ON THE
RIGHT-ANGLE TRAPEZOID DOMAIN

In electromagnetics, the PO scattered field by an object with surface
∂Ω can be represented by a surface PO integral in Equation (4):

I =
∫

∂Ω
s(r)eikv(r)ds,

where r = (x, y, z) is the Cartesian coordinate, s(r) is a slowly varying
amplitude function, and the exponential of the phase function, i.e.,
eikv(r) will become highly oscillatory as the frequency k increases (see
Figure 1).

We assume the object surface ∂Ω is given by equation z = f(x, y),
and the projection of ∂Ω onto x-y plane is ∂Ωxy. Then the domain
∂Ωxy can be discretized into M triangles, ∆1, ∆2, . . ., ∆M . To
capture the stationary phase points phenomenon and give the closed-
form formulas for the PO integral I given in Equation (4), we assume
the integrand of I has the quadratic variation of the amplitude and
phase functions on these triangular patches. In this sense, the surface
integral can be represented as

I =
∫

∂Ωxy

s̃(x, y)eikṽ(x,y)
√

1 + [fx(x, y)]2 + [fy(x, y)]2dxdy

=
M∑

n=1

∫

∆n

d̃(x, y)eikṽ(x,y)dxdy '
M∑

n=1

∫

∆n

d̃n(x, y)eikṽn(x,y)dxdy, (5)
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Figure 1. One example of the PO type highly oscillatory behavior
with the integrand h(x) = (5− x2)eikx2

.

where

s̃(x, y) = s (x, y, f(x, y)) , ṽ(x, y) = v (x, y, f(x, y)) ,

d̃(x, y) = s̃(x, y)
√

1 + [fx(x, y)]2 + [fy(x, y)]2.

The second order polynomials d̃n (x, y) and ṽn (x, y) are the quadratic
amplitude and phase functions. They can be got by the Lagrange
interpolation polynomial approximation of d̃ (x, y) and ṽ (x, y) on these
triangular patches ∆n, n = 1, 2, . . . , M . Their formulas are

ṽn(x, y) = β̃n,1 + β̃n,2x + β̃n,3y + β̃n,4x
2 + β̃n,5y

2 + β̃n,6xy, (6)

d̃n(x, y) = α̃n,1 + α̃n,2x + α̃n,3y + α̃n,4x
2 + α̃n,5y

2 + α̃n,6xy, (7)

where α̃n,m ∈ C, β̃n,m ∈ R, m = 1, 2, . . . , 6.
However, the quadratic phase function ṽn (x, y) of each summation

integral term in Equation (5) has the simplified canonical form. We
notice that ṽn (x, y) in Equation (6) can be written in the matrix
notation as

ṽn(x, y) = [ x y ] ·Wn ·
[

x
y

]
+ β̃n,2x + β̃n,3y + β̃n,1,

= [ x− ãn y − c̃n ] ·Wn ·
[

x− ãn

y − c̃n

]
+ G̃n, (8)
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where the symmetric matrix Wn has the form

Wn =

[
β̃n,4

β̃n,6

2
β̃n,6

2 β̃n,5

]
.

We consider the case that the eigenvalues of Wn are not zero
(nondegenerate). If we assume G̃n is a constant in Equation (8), then
the coefficients ãn and c̃n can be uniquely found by the relationships

β̃n,2 + 2β̃n,4ãn + β̃n,6c̃n = 0,

β̃n,3 + 2β̃n,5c̃n + β̃n,6ãn = 0.

After getting ãn and c̃n, the coefficient G̃n in Equation (8) has the
formula

G̃n = −
(
β̃n,4ã

2
n + β̃n,5c̃

2
n + β̃n,6ãnc̃n − β̃n,1

)
.

Since Wn is a nondegenerate symmetric matrix, we can always find
the invertible congruent transformation matrix

Qn = [ qn,1 qn,2 ] =
[

qn,11 qn,12

qn,21 qn,22

]
,

such that

QT
n ·Wn ·Qn = Dn =

[
χn,1

χn,2

]
, (9)

with χn,j = 1 or −1, j = 1, 2. Also, the coefficient G̃n in Equation (8)
can always be written as (not unique)

G̃n = [ gn,1 gn,2 ] ·Dn · [ gn,1 gn,2 ]T . (10)

Combining Equations (8)–(10), and after the coordinate transform
[

x′
y′

]
= Q−1

n ·
[

x− ãn

y − c̃n

]
+

[
gn,1

gn,2

]
, (11)

the quadratic phase function ṽn (x, y) in Equation (6) can be simplified
as its canonical form:

ṽn(x′, y′) = χn,1(x′)2 + χn,2(y′)2, with χn,j = 1 or − 1, j = 1, 2. (12)

Since the coordinate transform in Equation (11) is an affine
transformation, it will always map the triangle ∆n to another triangle
∆′

n. Each summation integral term in Equation (5) can be written as
∫

∆′n
p̃n(x′, y′)eik[±(x′)2±(y′)2]dx′dy′, (13)
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where p̃n (x′, y′) is the multiplication of function d̃n (x, y) in x′-
y′ coordinate system and the determination of Jacobi coordinate
transform matrix ∂ (x, y)/∂ (x′, y′).

To study the above simplified PO integral as shown in
Equation (13), in this paper, we focus on the canonical PO integral

I =
∫

∆
p(x, y)eik(x2+y2)ds, (14)

where ∆ is an arbitrary triangle. The second order polynomial p (x, y)
has the form

p(x, y) = α1 + α2x + α3y + α4x
2 + α5y

2 + α6xy, (15)

where αm ∈ C, m = 1, 2, . . . , 6.
Direct numerical scheme such as the adaptive Simpson’s rule for

evaluating the above integral I is time-consuming for high frequency k.
In other words, the number of discretized triangles M = M(k) ∼ O(k2)
in Equation (5). In the following, we derive a k-independent formula
on a right-angle trapezoid domain.

2.1. Reduction of the Double Integral into the Line Integrals

We first consider the highly oscillatory integrand p(x, y)eik(x2+y2)

defined on the domain [L1, L2] × [0, ax + b] as shown in Figure 2. It
can be written as

I =
∫ L2

L1

∫ ax+b

0
p(x, y)eik(x2+y2)dydx =

∫ L2

L1

eikx2
F (x)dx, (16)

(a) (b)

Figure 2. Integration domains [L1, L2] × [0, ax + b] for the highly
oscillatory integrand given in Equation (16), (a) a > 0, (b) a < 0.
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here we assume ax + b > 0, and

F (x) =
∫ ax+b

0
p(x, y)eiky2

dy

= −
√

π

2
√−ik

(
α1+α2x+α4x

2− α5

2ik

)(
erfc

(√
−ik(ax + b)

)
− 1

)

+
α3 + α6x + α5(ax + b)

2jk
eik(ax+b)2 − α3 + α6x

2ik
, (17)

(see Appendix A), where the complementary error function erfc (z) is
defined by

erfc(z) =
2√
π

∫ ∞

z
e−t2dt, and erfc(0) = 1.

On the other hand, F (x) in Equation (17) can be decomposed into
two different parts defined on edge y = 0 and edge y = ax + b. They
are J1(x) and J

(a,b)
2 (x), respectively:

F (x) = J
(a,b)
2 (x)− J1(x), (18)

where

J1(x) =
α3 + α6x

2ik
−

√
π

2
√−ik

(
α1 + α2x + α4x

2 − α5

2ik

)
, (19)

J
(a,b)
2 (x) = j1(x)erfc

(√
−ik(ax + b)

)
+ j

(a,b)
2 (x)eik(ax+b)2 , (20)

with

j1(x) = −
√

π

2
√−ik

(
α1 + α2x + α4x

2 − α5

2ik

)
,

j
(a,b)
2 (x) =

α3 + α6x + α5(ax + b)
2ik

.

Thus the original integral I in Equation (16) can be rewritten as

I =
∫ L2

L1

∫ ax+b

0
p(x, y)eik(x2+y2)dydx

=
∫ L2

L1

(
J

(a,b)
2 (x)− J1(x)

)
eikx2

dx = I2 − I1, (21)

where

I1 =
∫ L2

L1

J1(x)eikx2
dx, I2 =

∫ L2

L1

J
(a,b)
2 (x)eikx2

dx.
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I1 is a highly oscillatory integral, but its integrand is a holomorphic
function. After integration by parts, it has the closed form formula
related to special complementary error functions erfc (z) as follows:

I1 = S(L2)− S(L1), (22)

where
S(Ln) = Z1erfc

(√
−ikLn

)
+ Z2e

ikL2
n , (23)

with

Z1 =
(
− π

4ik
α1 −

√
π

4ik
√−ik

α3 − π

8k2
α4 − π

8k2
α5

)
,

Z2 =
(
−

√
π

4ik
√−ik

α2 −
√

πLn

4ik
√−ik

α4 − 1
4k2

α6

)
,

and index n = 1, 2. But I2 is a highly oscillatory integral that cannot
be solved analytically. In the following, we use the path deformation
technique to deform the original integration path [L1, L2] to the
steepest descent path in the complex plane [1]. The power series and
asymptotic expansion of the complementary error function erfc (z) [46]
are respectively of the forms

erfc(z) =
∞∑

l=0

(−1)lzl

2−ll!Γ
(
1− l

2

) ,

erfc(z) ∼ 2√
π

e−z2

2z

∞∑

m=0

(−1)m(2m)!
m!(2z)2m

,

(
z →∞, | arg(z)| < 3π

4

)
,

where “∼” means “asymptotic to”. When l = 2, the first power series
term above is regarded as 0.

