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Abstract—A hybrid time-domain method combing finite-difference
and cell-centered finite-volume method is presented in this paper. This
method is applied to solve three dimensional electromagnetic problems
which involve media having finite conductivity. The fractional-step
technique (FST) for FVTD scheme is applied to solve these problems.
Local time-step scheme is used to enhance the efficiency of this method.
Numerical results are given and compared with a reliable numerical
method, which is used to show the validation of this method.

1. INTRODUCTION

Finite difference time-domain (FDTD) method [1, 2] is a means of
directly solving Maxwell’s time-dependent curl equations. This method
is computationally efficient, but has the limitation that curved surfaces
must be approximated using a “stair-cased” representation.

Finite-volume time-domain (FVTD) method has been applied to
the numerical solution of Maxwell’s equations since 1988 [3–5]. It
has benefited from experience gathered previously in finite-volume
techniques used in computational fluid dynamics. A great advantage
of the FVTD method is its applicability in unstructured meshes. Thus,
FVTD method overcomes the problem mentioned before in FDTD
method in efficiently simulating structures that include curved or
oblique structures.

Based on the location of field components, [6] finite volume
formulations can be subdivided into Cell-Centered formulation [7, 8],
Cell-Vertex formulation [9] and Cell-Staggered formulation [10]. In
Cell-Centered scheme, the degrees of freedom are associated with
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barycenters of cells. With the Cell-Centered formulation, a finite
volume coincides with the cell itself. Unlike standard FDTD method,
the electric and magnetic fields are co-located in space and time within
the Cell-Centered FVTD formulation. Cell-Centered scheme is chosen
here, because the boundary conditions are taken into account more
naturally than the others. In Cell-Vertex formulation, the degrees
of freedom are associated with the nodes of cells. The finite volume
is defined by connecting the barycenters of cells to which the node
belongs. As in FDTD, the field components are staggered in the Cell-
Staggered formulas. This formulation can be further classified as E-
staggered and H-staggered. In the case of E-staggered formulation, the
electric field components are located at the face centers of cells and
magnetic field components are at the barycenters of the cells. For H-
staggered formulation the location of field components is interchanged.

A hybrid technique FD/FV which builds upon modeling strengths
of each algorithm will be a good choice [11, 12]. On the one hand,
it is relatively easy to compute FD Cartesian grids. On the other
hand, the most essential characteristic of FVTD is its ability to handle
unstructured meshes. A numerical scheme based on combining Yee’s
scheme and a stable Cell-Centered finite volume scheme is introduced.
The fractional-step technique FST [7] is applied to treat the conducting
media having finite conductivity with complex shape, which will
be meshed using unstructured grids and treated by FVTD scheme.
Finally, numerical results are given to show that this method is efficient
and accurate.

2. GENERAL FORMULATIONS

2.1. Cell-centered FVTD for Conducting Media

The fundamental equations modeling the electromagnetic field in a
domain with conducting material are:

{
∇× ⇀

H − ∂t

⇀

D − ⇀

J = 0
∇× ⇀

E + ∂t

⇀

B = 0
. (1)

Consider a computation domain V occupied by linear, isotropic,
time-invariant, non-dispersive media. Domain V is discretized into
elementary volumes V = ∪I

i=1Vi. Each of these volumes Vi has a
boundary surface, ∂Vi, which consists of a number, mi, of planar facets
∂Vi = ∪mi

k=1Sik. The area of Sik will be denoted by sik.
Integrating (1) over each element Vi and applying the curl

theorem, the governing equations can be written as a balance law over
the i-th (i = 1, 2, . . . , I) cell Vi, which is assumed to be homogeneous,
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as follows:
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F
[
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(⇀
r , t

)] · ⇀
ni is coined as the “flux” through ∂Vi, and the material

matrix can be written as:

αi =
[

εi · I3×3 03×3

03×3 µi · I3×3

]
, κi =

[
σi · I3×3 03×3

03×3 03×3

]
(4)

where I3×3 is a 3× 3 identity matrix, and 03×3 is a 3× 3 zero matrix,
εi, µi, and σi are the dielectric permittivity, the magnetic permeability,
and the electric conductivity of Vi, respectively.

