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Abstract—Linear embedding via Green’s operators (LEGO) is a
diakoptics method that employs electromagnetic “bricks” to formulate
problems of wave scattering from complex structures (e.g., penetrable
bodies with inclusions). In its latest version the LEGO integral
equations are solved through the Method of Moments combined with
adaptive generation of Arnoldi basis functions (ABF) to compress the
resulting algebraic system. In this paper we review and discuss the
convergence properties of the numerical solution in relation to the
number of ABFs. Besides, we address the issue of setting the threshold
for stopping the generation of ABFs in conjunction with the adaptive
Arnoldi algorithm.

1. INTRODUCTION

Electromagnetic (EM) scattering problems are usually formulated in
the frequency domain by means of coupled integral equations (IE),
since in this way the radiation conditions at infinity are intrinsically
accounted for by the relevant Green’s function of the background
medium [1]. The downside with IEs is that, when they are reduced
to a weak form through the baseline Method of Moments (MoM) [2],
they lead to algebraic systems with densely populated matrices.
Furthermore, if the structure of concern spans many wavelengths, then
most likely the resulting matrix is also large, and hence can only be
inverted with iterative methods.

To alleviate this shortcoming one can resort to diakoptics [3],
which nowadays is also known as domain decomposition. In words,
diakoptics is the conceptual separation of a complicated problem
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into “small” parts which are first characterized as independently as
possible. The original problem is then rigorously reconstructed upon
combining the various parts in a consistent manner. Among the
methods that fit this description are (list is definitely incomplete): the
Synthetic Function Expansion [4], the Characteristic Basis Functions
Method [5], the Equivalence Principle Algorithm [6], the Generalized
Surface Integral Equation method [7], and Linear Embedding via
Greens Operators (LEGO), developed by these authors [8, 9].

In the framework of LEGO a complicated structure (see Fig. 1)
is modelled as a combination of sub-domains (EM bricks). Although
in principle no restrictions exist as to the shape and to the content
of the bricks, handling arbitrary occurrences in practice is not trivial.
In fact, recently we extended the LEGO method to allow for bricks
with different content [10, 11]. At any rate, the original EM scattering
problem is formulated through a set of coupled IEs for the unknown
equivalent current densities which are introduced on the bricks’
surfaces. The algebraic system that ensues by applying the MoM is
compressed by using a set of Arnoldi basis functions (ABFs) [9] which
are in turn expressed in terms of the underlying Rao-Wilton-Glisson
basis functions (RWG) associated with the triangular-faceted mesh.

Normally the ABFs (needed to accurately compute the current
densities) are far fewer than the RWGs introduced at the beginning.
However, estimating beforehand the number nA of ABFs that a specific
problem will actually require is not trivial and may not be feasible at
all under general circumstances. For this reason, by solving diverse
scattering problems [10–14], we studied the dependence of nA (for
a given level of accuracy) on various parameters. The numerical
experiments led us to identify distinctive trends of the convergence
patterns in relation to geometrical and physical parameters of the
structures under investigation. However, expressing these behaviors
collectively in a simple mathematical formula (that yields nA) seems
hardly possible. Therefore, from a practical standpoint, we find it
convenient to generate the ABFs adaptively at an additional yet
affordable computational cost, as we showed in [11].

For ease of reference in this paper we review and collect the main
results on convergence obtained heretofore. We also extend the set of
available “rules of thumb” by discussing a new convergence study that
involves bricks with different content. Besides, in conjunction with the
adaptive Arnoldi algorithm [11], we address the issue of setting the
threshold for stopping the generation of ABFs.

The rest of the paper is organized as follows. In Section 2 we
outline the formulation of a scattering problem with LEGO, whereas in
Section 3 we describe the numerical strategy. In Section 4.1 we provide
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Figure 1. For illustrating diakoptics with LEGO: bricks Dk, Dn are
shown along with related operators and equivalent symbolic surface
currents. In this setup the background medium 1©, the host medium
2© and the object 3© may all have different properties; media 2© and 3©
need not be the same for all bricks (cf. [9]).

a simple example of validation of the LEGO code. The convergence
properties of the numerical solution with ABFs are presented in
Section 4.2 and discussed in Section 4.3. Eventually, the choice of
the threshold for the adaptive Arnoldi algorithm is discussed through
a numerical example in Section 4.4.