From Figures 3–4, we can see the oscillatory behaviors of
erfc (

√−iz) and eiz2
. The complementary error function erfc (z) has

the following features:

erfc
(√

−ikz
)
∼

{
ζ(z)eikz2

, z ∈ ∏
,

2 + ς(z)eikz2
, z ∈ ∐

,
(24)

the above Equation (24) holds when
√−ikz → ±∞. Where ζ(z), ς(z)

are two slowly varying functions defined on two domains
∏

,
∐

on the
complex plane:
∏

=
{

z ∈ C : Re(z) + Im(z) ≥ 0, arg(z) ∈
[
−π

4
,
3π

4

]}
,

∐
=

{
z ∈ C : Re(z) + Im(z) < 0, arg(z) ∈ [−π, π]

∖ [
−π

4
,
3π

4

]}
.(25)
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The above defined asymptotic behaviors of the phases on different
domains are called the Stokes’ phenomenon [1]. The separated line
between

∏
and

∐
is

l(z): Re(z) + Im(z) = 0, (26)

which is called the Stokes line. Substituting z =
√

k(ax + b) into

(a)

(b)

Figure 3. Oscillatory behaviors of the Fresnel function of order 0
in [17], i.e., Fr0(z) =

√
iπ
2 erfc(

√−iz) and Fr0(z)−√iπ (a). Oscillatory
behaviors of the error function, i.e., erfc (

√−iz) and erfc (
√−iz) − 2

(b).

Figure 4. Oscillatory behavior of eiz2
.
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Equation (24), and denoting the following function:

Ec(x) '




ζ
(√

k(ax + b)
)

, ax + b ∈ ∏
,

ς
(√

k(ax + b)
)

, ax + b ∈ ∐
.

(27)

Then by substituting Equation (24) into Equation (20), the phase
variation term of the integrand of the highly oscillatory integral I2

is g(x) = x2 + (ax + b)2.

2.2. Numerical Steepest Descent Paths

For the highly oscillatory phase term eikg(x), we notice that

eikg(x) = eik(Re(g(x))+iIm(g(x))) = e−kIm(g(x))+ikRe(g(x)). (28)

For a starting point L1, if we define a path function x = ϕL1(p),
p ∈ [0,∞) satisfying the following three conditions:

(a) ϕL1(0) = L1, that is, the path starts at L1.
(b) Re(g(ϕL1(p))) = Re(g(ϕL1(0))) ≡ C, where C is a constant;
(c) Im(g(ϕL1(p))) = p.

After substituting x = ϕL1(p) into Equation (28), we can find that
the function eikg(ϕL1

(p)) = eikC−kp will decrease exponentially when p
goes large. Based on (b) and (c), the steepest descent path: x = ϕL1(p)
can be found from the following equation:

g(ϕL1(p)) = C + ip. (29)

By setting p = 0 in the above equation, we get C = g(L1) from
condition (a). After substituting g(x) into (29), we have

ϕL1(p)2 + (aϕL1(p) + b)2 = L2
1 + (aL1 + b)2 + ip,

=⇒ ϕL1(p) =
sign(L′1)√

1 + a2

√
L′1

2 + ip + xs, p ∈ [0,∞), (30)

where L′1 =
√

1 + a2(L1 − xs), and xs = − ab
1+a2 (i.e., the point xs

satisfies g′(xs) = 0) is the stationary phase point of the phase function
g(x) = x2 + (ax + b)2. Similarly, by substituting L2 into (29), we have
ϕL2(p) defined as follows:

ϕL2(p) =
sign(L′2)√

1 + a2

√
L′2

2 + ip + xs, p ∈ [0,∞) (31)

where L′2 =
√

1 + a2(L2 − xs).
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For the stationary phase point xs, that is g′(xs) = 0, we can see
that

g(x)− g(xs) ≈ (x− xs)2

2!
g′′(xs) + O

(
(x− xs)3

)
, x → xs.

Hence, g(x) − g(xs) is quadratic around xs [1]. So we define a path
function x = ϕ0(p), p ∈ (−∞,∞), such that

ϕ0(p)2 + (aϕ0(p) + b)2 = x2
s + (axs + b)2 + ip2.

By substituting xs into the above equation, we have ϕ0(p) defined as
follows:

ϕ0(p) =
e(i π

4 )p√
1 + a2

+ xs, p ∈ (−∞,∞). (32)

 -1 -0.5 0 0.5 1

L1 L 2

xs

B

A

Re (x)

Im (x)

-1 -0.5 0 0.5 1

L 1 L 2
x

0
xs

B

-1 -0.5 0 0.5 1

L 1 L 2

x
0

xs

A

-1 -0.5 0 0.5 1

L 1 L 2

xs

B
A

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Re (x)

Re (x) Re (x)
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Figure 5. Contour curve is the imaginary part of g(x) = x2+(ax+b)2.
We can see the steepest descent path deformation, L1 < xs < L2. (a),
(b) correspond to cases x0 < L1, and L1 < x0 < xs. (c), (d) correspond
to cases xs < x0 < L2 and xs < x0 < L2.
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Figure 6. Contour curve is the imaginary part of g(x) = x2+(ax+b)2.
We can see the steepest descent path deformation. (a), (b) correspond
to cases L1 > xs, x0 < L1 and L1 < x0 < L2. (c), (d) correspond to
cases L1 > xs, L2 < x0 and L2 < xs, x0 < L1. (e), (f) correspond to
cases L2 < xs, L1 < x0 < L2 and L2 < x0.
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Since the integrand of I2, i.e., J2(x)eikx2
is holomorphic, from

Cauchy’s integral theorem, its integration value from the two end-
points: (L1, 0) to point (L2, 0) does not depend on the integral paths
we choose. Therefore, we can rewrite I2 in terms of its steepest descent
path form:

I2 =
∫ L2

L1

J
(a,b)
2 (x)eikx2

dx =
∫

ϕSDP(p)
J

(a,b)
2 (x)eikx2

dx

'
∫

ϕSDP(p)

[
j1(x)Ec(x) + j

(a,b)
2 (x)

]
eik(x2+(ax+b)2)dx

︸ ︷︷ ︸
Inon-analytic
2

+
∫

ϕl∗
2j1(x)eikx2

dx

︸ ︷︷ ︸
Ianalytic
2

, (33)

where ϕSDP(p) contains two or three paths of ϕL1(p), ϕ0(p), and ϕL2(p)
depending on the relative locations of L1, L2 and xs (see Figures 5–6).
The integral path ϕl∗ in Equation (33) comes from the constant term
“2” in Equation (24). The integral path ϕl∗ in Equation (33) comes
from the constant term “2” in Equation (24), and is related to the
intersection points between the Stokes line l(ax + b) and ϕSDP(p). All
cases for Inon-analytic

2 as shown in Figures 5–6 are:

Inon-analytic
2 =

{
I1
2 − I2

2 + I0
2 , L1 < xs < L2,

I1
2 − I2

2 , L2 < xs, or xs < L1.
(34)

where

I1
2 =

∫

ϕL1
(p)

[
j1(x)Ec(x) + j

(a,b)
2 (x)

]
eik[x2+(ax+b)2]dx

=
∫ ∞

0
e−kpeik[L2

1+(aL1+b)2]K1(p)dp, (35)

I2
2 =

∫

ϕL2
(p)

[
j1(x)Ec(x) + j

(a,b)
2 (x)

]
eik[x2+(ax+b)2]dx

=
∫ ∞

0
e−kpeik[L2

2+(aL2+b)2]K2(p)dp, (36)

I0
2 =

∫

ϕ0(p)

[
j1(x)Ec(x) + j

(a,b)
2 (x)

]
eik[x2+(ax+b)2]dx

=
∫ ∞

−∞
e−kp2

eik[x2
s+(axs+b)2]K0(p)dp, (37)
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with

K1(p) =
[
j1(ϕL1(p))Ec(ϕL1(p)) + j

(a,b)
2 (ϕL1(p))

]
ϕ′L1

(p),

K2(p) =
[
j1(ϕL2(p))Ec(ϕL2(p)) + j

(a,b)
2 (ϕL2(p))

]
ϕ′L2

(p),

K0(p) =
[
j1(ϕ0(p))Ec(ϕ0(p)) + j

(a,b)
2 (ϕ0(p))

]
ϕ′0(p).