One approach consists in splitting the problem of interest into
two subproblems that can be solved independently step-by-step, and
to combine their solutions in an alternating manner [13]. The two
following subproblems are considered:
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)
dV . (6)

Subproblem (5) is related to the computation of the fields in
lossless dielectrics. The Cell-Centered FVTD scheme is based on the
computation of both the electric and the magnetic field at the center
⇀
r i of each element Vi (i = 1, 2, . . . , I). We denote:

un
i = U

(⇀
r = ⇀

r i, t = n∆t
) ≈ (1/vi) ·

∫

Vi

U
(⇀
r , t = n∆t

)
dV (7)

as the field values at the center of the i-th cell at the n-th temporal
time step. As a consequence, the numerical method evaluates un

i over
N temporal steps of width ∆t, being known the initial conditions u0

i .
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Omitting the details of derivation [3], the Cell-Center upwind flux
semi-discrete FVTD formulation, applied to the i-th cell takes the form
as below:

∂ui

∂t
= −α−1

i

vi

{
mi∑

k=1

sik

[
Φ+

iku
−
ik + Φ−iku

+
ik

]
}

(8)

where Φ+
ik = αitikA

+
(⇀
nik

)
, Φ−ik = αjtjlA

− (⇀
njl

)
, tik is transmission

matrix depending on εi, µi, αj and tjl defined just as αi and tik but
for element Vj which shares a face with cell Vi, Sik or Sjl. A+

(⇀
nik

)
and

A−
(⇀
njl

)
are furnished in [3] (on page 325). u+

ik, u−ik respectively are the
values of U inside cell Vj and Vi near the center of Sik (i.e., Sjl), which
can be interpolated by the cell center field values using the Monotone
Upstream-centered Schemes for Conservation Laws (MUSCL) [14].

The second order accurate Lax-Wendroff temporal scheme is
adopted. As a consequence, the explicit update equations at the n-
th temporal step can be written as:

u
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Subproblem (6) is instead on ordinary differential equation taking
into account only the effects of conductivity of media, whose solution
can be analytically found as follows [7]:

∫
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U
(⇀
r , t

)
dV = e−α−1

i κi∆(t−t0) ·
∫

Vi

U
(⇀
r , t0

)
dV (11)

for any t0, being

e
− κi

αi
∆(t−t0) =diag

(
e
−σi

εi
·(t−t0)

e
−σi
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e
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)
(12)

is a 6×6 diagonal matrix. As a consequence, the update of un+1
i should

be modified through the following relation:

un+1
i = e−α−1

i κi∆tũn+1
i . (13)

2.2. Hybrid Scheme

Both FDTD and FVTD are local numerical methods: field components
at a given point of the grid only depend on its neighbor values. That
allows us to locate the hybridization process only at the boundary
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between the structured and the unstructured parts of the mesh. By
overlapping of one or more cells both on FD/FV meshes, hybrid
principle is clear: updating the fields on these cells by using both
FDTD and FVTD methods. Partial transition meshes between
hexahedral and tetrahedral cells are shown in Fig. 1. There’s no
difficulty in applying the FVTD scheme for cell A. For cell C, electric
and magnetic fields are computed with the FDTD scheme. The field
values of cell B should be evaluated by using both FDTD and FVTD
methods.