2. PROBLEM FORMULATION WITH LEGO

The procedure for formulating a 3-D scattering problem with LEGO [9]
consists of the following main steps (Fig. 1):

(i) conceptual separation of the structure into “small” parts (i.e.,
diakoptics properly said) which are “enclosed” in simple-shaped
domains (EM bricks) Dk, k = 1, . . . , ND;

(ii) description of the EM behavior of Dk through scattering operators
Skk; this is accomplished separately for each brick type;

(iii) accounting for the multiple scattering that occurs between Dk, Dn

by means of transfer operators Tkn, n 6= k;
(iv) combination of the bricks in an EM sense in order to accomplish

the description of the original problem.

Unlike the assumption made in [9], however, in this work we allow
for bricks with possibly different content. Nonetheless, we suppose the
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bricks all possess the same shape, although strictly speaking this is not
required for diakoptics.

All the geometrical details (i.e., size and shape of the inclusions,
if any are present) and the material complexities (e.g., inhomogeneous
constitutive parameters) within Dk are rigorously captured by Skk.
To this purpose, we invoke the surface equivalence principle in the
form of Love [15] to define suitable equivalent problems along with the
corresponding unknown electric (J) and magnetic (M) surface current
densities over ∂Dk. As a result, Skk (which carries information solely
about a brick’s content) tells how an impinging wave is reflected back,
namely [8, 9],

qs
k = Skkq

i
k, qs,i =

[ √
η1J

s,i
k

−Ms,i
k /
√

η1

]
, η1 =

√
µ1

ε1
, (1)

where the superscript s (i) denotes scattered (incident) equivalent
current densities on ∂D−k , with the positive (negative) side of ∂Dk

specified by the positive (negative) sense of the normal n̂k. Besides,
the currents Js,i

k , Ms,i
k are placed against ∂Dk, but “live” within the

background medium 1©, as Fig. 1 suggests†.
The actual calculation of Skk requires solving the boundary value

problem in Dk via suitable IEs, the number and nature of which
are determined by the brick’s content. For the sake of argument,
if medium 1© and 2© are just the same, so that ∂Dk represents no
more than a mathematical boundary, then the functional equation
yielding Skk is [8, Eq. (11)]. More generally, if ∂Dn is a material
interface, then Snn obtains through the formal cascade of the scattering
operator of the interface, SJn, and the operator of the inner part,
SLnn, [9, Eqs. (2), (3)]. A special case of the previous one occurs when
no inclusion is contained in Dn; then, SLnn = 0, and Snn reduces simply
to SJ11,n [9, Eq. (A4)].

The transfer operator Tkn accounts for the additional incident
currents on Dk that develop in response to the scattered currents on
Dn, as exemplified in Fig. 1. The relevant IEs and current definitions
read [9]

qi
k(n) = Tknqs

n, qi
k,tot = qi

k + qi
k(n), n 6= k, (2)

where the subscript ‘k(n)’ signifies “contribution on ∂D−k due to Dn.”
Notice that Tkn is only affected by the position and shape of the
bricks in the model. Furthermore, for problems which exhibit even a
limited translational symmetry, the transfer operators come in groups
† In actuality, this carefulness becomes unnecessary when ∂Dk represents a mathematical
surface [8], because then the distinction between ∂D+

k and ∂D−k is an inessential one.
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of identical elements [8]. This may result in a substantial reduction
of both computational time [8, 12] and memory occupation, since only
one specimen belonging to each class must be computed and stored.

Now, the two systems of ND IEs that govern the EM behavior of
the original structure (illuminated by an external incident wave) can
be stated upon combining (2) and the first of (1) with qi

k replaced by
qi
k,tot. Specifically,

(I− Tdiag{Skk})qi
tot = qi, qs = diag{Snn}qi

tot, (3)

with (qi
tot)k = qi

k,tot, (qi)k = qi
k and T an ND × ND symbolic matrix

of transfer operators [9, Eq. (6)]. Once the first of (3) has been solved
numerically, as outlined in Section 3, we can compute the scattered
fields—which are radiated by the currents qs—as well as the total
(twisted) tangential fields over the bricks’ surfaces through qi

tot − qs.