The integral Ianalytic
2 has the closed-form expression. The original

function of its kernel 2j1(x)eikx2
is

K(x) =
(
− π

2ik
α1 − π

4k2
α4 − π

4k2
α5

)
erfc

(√
−ikx

)

+
(
−

√
π

2ik
√−ik

α2 −
√

πx

2ik
√−ik

α4

)
eikx2

. (38)

From Figures 5–6, it can be seen that many cases of Ianalytic
2 depend

on the relative locations of two end-points (L1, 0), (L2, 0), stationary
phase point (xs, 0) = (− ab

1+a2 , 0) and the intersection points of Stokes
line with the real x-axis (x0, 0) = (− b

a , 0). When the slope of line
y = ax + b changes from a > 0 to a < 0 (See Figure 2), domain

∏
and∐

in Equation (25) generated by erfc (
√−ik(ax + b)) will swap with

each other. All possible cases of Ianalytic
2 are given in Appendix B.

Hence, the integral I in Equation (21) can be written as:

I = Inon-analytic
2 + Ianalytic

2 − I1, (39)

where Inon-analytic
2 , Ianalytic

2 and I1 are given in Equation (34), Ianalytic
2

of Appendix B, and Equation (22), respectively.

3. HIGHLY OSCILLATORY PO INTEGRAL ON THE
TRIANGULAR PATCH

In Figure 7(a), we give a triangular patch containing a stationary phase
point Xs = (0, 0) satisfying ∇v(Xs) = [0, 0]T , where v(x, y) = x2 + y2.
The three vertex points of the triangular patch are V1 = (L3, a1L3 +
b1) = (L3, a3L3 + b3), V2 = (L1, a1L1 + b1) = (L1, a2L1 + b2), and
V3 = (L2, a2L2 + b2) = (L2, a3L2 + b3).

To calculate the PO integral on the triangular patch Equa-
tion (14), we firstly decompose the triangular patch into two sub-
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domains I and II, as shown in Figure 7(b). For domain I, we have

I(right) =
∫ L2

L1

∫ a2x+b2

a3x+b3

p(x, y)eik(x2+y2)dydx

=
∫ L2

L1

J
(a2,b2)
2 (x)eikx2

dx−
∫ L2

L1

J
(a3,b3)
2 (x)eikx2

dx, (40)

where J
(a2,b2)
2 and J

(a3,b3)
2 have the similar forms given in

Equation (20):

J
(a2,b2)
2 (x) = j1(x)erfc

(√
−ik(a2x + b2)

)

+
α3 + α6x + α5(a2x + b2)

2ik︸ ︷︷ ︸
j
(a2,b2)
2 (x)

eik(a2x+b2)2 , (41)

J
(a3,b3)
2 (x) = j1(x)erfc

(√
−ik(a3x + b3)

)

+
α3 + α6x + α5(a3x + b3)

2ik︸ ︷︷ ︸
j
(a3,b3)
2 (x)

eik(a3x+b3)2 . (42)

From Figure 8(b), and based on case 3 and a < 0 of Appendix B, we
have ∫ L2

L1

J
(a2,b2)
2 (x)eikx2

dx =
∫

ϕ
(a2,b2)
SDP

J
(a2,b2)
2 (x)eikx2

dx

'
∫

ϕ
(a2,b2)
SDP

[
j1(x)Ec,(a2,b2)(x) + j

(a2,b2)
2 (x)

]
eik[x2+(a2x+b2)2]dx

+
∫

ϕ
(a2,b2)
l∗

2j1(x)eikx2
dx

= I
(a2,b2)
L1

+ I(a2,b2)
xs

− I
(a2,b2)
L2

+ K((L2, 0))−K
(
A(2)

)
. (43)

From Figure 8(b), and based on case 1 and a < 0 of Appendix B, we
have ∫ L2

L1

J
(a3,b3)
2 (x)eikx2

dx =
∫

ϕ
(a3,b3)
SDP

J
(a3,b3)
2 (x)eikx2

dx

=
∫

ϕ
(a3,b3)
SDP

[
j1(x)Ec,(a3,b3)(x) + j

(a3,b3)
2 (x)

]
eik[x2+(a3x+b3)2]dx
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+
∫

ϕ
(a3,b3)
l∗

2j1(x)eikx2
dx

= I
(a3,b3)
L1

+ I(a3,b3)
xs

− I
(a3,b3)
L2

+ K((L2, 0))−K
(
B(3)

)

+K
(
A(3)

)
−K((L1, 0)). (44)

Hence, based on Equations (40), (43)–(44), we have

I(right) = I
(a2,b2)
L1

+ I(a2,b2)
xs

− I
(a2,b2)
L2

− I
(a3,b3)
L1

− I(a3,b3)
xs

+ I
(a3,b3)
L2

−K
(
A(2)

)
+ K

(
B(3)

)
−K

(
A(3)

)
+ K((L1, 0)). (45)

Similarly for domain II, we have

I(left) =
∫ L1

L3

∫ a1x+b1

a3x+b3

p(x, y)eik(x2+y2)dydx

=
∫ L1

L3

J
(a1,b1)
2 (x)eikx2

dx−
∫ L1

L3

J
(a3,b3)
2 (x)eikx2

dx, (46)

where J
(a1,b1)
2 has the similar form as J

(a3,b3)
2 :

J
(a1,b1)
2 (x) = j1(x)erfc

(√
−ik(a1x + b1)

)

+
α3 + α6x + α5(a1x + b1)

2ik︸ ︷︷ ︸
j
(a1,b1)
2 (x)

eik(a1x+b1)2 . (47)

From Figure 8(a), and based on case 1 and a > 0 of Appendix B, we
have ∫ L1

L3

J
(a1,b1)
2 (x)eikx2

dx =
∫

ϕ
(a1,b1)
SDP

J
(a1,b1)
2 (x)eikx2

dx

'
∫

ϕ
(a1,b1)
SDP

[
j1(x)Ec,(a1,b1)(x) + j

(a1,b1)
2 (x)

]
eik[x2+(a1x+b1)2]dx

+
∫

ϕ
(a1,b1)
l∗

2j1(x)eikx2
dx

= I
(a1,b1)
L3

+ I(a1,b1)
xs

− I
(a1,b1)
L1

+ K
(
B(1)

)
−K

(
A(1)

)
. (48)

From Figure 8(b), and based on case 9 and a < 0 of Appendix B, we
have∫ L1

L3

J
(a3,b3)
2 (x)eikx2

dx=
∫

ϕ
(a3,b3)
SDP

J
(a3,b3)
2 (x)eikx2

dx,

=I
(a3,b3)
L3

− I
(a3,b3)
L1

+ K((L1, 0))−K
(
A(3)

)
.(49)
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Based on Equations (48)–(49), we have

I(left) = I
(a1,b1)
L3

+ I(a1,b1)
xs

− I
(a1,b1)
L1

− I
(a3,b3)
L3

+ I
(a3,b3)
L1

+K
(
B(1)

)
−K

(
A(1)

)
−K((L1, 0)) + K

(
A(3)

)
, (50)

where

I
(an,bn)
Lm

=
∫

ϕ
(an,bn)
Lm

J
(an,bn)
2 (x)eikx2

dx

=
∫ ∞

0
e−kpeik[L2

m+(anLm+bn)2]Hmn(p)dp, (51)

I(an,bn)
xs

=
∫

ϕ
(an,bn)
0

J
(an,bn)
2 (x)eikx2

dx

=
∫ ∞

−∞
e−kp2

eik[x2
s+(anxs+bn)2]Tn(p)dp, (52)

with

Hmn(p) =
[
j1

(
ϕ

(an,bn)
Lm

(p)
)

Ec
(
ϕ

(an,bn)
Lm

(p)
)

+ j
(an,bn)
2

(
ϕ

(an,bn)
Lm

(p)
)]

·ϕ(an,bn)′
Lm

(p),

Tn(p) =
[
j1

(
ϕ

(an,bn)
0 (p)

)
Ec

(
ϕ

(an,bn)
0 (p)

)
+ j

(an,bn)
2

(
ϕ

(an,bn)
0 (p)

)]

·ϕ(an,bn)′
0 (p), m, n = 1, 2, 3.

Above all, based on Equation (45) and Equation (50), we have the
closed-form formula for I in Equation (14) on a triangular patch as
follows:

I = I(left) + I(right)

' I
(a2,b2)
L1

− I
(a1,b1)
L1

+ I
(a3,b3)
L2

− I
(a2,b2)
L2

+ I
(a1,b1)
L3

− I
(a3,b3)
L3︸ ︷︷ ︸

three vertex point contributions

+ I(a2,b2)
xs

− I(a3,b3)
xs

+ I(a1,b1)
xs︸ ︷︷ ︸

three resonance point contributions

+ K
(
B(1)

)
−K

(
A(1)

)
+ K

(
B(3)

)
−K

(
A(2)

)

︸ ︷︷ ︸
three Stokes lines and numerical SDPs intersection point contributions

. (53)

The three Stokes lines correspond to Equation (26) on three edges
Im(x) = −Re(x) + bm

am
, m = 1, 2, 3. The subscript xs in the “three

vertex point contributions” terms I
(am,bm)
xs , m = 1, 2, 3, denotes the
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x-component of the three resonance points on the three edges
−−−→
V1V2,−−−→

V2V3, and
−−−→
V3V1 as shown in Figure 7, respectively.