1). If cell B is taken as a cell applied by FVTD scheme, the
numerical flux on surface SBC cannot be evaluated because the fields
at the center of cell C are not accessible. We do have available the
electric fields on the edges of SBC obtained by FDTD scheme. Electric
field components can be interpolated to evaluate the required flux:

⇀
nSBC

× ⇀

E
∗
SBC

= ⇀
nSBC

×
(

⇀

Ey1 +
⇀

Ey2 +
⇀

Ex1 +
⇀

Ex2

)/
4. (14)

According to the continuity of the tangential electric and magnetic
field vectors, the magnetic flux can be obtained by:

⇀
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×⇀

H
∗
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= YB

[
⇀
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×⇀
nSBC

×
(

⇀
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⇀

E
∗
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)]
+ ⇀
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×⇀

HB (15)

where
⇀

EB,
⇀

HB, YB respectively are the electric field, magnetic field
and the characteristic admittance of the medium of cell B.

2). When cell B is applied in FD scheme, the electric field along
the edges of SAB are averaged by the FV field values in the cells which
share the edge with cell B. For instance, ESAB

x , can be expressed as:

ESAB
x =

(
EA

x + EB
x + EA1

x + EB1
x

)/
4 (16)
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Figure 1. Hybridization mechanism.
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where EA
x , EB

x , EA1
x , EB1

x are the electric field values obtained by
FVTD scheme. The components along the other three edges of SAB can
be calculated just as ESAB

x . Thus, component HSAB
z can be updated

by using the FDTD scheme with no difficulty.
This method requires nodal coincidence for the two meshes. The

interface between the hexahedral and tetrahedral cells is obtained by
inserting hexahedral cells where one or several faces are defined by two
triangles. This particular cell is treated by using the FVTD method,
which offers a correspondence between a quadrilateral face and two
triangular faces in terms of the exchange of fluxes. The boundaries of
the computational domain, which are located in the structured part
of the mesh, are treated by using a PML formalism, as in the purely
FDTD approach.

A volume is limited by the surface of the object on one side
and a fictitious staircased surface taken in the Cartesian grid at a
given distance from the object on the other side (2 cells, for example).
This process for obtaining the hybrid mesh is easy to implement and
automate. The conducting media structure with curved boundary is
located within this volume and is treated by FVTD scheme using FST
mentioned above.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Analysis on the Scattering of a Coated Sphere

Firstly, the code is validated by the radar cross section (RCS)
prediction for a PEC sphere coated with conducting medium. We
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Figure 2. (a) The RCS of the coated sphere; (b) the RCS of the
sphere.



Progress In Electromagnetics Research M, Vol. 24, 2012 91

consider a perfectly conducting sphere of radius 0.18λ with a dielectric
coating 0.02λ. The coating is characterized by a complex, relative
permittivity 1.74 − j0.3. The model is shown in the inset of Fig. 2.
The mesh size of the hybrid method is chosen as 0.02λ. A fictitious
staircased surface is taken at the distance of 2 cells from the outer
sphere, which is set as the boundary of two kinds of meshes. The results
obtained by the hybrid method agree very well with that obtained by
the method of moment (MOM) [15], as shown in Fig. 2(a). Results
without coating are also given in Fig. 2(b). It is shown that the results
obtained by the hybrid method agree very well with that obtained by
the MOM.

3.2. Analysis on a Rectangular Waveguide with Narrow-wall
Slots

In this part, a rectangular waveguide with ten oblique slots in narrow
side depicted in Fig. 3 is considered. The waveguide is chosen as
the WR-90 waveguide (X-band), with dimensions of a = 22.86mm,
b = 10.16 mm, and a wall thickness of 1.27 mm. The material
of the wall is assigned as aluminum, whose electric conductivity is
3.8e + 6S/m. The sizes of slots are designed to set the peak sidelobe
level to −20 dB.

The radiation pattern is calculated by two schemes: pure FDTD
method and hybrid FD/FV method. The results are compared with
that obtained by a commercially available finite element method
(FEM) solver. As shown in Fig. 4, the result obtained by the hybrid
method is more accurate than that calculated by the pure FDTD.