3. NUMERICAL SOLUTION (OUTLINE)

The inversion of (3) begins with the baseline MoM employed in com-
bination with sub-domain RWG basis functions in order to obtain
the algebraic counterpart of the scattering and transfer operators,
viz., [Skk], [Tkn]. The corresponding weak forms of (3) are linear
systems of rank 2NF ND, 2NF being the number of RWG functions
used to expand Js,i

k and Ms,i
k [8, Eq. (20)]. Concerning this, the

two non-null NF × NF sub-blocks of [Tkn] are obtained in a low-
rank factorized form [9, Eq. (11)] by commingling the calculation of
(few) matrix entries with the adaptive cross approximation (ACA) [16].
This expedient (together with the additional memory saving brought
in by the translational symmetry, when present) enables us to store
comparatively large system matrices and hence, to tackle larger
scattering problems.

As a final step toward the solution of (3) we compress the system
matrix ([I] − [T ]diag{[Snn]}) by introducing a set of orthonormal
vectors [ψs], s = 1, . . . , nA, to represent the unknown coefficient, i.e.,

[qi
tot] = [ΨnA ][a], [ΨnA ] = [[ψ1] . . . [ΨnA ]] . (4)

The [ψs]’s are computed by applying the Arnoldi iteration to the
sequence {([T ]diag{[Snn]})s−1[qi]}nA

s=1. As a byproduct one also gets
an upper Hessenberg matrix [HnA ] which essentially is the reduced
system matrix [9, Eq. (18)]. The 2NF ND elements of [ψs] define macro
functions over ∪ND

k=1∂Dk, when associated with the underlying RWGs.
Thereby, it seems convenient to refer to [ψs] as Arnoldi basis functions
(ABFs) for short.
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Last, in [11] we proposed an adaptive Arnoldi algorithm which
quits generating ABFs the moment the relative incremental difference

δa(nA)def
=

‖ [qi
tot](nA) − [qi

tot](nA−1) ‖2

‖ [qi
tot](nA) ‖2

=

∥∥∥∥[anA ]−
[
[anA−1]

0

]∥∥∥∥
2

‖[anA ]‖2
, (5)

has become smaller than a given threshold. Although (5) requires
solving the (reduced) algebraic system on the fly after each new ABF
is added to the growing set, the extra computational burden is worthy,
as the procedure prevents calculating unnecessary higher-order ABFs.

4. NUMERICAL RESULTS

Implementing the occurrence of bricks with different content in a new
code was not trivial, even though we could re-utilize large parts of
the previous ones [8, 9]. For instance, the routines that calculate [Skk]
and [Tkn] via integral equations and MoM (Section 3) need not be
updated, as this step of the method’s stays the same regardless of the
actual form of (3). Nonetheless, handling more than one type of bricks
entails describing the model (i.e., stating what types of and how many
bricks are there) and loading this data tidily. What’s more, in view
of the complexity of [9, Eqs. (15), (16)], care must be exercised while
generating the ABFs.

4.1. Example of Validation

As a sanity check, in [10] we made sure the results yielded by the new
code agreed with the ones provided by the old one, in the special case
of bricks all having the same content (PEC objects). In addition, we
provide an example of validation based on the toy problem shown in
Fig. 2.

The structure (a dielectric slab in which two cylindrical holes with
different radii have been excised) lends itself to being modelled and
simulated in at least two ways: a) as a single brick, for which the
old code can be used; b) by means of two bricks of different type, an
instance that only the new code handles. The data relevant to this
scattering problem are given in Fig. 2, whereas the details of the two
bricks are outlined with the aid of Fig. 3. The number of ABFs for the
two-brick model was set to nA = 70 (corresponding to a threshold
δa(nA) = 10−15), whereas the total size of the original system is
2NF ND = 2304. As the radar cross sections (RCS) computed with the
foresaid strategies (also shown in Fig. 2) are in excellent agreement, this
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experiment confirms the reliability of the new code, since the previous
one was thoroughly validated against the MoM in [9].