There is another way to interpret the Equation (53): the PO
integral I given in Equation (14) can be decomposed as the summation
of I

(am,bm)
2 , m = 1, 2, 3, separately. Their formulas are

I = I
(a1,b1)
2 + I

(a2,b2)
2 − I

(a3,b3)
2 , (54)

where

I
(a1,b1)
2 = I

(a1,b1)
L3

+ I(a1,b1)
xs

− I
(a1,b1)
L1

+ K
(
B(1)

)
−K

(
A(1)

)
, (55)

I
(a2,b2)
2 = I

(a2,b2)
L1

+ I(a2,b2)
xs

− I
(a2,b2)
L2

+ K ((L2, 0))−K
(
A(2)

)
,(56)

I
(a3,b3)
2 = I

(a3,b3)
L3

+ I(a3,b3)
xs

− I
(a3,b3)
L2

+ K ((L2, 0))−K
(
B(3)

)
.(57)

The above Equations (54)–(57) clearly give the decomposition of
original PO integral I given in Equation (14) on the triangle three
edges. In Section 5, for the numerical examples on the triangular
patch, we will use Equations (54)–(57) to calculate our numerical SDP
results for the PO integral I.

4. ANALYSIS OF THE CRITICAL POINT CONTRIBU-
TIONS ON A TRIANGULAR PATCH BY THE NUMERI-
CAL SDP METHOD AND COMPARISON WITH THE
TRADITIONAL ASYMPTOTIC APPROXIMATION
APPROACH

4.1. Stationary Phase Point Contribution

We again consider the highly oscillatory PO integral defined on the
domain I of the triangular patch (see Figure 7), that is, [L1, L2] ×
[a3x + b3, a2x + b2], where

Ĩ =
∫ L2

L1

∫ a2x+b2

a3x+b3

p(x, y)eik(x2+y2)dydx. (58)

When L1 < 0 < L2, a3x+b3 ≤ 0 and a2x+b2 ≥ 0, the two dimensional
integration domain contains the stationary phase point Xs = (0, 0).
We use the asymptotic expansion method [1, 18, 46] for Equation (58)
and consider the integral

Ĩ1 =
∫ ∞

−∞

∫ ∞

−∞
p(x, y)eik(x2+y2)dydx. (59)



232 Wu, Jiang, and Chew

Using integration by parts, the above integral can be derived as follows:

Ĩ1 =
∫ ∞

−∞
p1(x)eikx2

dx, (60)

p1(x) =
∫ ∞

−∞
p(x, y)eiky2

dy

=
(
α1 + α2x + α4x

2
)
Γ

(
1
2

)
i
1
2 k−

1
2 + α5Γ

(
3
2

)
i
3
2 k−

3
2 , (61)

where ∫ ∞

−∞
x2neikx2

dx = in+ 1
2 Γ

(
n +

1
2

)
k−n− 1

2 ,

p1(x) corresponds to the stationary phase point contribution at y = 0.
Using the above integral identity again into Equation (60), and the
fact Γ(1

2) =
√

π = 2Γ(3
2), the stationary phase point contribution term

of the integral given in Equation (59) is

Ĩ1,sp = −
( π

ik
α1 +

π

2k2
α4 +

π

2k2
α5

)
. (62)

It is of O (k−1).
Now we take a look at the “three Stokes lines and numerical SDPs

intersection point contributions” term in Equation (53). We define the
following term

CK = K
(
B(1)

)
−K

(
A(1)

)
+ K

(
B(3)

)
−K

(
A(2)

)

=
∫ B(1)

A(1)

2j1(x)eikx2
dx +

∫ B(3)

A(2)

2j1(x)eikx2
dx, (63)

where the points A(1), B(1), A(2), B(3) are the intersection points of
Stokes lines and steepest descent paths shown in Figure 8. The second
integral term in the right hand of Equation (63) has the integration
path from A(2) to B(3). It shall contain the stationary phase point
in order to form the closed paths. Following the derivation of the
stationary phase point contribution in Equation (58), the stationary
phase point contribution in Equation (62) can be exactly extracted!

The leading term (− π
ikα1) in Equation (62) agrees well

with [13, 18], they are called the “critical points contribution”. In
this paper, we include the high order terms (− π

2k2 α4 − π
2k2 α5) to gain

higher accuracy when k is not large enough (for example k = 20).

4.2. Resonance Point Contributions

From Equations (40), (46) and Figure 7, we see that the highly
oscillatory integrands defined on the three edges of the triangular
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patch are J
(am,bm)
2 eikx2

, m = 1, 2, 3. After the same derivation
procedure for the phase behavior of Inon-analytic

2 given in Equation (33),
the corresponding phase functions of J

(am,bm)
2 eikx2

have the formulas
gm(x, ym(x)) = x2 + y2

m(x), and ym(x) = amx + bm, m = 1, 2, 3. The
phase functions gm (x, ym(x)) may have stationary phase points xr,m

satisfying
dgm(x, ym(x))

dx
=

∂gm

∂x
+

∂gm

∂ym

dym(x)
dx

= 0

⇐⇒ ∇gm · ∇
[

x
ym(x)

]
= 0. (64)

After solving xr,m from Equation (64), the resultant three resonance
points on the three edges of triangular patch as shown in Figure 7 are

Xr,m = (xr,m, yr,m) =
(
− ambm

1 + a2
m

,
bm

1 + a2
m

)
, m = 1, 2, 3, (65)

and yr,m = amxr,m + bm. Equation (64) shows that gm (x, ym(x)) has
stationary points xr,m when the gradient of gm (x, ym(x)) is orthogonal
to the tangent line of the boundary parameterized by [x ym(x)]T on
this point.

Again, we use the asymptotic expansion method [1, 19, 21] to
derive the leading terms of resonance point contributions. We consider
the integral

Ĩ2 =
∫ ∞

−∞

∫ ∞

a1x+b1

p(x, y)eik(x2+y2)dydx. (66)

Using integration by parts, the above integral can be derived as follows:

Ĩ2 =
∫ ∞

−∞

∫ ∞

a1x+b1

p(x, y)eik(x2+y2)dydx (67)

=
∫ ∞

−∞

∫ ∞

a1x+b1

p(x, y)eiky2
dyeikx2

dx

'
∫ ∞

−∞
R1(x)eikx2

dx, (68)

R1(x) =
∫ ∞

a1x+b1

p(x, y)eiky2
dy

'
∞∑

n=0

(i/k)1+nan(x)eik(x2+(a1x+b1)2), (69)

where
a0(x) =

p(x, a1x + b1)
2(a1x + b1)

.
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Following the same procedure as Equation (61), we have the resonance
points contribution as follows:

Ĩ2 '
∞∑

n=0

(1/k)3/2+nbneik(x2
r,1+y2

r,1), (70)

where the leading term coefficient b0 has the formula

b0 =
i3/2√πp(Xr,1)

2(Xr,1 · n̂1)‖t̂1‖
,

and n̂1 and t̂1 are the normal and tangential vectors of line y1(x) =
a1x+b1, respectively. The leading term for Ĩ2 is (1/k)3/2b0e

ik(x2
r,1+y2

r,1).
It is of O (k−

3
2 ), which is the same as the results in [13, 18]. They called

them the boundary critical point contributions. Similarly, for the other
two resonance points, we have the similar asymptotic formulas as given
in Equation (70).

In this work, the three resonance points contributions by using
numerical SDP method are I

(am,bm)
xs , m = 1, 2, 3, defined in

Equation (52). Compared with the above asymptotic expansion, less
approximation is done by the numerical SDP method. In Section 5,
we give the numerical results verification and comparison of I

(am,bm)
xs

with the leading term of Equation (70).

4.3. Vertex Point Contributions

In Figure 7(b), we denote the intersection points of y1 = a1x + b1 and
y3 = a3x + b3 as V1. Then we consider the integral

Ĩ3 =
∫ L3

−∞

∫ a3x+b3

−∞
p(x, y)eik(x2+y2)dydx. (71)

Using integration by parts, the above integral can be derived as follows:

Ĩ3 =
∫ L3

−∞

∫ a3x+b3

−∞
p(x, y)eik(x2+y2)dydx. (72)

=
∫ L3

−∞

∫ a3x+b3

−∞
p(x, y)eiky2

dyeikx2
dx

'
∫ L3

−∞
W1(x)eikx2

dx, (73)

W1(x)
∫ a3x+b3

−∞
p(x, y)eiky2

dy

' −
∞∑

n=0

(i/k)1+ndn(x)eik(x2+(a3x+b3)2), (74)
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where
d0(x) =

p(x, a3x + b3)
2(a3x + b3)

.