For the two schemes mentioned above, the excitation plane is
within the region meshed by Cartesian mesh. And the total problem
size is: 54 × 72 × 448. For exciting the fundamental TE10 mode, we
introduce a sinusoid excitation by modifying the updating equation for
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Figure 3. One waveguide with ten oblique slots in narrow side.
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Figure 4. Comparison of the results of the radiation pattern of the
H-plane.

the component in the excitation plane as follows:

En+1
y (i, j, k) = g (n∆t) + En

y (i, j, k) +
∆t

εy (i, j, k)

·
[

H
n+1/2
x (i, j, k + 1)−H

n+1/2
x (i, j, k)

∆z

−H
n+1/2
z (i + 1, j, k)−H

n+1/2
z (i, j, k)

∆x

]
(17)

where
g (n∆t) = sin (πy/a) sin (2πf0n∆t) (18)

in which f0 = 9.375GHz, and the time step ∆t satisfying the stability
criterion given by:

∆t ≤ 1
/(

υ

√
(1/∆x)2 + (1/∆y)2 + (1/∆z)2

)
. (19)

In this formula, the terms ∆x, ∆y and ∆z denote the spatial
step sizes in the directions x, y and z, respectively. Here we set
∆x = ∆y = ∆z = 0.635mm. To simulate open boundary structures, it
is mandatory to truncate the problem space with appropriate absorbing
boundary conditions (ABC). In this paper, UPML scheme is employed
to truncate the FDTD grid. At the same time, UPML is applied at
the two ends of the waveguide to serve as matched load.
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The stability criterion for the FVTD method is:

∆t ≤ min
i=1,I

[
vi

/(
υi

mi∑

k=1

ski

)]
(20)

where υi defines the speed of the light in the medium of cell Vi. It
is generally more restrictive than that for the FDTD method. A
local time step scheme [16] is used to enhance the efficiency of the
hybrid method. In addition, it’s necessary to constrain the more
computationally intensive FVTD to small regions around the objects.
The fictitious staircased surface for the hybrid scheme is also shown
in Fig. 3. It is taken in the Cartesian grid at a distance of 2 cells
to the part of waveguide involve all of the slots. Only the volume
bounded by this surface is meshed by unstructured mesh. There are
411507 tetrahedrons in total for this problem. Some unstructured grids
shaping the slots are shown in Fig. 5(b), which can more accurate
represent the oblique slots than Cartesian mesh shown in Fig. 5(a).
For the hybrid method, the minimal time-step of 1.05794 ps for FVTD
region and the time step of 4.233 ps for FDTD region were used.
Like numerical examples in [16], the hybrid scheme gains in terms of
both operations and memory requirements for a solution with a given
accuracy in this problem.

The limited accuracy of the FDTD simulation is directly related
to the way the corrugation edges are represented. If the edges
are approximated using stair-cased — rather than modeled in an
appropriate (conformal) way, as shown in Fig. 5(a) — non-physical
fields arise from these approximations that do not exist in the actual
hardware as designed. In contrast, FVTD inherently uses a conformal
mesh and thus non-physical solutions due to meshing do not occur, as
shown in Fig. 5(b).

No stability problems have been encountered in our investigations.
Nevertheless, theoretical proof of the stability of the hybrid scheme

(a) (b)

Figure 5. Partial mesh of narrow-wall slots. (a) Cartesian mesh. (b)
Unstructured mesh.
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needs to be studied. The hybridization process between the two
schemes has been applied on layers penetrate the envelope of the
object.

4. CONCLUSION

FST is extended to 3-D case for hybrid FD/FV method in this paper,
which preserves the advantages of the finite volume method locally
near the geometry of the objects and the simplicity and the speed of
the Yee’s scheme for areas that are either empty or contain structures
with geometries that do not require an unstructured mesh. The
method is applied to solve 3-D conducting media problems. Two
numerical results are calculated. Compared with the results calculated
by reliable methods, the proposed method shows great capability to
solve this particular problem precisely. Future work should investigate
its application to broad band problems.
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