Doing the same procedure for the Equation (74), we have the vertex
point contribution as follows:

Ĩ3 ' −
∞∑

n=0

(1/k)2+ncneik[L2
3+(a3L3+b3)2], (75)

where

c0 =
|t̂1 × t̂3|p(V1)
2V1 · (t̂1 + t̂3)

.

Thus the leading term for Equation (75) is of O (k−2), which is the same
as [13]. In this work, the three vertex point contributions calculated
by using the numerical SDP method are

IV1 = I
(a1,b1)
L3

− I
(a3,b3)
L3

for vertexV1. (76)

IV2 = I
(a2,b2)
L1

− I
(a1,b1)
L1

for vertexV2, (77)

IV3 = I
(a3,b3)
L2

− I
(a2,b2)
L2

for vertexV3. (78)

From Equations (62), (70) and (75), we can see that the stationary
phase point, resonance point and vertex point contributions are of
O (k−1), O (k−

3
2 ), O (k−2), respectively. Hence, when k → ∞, the

stationary phase point contribution becomes the dominant term for the
PO integral, which agrees well with geometrical optics (GO) [2, 19, 22].
Previous work [13] only gives the leading term of O (k−1). But our
derivation provides the higher order term using numerical SDP method
and achieves higher accuracy that will be demonstrated in Section 5.

4.4. Cancellation of the Resonance and Vertex Points
Contributions

Physically, the contributions for the PO integral I given in Equation (4)
come from the stationary phase point, the boundary resonance points
and boundary vertex points. For practical engineering models, when
we assemble discretized triangles together, the internal resonance and
vertex point contributions shall cancel each other.
Proposition 1 (Cancellation of the internal resonance point
contributions). Every internal resonance point contribution to the PO
integral I by the numerical SDP method is 0.
Proof. Firstly, from Figure 9, we can see that ∆V1V2V3 contains
three resonance points Xr,m, m = 1, 2, 3. The closed-form PO integral
formula I for the triangular patch ∆V1V2V3 is derived in Equation (54).
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Figure 9. Diagram of a group of assembled triangles containing a
stationary phase point Xs, an internal vertex point V2 and some
internal resonance points Xr,m, m = 1, 2, 3.

Secondly, we analyze the resonance points Xr,m one by one,
m = 1, 2, 3. For the resonance point Xr,2 lying on edge V2V3,
it is shared by two triangular patches ∆V1V2V3 and ∆V2V4V3 . The
resonance point Xr,2’s contribution on ∆V1V2V3 is I

(a2,b2)
xs as given in

Equation (54). For simplification, it is re-denoted as I
(V2,V3)
xs , where

the subscript xs = xr,2 denotes the x-component of the resonance point
Xr,2 expressed in Equation (65) on the edge

−−−→
V2V3.

Following the numerical SDP closed-form derivation on the
triangular patch ∆V1V2V3 , for the ∆V2V4V3 , we have

I∆V2V4V3

= I
(left)
∆V2V4V3

+ I
(right)
∆V2V4V3

(79)

' I
(V2,V4)
V2

− I
(V2,V3)
V2

+ I
(V3,V4)
V4

− I
(V2,V4)
V4

+ I
(V2,V3)
V3

− I
(V3,V4)
V3︸ ︷︷ ︸

three vertex point contributions

−I(V2,V3)
xs

+ I(V2,V4)
xs

H(Xs,V2,V4) + I(V3,V4)
xs

H(Xs,V3,V4)︸ ︷︷ ︸
three resonance point contributions

.

For the notation simplification, I
(V2,V3)
V2

in Equation (79) denotes the

vertex point V2’s contribution on the edge
−−−→
V2V3, it corresponds to the

I
(a2,b2)
L2

term in Equation (54). Other terms I
(Vm,Vn)
Vj

in Equation (79)
have the similar meanings, m, n, j = 2, 3, 4. H(Xs,V2,V4) and
H(Xs,V3,V4) given in Equation (79) are two special functions. When
the resonance point in Equation (65) exists between vertex points V2

and V4, H(Xs,V2,V4) = 1, otherwise, H(Xs,V2,V4) = 0. Similar
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argument holds for H(Xs,V3,V4).
The resonance point Xr,2’s contribution on ∆V2V4V3 is −I

(V2,V3)
xs

given in Equation (79), which cancels Xr,2’s contribution I
(V2,V3)
xs on

∆V1V2V3 . For the other two resonance points Xr,1 and Xr,3, they
are shared by the triangular patches groups {∆V1V2V3 , ∆V1V6V2}
and {∆V1V2V3 ,∆V1V3V7}. Based on the above derivation, the total
resonance point Xr,m’s contributions are all 0, m = 1, 2, 3. Since every
internal resonance point is shared by two triangular patches, following
the above argument, we conclude that every internal resonance point
contribution by using the numerical SDP method are 0. This fact
completes the proof.
Remark 1. Because ∆V2V4V3 does not contain the stationary
phase point, the stationary phase point contribution does not exist
in Equation (79).
Remark 2. Every boundary resonance point is not shared by two
triangles. Hence, the boundary resonance point contribution shall exist
from the argument in Proposition 1.
Proposition 2 (Cancellation of the internal vertex point contribu-
tions). Every internal vertex point contribution to the PO integral I
by the numerical SDP method is 0.
Proof. Firstly, from Figure 9, the internal vertex point V2 is shared
by five triangular patches: ∆V1V2V3 , ∆V2V4V3 , ∆V2V5V4 , ∆V6V5V2

and ∆V6V1V2 . From Equation (54), the vertex point V2’s contribution
on ∆V1V2V3 is

IV2, ∆V1V2V3
= I

(a2,b2)
L1

− I
(a1,b1)
L1

, I
(V2,V3)
V2

− I
(V1,V2)
V2

. (80)

From Equation (79), the vertex point V2’s contribution on ∆V2V4V3

is
IV2, ∆V2V4V3

= I
(V2,V4)
V2

− I
(V2,V3)
V2

. (81)

Secondly, following the derivation of PO integral I’s closed-form
formula on the other three triangular patches, we have

IV2, ∆V2V5V4
= I

(V2,V5)
V2

− I
(V2,V4)
V2

, (82)

IV2, ∆V6V5V2
= I

(V2,V6)
V2

− I
(V2,V5)
V2

, (83)

IV2, ∆V1V6V2
= I

(V1,V2)
V2

− I
(V2,V6)
V2

. (84)

Summing the above five equations, we get the internal vertex point
V2’s contribution IV2 to the PO integral I is 0.

Because every internal vertex point is shared by a finite number
of edges, and each edge is shared by two triangular patches, the
contributions appeared on these two triangular patches cancel each
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other. After considering all the edges passing through the internal
vertex point, we conclude that every internal vertex point contribution
by the numerical SDP method is 0. This fact completes the proof.
Remark 3. For the boundary vertex point, there always exists one
edge passing through this vertex point, and this edge is not shared by
two triangles. The considered vertex point contribution for the PO
integral I on this triangle cannot be canceled. Hence, the boundary
vertex point contribution shall exist from the argument in Proposition
2.

5. NUMERICAL EXAMPLES

The following numerical results illustrate that when k is not large
enough such as k is around 50, our numerical SDP method can
significantly improve the accuracy by one to two digits (10−1 to
10−2) compared with the asymptotic approximation approach. When
k →∞, both methods shall and do agree quite well.

5.1. The Right-angled Trapezoid Domains Examples

The first numerical example is a highly oscillatory integral I2 defined
in Equation (33). We can see the integrals I1

2 , I2
2 , and I0

2 in these three
integration formulas in Equations (35)–(38) have the exponentially
decay terms e−kp and e−kp2

, respectively. Gauss-Legendre numerical
integration schemes [47] are used to calculate these integrals on steepest
descent paths. The integration regions for the steepest descent path
parameter p are [0, p1] for Equations (35)–(37), and [−p2, p2] for
Equation (38), respectively. The exponentially decay terms e−kp for
the integrands of I1

2 , I2
2 , and e−kp2

for I0
2 as shown in Equations (35)–

(38) are constant with kp1 = kp2
2 ≡ 12. The number of integration

points for the Gauss-Legendre numerical integration scheme is fixed
to N = 20. Therefore, the computational efforts of numerical
SDP derived formulas Equations (35)–(38) combined with the Gauss-
Legendre numerical integration scheme are k-independent.

The target integral I2 as shown in Equation (33) has the following
setups: endpoints L1 = −0.5, and L2 = 0.5. Trapezoid line is
y = 0.25x− 0.25. Amplitude function p(x, y)’s coefficients as shown in
Equation (15) are α1 = 0.9501, α2 = 0.2311, α3 = 0.6068, α4 = 0.4860,
α5 = 0.8913, α6 = 0.7621 in integral I2. The steepest descent paths
correspond to Figure 5(d). Numerical results for I2 by the numerical
SDP formulas, Equations (35)–(38) are compared with the results
of the direct Matlab quad( ) function in Table 1. We can see when
k ≤ 500, the results by the two methods agree quite well. However,
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Table 1. Comparison of integral I2 (Equation (33)) by using our SDP
formulas Equations (35)–(38) and Matlab quad( ) function.

k Matlab quad( ) SDP method
1 −0.4675− 1.2514i −0.4675− 1.2514i
10 −0.0520− 0.3606i −0.0520− 0.3606i
100 −0.0028− 0.0234i −0.0028− 0.0234i
500 0.0003− 0.0055i 0.0003− 0.0055i
800 −0.0038 + 0.0041i 0.0001− 0.0037i
1000 0.0003− 0.0049i 0.0001− 0.0030i

Table 2. Comparison of integral I2 (Equation (33)) by using our
numerical SDP formulas Equations (35)–(38) and brute force method.
Other parameters are the same as Table 1.

k N(k) Brute force SDP method
1 1 −0.4675− 1.2514i −0.4675− 1.2514i
10 1 −0.0520− 0.3606i −0.0520− 0.3606i
100 1 −0.0028− 0.0234i −0.0028− 0.0234i
500 1 0.0003− 0.0055i 0.0003− 0.0055i
800 11 0.0001− 0.0037i 0.0001− 0.0037i
1000 20 0.0001− 0.0030i 0.0001− 0.0030i

Table 3. Comparison of integral I2 (Equation (33)) by using our
numerical SDP formulas Equations (35)–(38)) and brute force method.
Other parameters are the same as Table 1 except for changing L1 = 0.5,
L2 = 0.75.

k N(k) Brute force numerical SDP method
1 1 0.0103− 0.4354i 0.0103− 0.4354i
10 1 0.0029 + 0.0750i 0.0029 + 0.0750i
100 25 7.9728e-4− 7.6898e-4i 7.9728e-4− 7.6898e-4i
500 50 1.3149e-4− 8.0834e-5i 1.3149e-4− 8.0833e-5i
800 100 5.3560e-5− 7.9188e-5i 5.3560e-5− 7.9188e-5i
1000 150 1.3219e-5− 8.7249e-5i 1.3219e-5− 8.7249e-5i
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Figure 10. The parameters are the same as Table 2. Comparison of
the I2 integral results by using the numerical SDP and the brute force
methods, where we set N(k) = dk/2e (the upper integer of k/2).
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Figure 11. Comparison CPU time for calculating the I2 integral as
shown in Figure 10 by using the numerical SDP and the brute force
methods.
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Figure 12. Edge 1: Comparison of the real and imaginary
parts of the numerical SDP closed-form formula I

(a1,b1)
xs results

(Equation (55)) by using the asymptotic approximation with leading
term b0e

ik(x2
r,1+y2

r,1)/k3/2 [18] (a). E1(k) = |R1(k)/b0|, where the
coefficients R1(k) = I

(a1,b1)
Xs

k3/2 and b0 = −1.7423 + 1.7423i. Error =

|R1(k)− b0e
ik(x2

r,1+y2
r,1)| (b).

when k > 500, the results begin to have significant differences. The
reason is that the I2 integral becomes highly oscillatory when frequency
k goes higher, as shown in Figure 1. As a result, the direct Matlab
quad( ) loses the accuracy. In this sense, we divide domain [L1, L2] into
N(k) small sub-domains [dm, dm+1], with d1 = L1 and dN(k)+1 = L2,
such that

[L1, L2] =
N(k)⋃

m=1

[dm, dm+1],

and Matlab quad( ) function is used in each sub-domain [dm, dm+1].
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This is the brute force method employed for verification in this paper.
We can see that the results by these two methods agree well now in
Table 2. However, N(k) grows linearly with increasing k. Hence, the
computational cost by using the brute force method grows linearly.

To see the different relative locations of the two end-points, and
the stationary phase points, we reset L1 = 0.5, L2 = 0.75, which
corresponds to in Figure 6(c). Other parameters are the same as
Table 1. The resultant integral I2 numerical results are given in
Table 3. Again, the results agree quite well by the brute force and
the numerical SDP methods.

Figures 10–11 depict that the I2 results and CPU time consumed
comparison by the numerical SDP and the brute force methods. It can
be seen that using the numerical SDP method for calculating I2 on
an arbitrary line is frequency-independent in computational effort and
error-controllable in accuracy.

5.2. The Triangular Patch Example

The second numerical example is to compute the highly oscillatory
PO integral I in Equation (14) defined on the triangular patch as
shown in Figure 7. The three edge equations on the triangular patch
are: l1 : y = a1x + b1 = x + 11, l2 : y = a2x + b2 = −2x + 5,
and l3 : y = a3x + b3 = −0.5x − 4. The three vertex points are
V1 = (−10, 1), V2 = (−2, 9), and V3 = (6,−7). The size of the
triangular patch is L = 17.8885. It should be noted that when kL À 1,
the PO integral method is accurate to capture the characteristic of the
far field. Table 4 shows that the integral I results on a triangular
patch by using the numerical SDP method agree very well with the
brute force method — sub-dividing Matlab quad( ) function for the
highly oscillatory PO integral I. In this sense, using the numerical
SDP method for calculating PO integral I is error-controllable.

Table 4. On the triangular patch, the highly oscillatory PO integral
I by using the numerical SDP closed-form formula Equation (54) and
the brute force method.

k N(k) Brute force numerical SDP results

10 1 0.0611 + 0.3951i 0.0611 + 0.3951i

50 1200 −0.0082 + 0.0509i −0.0082 + 0.0509i

100 12000 −0.0051 + 0.0264i −0.0051 + 0.0264i

500 60000 −0.3550e-3 + 0.6004e-2i −0.3518e-3 + 0.6006e-2i

1000 120000 0.4754e-4 + 0.2868e-2i 0.4219e-4 + 0.2877e-2i
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5.3. Comparisons of the Numerical SDP Results with
Traditional Asymptotic Approximations on the Triangular
Patch

5.3.1. The Resonance Point Contribution Results (Figures 12–14)

The three resonance points on the triangular patch as shown in Figure 7
are given in Equation (65). Pathak [18] and Borovikov [21] gave the
asymptotic approximation leading terms for resonance points. From
Equation (36) in [18], or Equation (70), we have the leading coefficients
b0 = −1.7423 + 1.7423i, −1.7876 + 1.7876i, and 2.2615 − 2.2615i,
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Figure 13. Edge 2: Comparison of the real and imaginary
parts of the numerical SDP closed-form formula I

(a2,b2)
xs results

(Equation (56)) by using the asymptotic approximation with leading
term b0e

ik(x2
r,2+y2

r,2)/k3/2 [18] (a). E2(k) = |R2(k)/b0|, where the
coefficients R2(k) = I

(a2,b2)
Xs

k3/2 and b0 = −1.7876 + 1.7876i. Error =

|R2(k)− b0e
ik(x2

r,2+y2
r,2)| (b).
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Figure 14. Edge 3: Comparison of the magnitudes of the numerical
SDP closed-form formula |I(a3,b3)

xs | results (Equation (57)) by using the
asymptotic approximation with leading term |b0e

ik(x2
r,3+y2

r,3)/k3/2| [18]
(a). Comparison of the coefficients |R3(k)| = |I(a3,b3)

Xs
k3/2| and |b0| =

|b0e
ik(x2

r,3+y2
r,3)| (b).

and |b0| = 2.4640, 2.5280, and 3.1983 for edge 1, edge 2 and edge
3, respectively.

Figures 12–14 depict the general agreement of the three resonance
point contribution results by using the numerical SDP and asymptotic
approximation methods on the triangular patch. Furthermore, we
introduce |Rm(k)| = |I(am,bm)

xs k3/2|, m = 1, 2, 3. From Figures 12(b)–
14(b), the numerical SDP closed-form formulas I

(am,bm)
xs given in

Equations (55)–(57) are of O (k−3/2), m = 1, 2, 3.

5.3.2. Vertex Point Contribution Results (Figures 15–17)

Pathak [18] and Borovikov [21] also gave the asymptotic expansion
approximation leading terms for the vertex points. From Equation (37)
in [18] or Equation (75), we have the leading vertex point coefficients
c0 = 0.1632, −0.3556, and 0.0538, for vertex points V1, V2, and V3,
respectively.

Figures 15–17 show the general agreement of the three vertex
point contribution results by using the numerical SDP and asymptotic
approximation methods on the triangular patch. Furthermore, we
introduce |Tm(k)| = |IVmk2|, m = 1, 2, 3. From Figures 15–17, the
numerical SDP closed-form formulas IVm given in Equations (76)–(78)
are of O (k−2).
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Figure 15. Vertex point V1: Comparison of the real and imaginary
parts of the numerical SDP closed-form formula IV1 = I

(a1,b1)
L3

−I
(a3,b3)
L3

results (Equations (55)–(57)) by using the asymptotic approximation
with leading term c0e

ik[L2
3+(a3L3+b3)2]/k2 [18] (a). Comparison of

the coefficients T1(k) = |IV1 × k2| and |c0| = |c0e
ik[L2

3+(a3L3+b3)2]|.
Error = |T1(k)− c0e

ik[L2
3+(a3L3+b3)2]| (b).

5.3.3. Stationary Phase Point Contribution Results (Figure 18)

In the asymptotic expansion approximation [18], the leading stationary
phase point contribution term is Js = − π

ikα1. However, it omits the
higher order O (k−2) terms − π

2k2 α4 − π
2k2 α5.

We use three ways to compare the stationary phase point
contribution results in Figure 18: Equation (35) in [18], the derived
formula Equation (62) by using asymptotic approximation and the
numerical SDP method

CK = K
(
B(1)

)
−K

(
A(1)

)
+ K

(
B(3)

)
−K

(
A(2)

)
(85)
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Figure 16. Vertex point V2: Comparison of the real and imaginary
parts of the numerical SDP closed-form formula IV2 = I

(a2,b2)
L1

−I
(a1,b1)
L1

results (Equations (55)–(56)) by using the asymptotic approximation
with leading term c0e

ik[L2
1+(a1L1+b1)2]/k2 [18] (a). Comparison of

the coefficients T2(k) = |IV2 × k2| and |c0| = |c0e
ik[L2

1+(a1L1+b1)2]|.
Error = |T2(k)− c0e

ik[L2
1+(a1L1+b1)2]| (b).

given in Equation (53). Figure 18 presents that when k goes higher,
the results obtained by the numerical SDP method and asymptotic
approximation in [18] agree very well. Moreover, when k is around 50,
the numerical SDP method improves the accuracy by two digits (10−2)
by the confirmation of closed-form formula Equation (62) as shown in
Figure 18(b).

5.3.4. Total Contribution Points Results (Figures 19–21)

Summarizing the above resonance point, vertex point and the
stationary phase point contributions, we give the comparison of highly
oscillatory integral I given in Equation (14) on the triangular patch in
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Figure 17. Vertex point V3: Comparison of the real and imaginary
parts of the numerical SDP closed-form formula IV3 = I

(a3,b3)
L2

−I
(a2,b2)
L2

results (Equations (56)–(57)) by using the asymptotic approximation
with leading term c0e

ik[L2
2+(a2L2+b2)2]/k2 [18] (a). Comparison of

the coefficients T3(k) = |IV3 × k2| and |c0| = |c0e
ik[L2

2+(a2L2+b2)2]|.
Error = |T3(k)− c0e

ik[L2
2+(a2L2+b2)2]| (b).

Figure 19 by using the numerical SDP and the traditional asymptotic
expansion methods.

Using the brute force method as reference, Figure 20(a) presents
the comparison errors between the numerical SDP and asymptotic
approximation methods [18]. We see that when k is around 50, the
accuracy lost from traditional asymptotic approximation method is
about 10−2. However, the computational results accuracy lost by
the numerical SDP method is less than 10−6. Hence, the numerical
SDP method can significantly improve the PO integral computational
results accuracy even when k is not very large.

In Figure 21, the resultant errors of numerical SDP and asymptotic
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Figure 18. Comparison of the stationary phase point contribution
results by three ways: Equation (35) in [18], the derived formula
Equation (62) and the numerical SDP method CK given in
Equation (85) (a). Comparison of the magnitudes error of the
stationary phase point contribution results CK and the asymptotic
expansion leading term Js = − π

ikα1 given in Equation (35) [18],
Error = CK − Js (b).
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Figure 19. Calculating the PO integral I by using the numerical SDP
method Equation (53), the summation of all asymptotic expansion
leading terms as shown in [18] and the brute force method.

methods [18] are given to illustrate the accuracy improvement by the
numerical SDP method.

In summary, we can see the numerical SDP method is
error-controllable in accuracy and frequency-independent in
computational effort based on Figure 20!
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Figure 20. Blue line: The total contribution point results error by
using the numerical SDP results Equation (53) relative to the brute
force results on the triangular patch. Green line: the error of the
summation of the asymptotic leading terms [18] relative to brute force
results (a). CPU time comparison by using the numerical SDP and
brute force methods (b).
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Figure 21. The total contribution point results error between the
numerical SDP method Equation (53) and the summation of all
asymptotic expansion leading terms on the triangular patch.

6. CONCLUSION

In this paper, we focused on the difficult highly oscillatory PO integral
on right-angled trapezoid domains. The two dimensional integral is
reduced to line integrals related to complementary error functions.
Steepest descent paths deformation on the complex plane are used
to calculate the highly oscillatory line integrals. Due to the Stokes’
phenomenon of complementary error functions, various formulas of the
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PO integrals for different cases will occur and are derived completely.
Using the closed-form formula of PO integral on the arbitrary line,
we extend the PO integral to triangular patch. Physically, the highly
oscillatory PO integral has resonance point, vertex point and stationary
point contributions. The numerical SDP formulations are used to
compare these contribution point results with the leading terms of
traditional asymptotic expansion approximation. When the frequency
k is large enough, both methods agree quite well. However, when
the frequency is around 20–50, the accuracy lost by using traditional
asymptotic expansion method is about one to two digits (10−1 to
10−2). Supported by brute force method numerical verifications, the
numerical SDP method in this paper provides higher accuracy and
error-controllable results even when k is not large. Furthermore, the
CPU time consumed by the numerical SDP method is frequency-
independent.
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APPENDIX A. DERIVATION OF F (X) IN
EQUATION (17)

F (x) =
∫ ax+b

0
p(x, y)eiky2

dy =
∫ ax+b

0

(
α1 + α2x + α4x

2
)
eiky2

dy

+
∫ ax+b

0
(α3y + α6xy) eiky2

dy +
∫ ax+b

0

(
α5y

2
)
eiky2

dy

= F1(x) + F2(x) + F3(x).
After integration by parts, we have the following closed form formulas
for Fm(x), m = 1, 2, 3:

F1(x) =
∫ ax+b

0

(
α1 + α2x + α4x

2
)
eiky2

dy

= − (
α1 + α2x + α4x

2
) √

π

2
√−ik

(
erfc

(√
−ik(ax + b)

)
− 1

)
,
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F2(x) =
∫ ax+b

0
(α3y + α6xy) eiky2

dy

=
α3 + α6x

2jk

(
eik(ax+b)2 − 1

)
,

F3(x) =
∫ ax+b

0
(α5y

2)eiky2
dy

=
α5(ax + b)

2ik
eik(ax+b)2 +

α5
√

π

4i(ik)
3
2

(
erfc

(√
−ik(ax + b)

)
− 1

)
.

Summing the above three equations, we have

F (x) = F1(x) + F2(x) + F3(x)

=−
(
α1 + α2x + α4x

2 − α5

2ik

) √
π

2
√−ik

(
erfc

(√
−ik(ax + b)

)
−1

)

+
α3 + α6x + α5(ax + b)

2ik
eik(ax+b)2 − α3 + α6x

2ik
.

APPENDIX B. CLOSED-FORM FORMULA CASES FOR
IANALYTIC
2

From Stokes line formula Equation (26), after substituting z = ax+b on
the complex plane, we can see (x0, 0) = (− b

a , 0) is the intersection point
between the Stokes line l(z) and the real x axis. From Cauchy’s integral
theorem, the following (Figures 5–6) are all the cases for Ianalytic

2 :
(1) L1 < xs < L2 and x0 < L1 (Figure 5(a)),
when a > 0,

Ianalytic
2 =

∫ B

A
2j1(x)eikx2

dx = K(B)−K(A),

when a < 0,

Ianalytic
2 =

∫ (L2,0)

(L1,0)
2j1(x)eikx2

dx−
∫ B

A
2j1(x)eikx2

dx

= K((L2, 0))−K((L1, 0))−K(B) + K(A).

(2) L1 < xs < L2 and L1 < x0 < xs (Figure 5(b)),
when a > 0,

Ianalytic
2 =

∫ (x0,0)

(L1,0)
2j1(x)eikx2

dx +
∫ B

(x0,0)
2j1(x)eikx2

dx

= K(B)−K((L1, 0)).
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when a < 0,

Ianalytic
2 =

∫ (L2,0)

B
2j1(x)eikx2

dx = K((L2, 0))−K(B).

(3) L1 < xs < L2 and xs < x0 < L2 (Figure 5(c)),
when a > 0,

Ianalytic
2 =

∫ (xs,0)

(L1,0)
2j1(x)eikx2

dx +
∫ A

(xs,0)
2j1(x)eikx2

dx

= K(A)−K((L1, 0)),

when a < 0,

Ianalytic
2 =

∫ (L2,0)

A
2j1(x)eikx2

dx = K((L2, 0))−K(A).

(4) L1 < xs < L2 and xs < x0 < L2 (Figure 5(d)),
when a > 0,

Ianalytic
2 =

∫ A

(L1,0)
2j1(x)eikx2

dx +
∫ (L2,0)

B
2j1(x)eikx2

dx.

= K(A)−K((L1, 0)) + K((L2, 0))−K(B),

when a < 0,

Ianalytic
2 =

∫ B

A
2j1(x)eikx2

dx = K(B)−K(A).

(5) L1 > xs and x0 < L1 (Figure 6(a)),
when a > 0,

Ianalytic
2 = 0,

when a < 0,
Ianalytic
2 = K((L2, 0))−K((L1, 0)).

(6) L1 > xs and L1 < x0 < L2 (Figure 6(b)),
when a > 0,

Ianalytic
2 =

∫ A

(L1,0)
2j1(x)eikx2

dx = K(A)−K((L1, 0)),

when a < 0,

Ianalytic
2 =

∫ (L2,0)

A
2j1(x)eikx2

dx = K((L2, 0))−K(A).

(7) L1 > xs, L2 < x0 (Figure 6(c)),
when a > 0,
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Ianalytic
2 =

∫ A

(L1,0)
2j1(x)eikx2

dx +
∫ (L2,0)

B
2j1(x)

= K(A)−K((L1, 0)) + K((L2, 0))−K(B),

when a < 0,

Ianalytic
2 =

∫ B

A
2j1(x)eikx2

dx = K(B)−K(A).

(8) L2 < xs, x0 < L1 (Figure 6(d)),
when a > 0,

Ianalytic
2 =

∫ A

(L1,0)
2j1(x)eikx2

dx +
∫ (L2,0)

B
2j1(x)

= K(A)−K((L1, 0)) + K((L2, 0))−K(B),

when a < 0,

Ianalytic
2 =

∫ B

A
2j1(x)eikx2

dx = K(B)−K(A).

(9) L2 < xs, L1 < x0 < L2 (Figure 6(e)),
when a > 0,

Ianalytic
2 =

∫ B

(L1,0)
2j1(x)eikx2

dx = K(B)−K((L1, 0)),

when a < 0,

Ianalytic
2 =

∫ (L2,0)

B
2j1(x)eikx2

dx = K((L2, 0))−K(B).

(10) L2 < xs, x0 < L1 (Figure 6(f)),
when a > 0,

Ianalytic
2 =

∫ (L2,0)

(L1,0)
2j1(x)eikx2

dx = K((L2, 0))−K((L1, 0)),

when a < 0,

Ianalytic
2 = 0.
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field calculation involving current modes and quadratic phase
expressions,” IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233–
240, Jan. 2007.

16. Cátedra, M. F., C. Delgado, and I. G. Diego, “New physical optics
approach for an efficient treatment of multiple bounces in curved
bodies defined by an impedance boundary condition,” IEEE
Trans. Antennas Propag., Vol. 56, No. 3, 728–736, Mar. 2008.

17. Vico, F., M. Ferrando, and A. Valero, “A new fast physical
optics for smooth surfaces by means of a numerical theory of
diffraction,” IEEE Trans. Antennas Propag., Vol. 58, No. 3, 773–
789, Mar. 2010.

18. Carluccio, G., M. Albani, and P. H. Pathak, “Uniform asymptotic
evaluation of surface integrals with polygonal integration domains
in terms of UTD transition functions,” IEEE Trans. Antennas
Propag., Vol. 58, No. 4, 1155–1163, Apr. 2010.

19. Albani, M., G. Carluccio, and P. H. Pathak, “Uniform ray
description for the PO scattering by vertices in curved surface with
curvilinear edges and relatively general boundary conditions,”
IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1587–1596,
May 2011.

20. Harrington, R., Field Computation by Moment Method, Macmil-
lan, New York, 1968.

21. Borovikov, V. A., Uniform Stationary Phase Method, Institution
of Electrical Engineers, London, 1994.

22. James, G. L., Geometrical Theory of Diffraction for Electromag-
netic Waves, Peregrinus, Stevenage, 1980.

23. Langdon, S. and S. N. Chandler-Wilde, “A wavenumber
independent boundary element method for an acoustic scattering
problem,” SIAM J. Numer. Anal., Vol. 43. No. 6, 2450–2477, 2006.

24. Bruno, O. P., C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich,
“Prescribed error tolerances within fixed computational times for
scattering problems of arbitrarily high frequency: The convex
case,” Phil. Trans. Royal Soc. London, Series A, Vol. 362, 629–
645, 2004.



256 Wu, Jiang, and Chew

25. Geuzaine, C., O. Bruno, and F. Reitich, “On the O(1) solution of
multiple-scattering problems,” IEEE Trans. Magn., Vol. 41, No. 5,
1498–1491, May 2005.

26. Bruno, O. P. and C. A. Geuzaine, “An O(1) integration scheme for
three-dimensional surface scattering problems,” J. Comp. Appl.
Math., Vol. 204, No. 2, 463–476, 2007.

27. Engquist, B., E. Fatemi, and S. Osher, “Numerical solution of
the high frequency asymptotic expansion for the scalar wave
equation,” J. Comput. Phys., Vol. 120. No. 1, 145–155, Aug. 1995.

28. Engquist, B. and O. Runborg, “Multi-Phase computations in
geometrical optics,” J. Comp. Appl. Math., Vol. 74, No. 1–2, 175–
192, 1996.

29. Engquist, B. and O. Runborg, “Computational high frequency
wave propagation,” Acta Numerica, Vol. 12, 181–266, 2003.

30. Iserles, A. and S. P. Nøsett, “Quadrature methods for multivariate
highly oscillatory integrals using derivatives,” Math. Comp.,
Vol. 75, No. 255, 1233–1258, 2006.

31. Iserles, A. and S. P. Nøsett, “On the computation of highly
oscillatory multivariate integrals with critical points,” BIT,
Vol. 46, No. 3, 549–566, 2006.

32. Iserles, A. and S. P. Nøsett, “From high oscillation to rapid
approximation III: Multivariate expansions,” IMA J. Num. Anal.,
Vol. 29, No. 4, 882–916, 2009.

33. Iserles, A. and D. Levin, “Asymptotic expansion and quadrature
of composite highly oscillatory integrals,” Math. Comp., Vol. 80,
No. 273, 279–296, 2011.

34. Huybrechs, D. and S. Vandewalle, “The construction of cubature
rules for multivariate highly oscillatory integrals,” Math. Comp.,
Vol. 76, No. 260, 1955–1980, 2007.

35. Huybrechs, D. and S. Vandewalle, “A sparse discretisation
for integral equation formulations of high frequency scattering
problems,” SIAM J. Sci. Comput., Vol. 29, No. 6, 2305–2328,
2007.

36. Asheim, A. and D. Huybrechs, “Asymptotic analysis of numerical
steepest descent with path approximations,” Found. Comput.
Math., Vol. 10, No. 6, 647–671, 2010.

37. Asheim, A., “Numerical methods for highly oscillatory problems,”
Ph.D. Dissertation, Norwegian University of Science and
Technology, Department of Mathematical Sciences, 2010.

38. Wong, R., Asymptotic Approximations of Integrals, SIAM, New
York, 2001.



Progress In Electromagnetics Research, Vol. 127, 2012 257

39. Kouyoumjian, R. G. and P. H. Pathak, “A uniform geometrical
theory of diffraction for an edge in a perfectly conducting surface,”
Proceedings of the IEEE, Vol. 62, No. 11, 1448–1461, Nov. 1974.

40. Lee, S. W. and G. A. Deschamps, “A uniform asymptotic theory
of electromagnetic diffraction by a curved wedge,” IEEE Trans.
Antennas Propag., Vol. 24, No. 1, 25–34, Jan. 1976.

41. Ikuno, H. and M. Nishimoto, “Calculation of transfer functions
of three-dimensional indented objects by the physical optics
approximation combined with the method of stationary phase,”
IEEE Trans. Antennas Propag., Vol. 39, No. 5, 585–590,
May 1991.

42. Jones, D. S. and M. Kline, “Asymptotic expansion of multiple
integrals and the method of stationary phase,” J. Math. Phys.,
Vol. 37, 1–28, 1958.

43. Chako, N., “Asymptotic expansions of double and multiple
integral,” J. Inst. Math. Applic., Vol. 1, No. 4, 372–422, 1965.

44. Davis, C. P. and W. C. Chew, “Frequency-independent scattering
fom a flat strip with TEz-polarized fields,” IEEE Trans. Antennas
Propag., Vol. 56, No. 4, 1008–1016, Apr. 2008.

45. Sha, W. E. I. and W. C. Chew, “High frequency scattering by
an impenetrable sphere,” Progress In Electromagnetics Research,
Vol. 97, 291–325, 2009.

46. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Norwood, MA, Dover, 1972.

47. Josef, S. and B. Roland, Introduction to Numerical Analysis,
Springer-Verlag, New York, 1980.