4.2. Convergence of ABFs: Analysis

Obtaining the ABFs may stand as the most time-consuming part
of the numerical strategy. Therefore, it is expedient to investigate
how the geometry and the material properties of a structure affect
the convergence rate of the current coefficients as [see (4)] and
ultimately, the number nA of ABFs necessary for a given level
of accuracy. Regarding this, the effect of geometrical variables
(e.g., number, position and distance of the bricks) and certain
combinations of material properties and frequency were already
addressed elsewhere [11–13]: For quick reference we summarize the
main results hereafter, while wittingly omitting data not really
conducive to the discussion of Section 4.3. The Reader interested in
the geometrical and physical parameters of the simulations as well as in
knowing what the actual convergence patterns look like, is advised to
consult the pertinent papers. Finally, in what follows, it is understood
that nA means “the number of ABFs required to achieve a given value
of δa(nA)”.

Number of bricks The solution of (electrically) larger problems
usually requires a larger number of ABFs. This expectation was
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confirmed by analyzing structures modelled with an increasing
number of identical bricks arranged in a rectangular pattern [12].
In particular, PEC and dielectric spheres embedded in a dielectric
host medium were considered [12, Fig. 3]: nA is seen to grow with
ND [12, Fig. 5]. Thanks to the same set of experiments we also
found out that, for the same number and arrangement of the
bricks, the convergence is faster when the spheres are dielectric
rather than PEC [12, Fig. 5].

Host-medium permittivity Finite-size dielectric slabs of ever
increasing permittivities (i.e., medium 2© in Fig. 1) with spherical
PEC inclusions arranged in a regular pattern were described
in [13, Fig. 2]. The convergence pattern of as plotted in [13, Fig. 6]
shows that nA grows as the contrast ratio ε2/ε1 is increased.

Shape and size of the inclusions In [13] we also investigated the
influence of the geometry of the inclusions on the coefficients as.
To this purpose, cubic bricks containing PEC objects of different
size and shape (i.e., cones and prisms) were combined to model
a rectangular finite-size dielectric slab [13, Fig. 3] in line with the
LEGO philosophy. The outcome is that nA increases if the objects
are either larger or possess sharp corners [13, Fig. 7].

Presence of inclusions Making use of the scattering operator of a
material interface introduced in [9], it was possible to model a
composite dielectric slab comprised of a stack of four materials
with different permittivities (ε2) and no inclusions [13, Fig. 4].
Successively, the structure was modified by adding a regular
distribution of PEC spheres for the sake of exploring the effect
of the inclusions on convergence. It turns out, as expected, that
nA is smaller if the inclusions are absent [13, Fig. 8].

Distance between the bricks The effect of this parameter was
studied for general scattering problems that involved random
clusters of different objects [11, Figs. 2, 5]. The outcome is that
fewer ABFs are needed, if the average distance between the bricks
is larger [11, Fig. 6].

Frequency Finally, the scattering from a collection of randomly
distributed objects was studied in [13, Fig. 5] at different
frequencies. By and large, the convergence patterns of as

in [13, Fig. 9] suggest that at higher frequencies nA increases.

As a complement to the numerical experiments outlined above,
we have also examined the effect of ε3 (see Fig. 1) on nA. To this
purpose, with the new code we have solved the scattering problem of
a plane wave impinging on the dielectric structure shown in Fig. 3.
The relevant LEGO model comprises ND = 8 × 2 = 16 bricks of two
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different types that are arranged in a regular checkerboard-like pattern
as indicated. Type-1 (Type-2) bricks embed a large (small) cylindrical
inclusion whose permittivity is increased in five discrete steps. The
relevant geometrical and physical data for this simulation campaign
are provided in the caption of Fig. 3.

The normalized current coefficients as are plotted in Fig. 4, where
the parameter of the lines is the permittivity of the inclusions. It is
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seen that a larger number of ABFs is required, if the contrast ratio
ε3/ε2 is higher. One also realizes that the curves in Fig. 4 consist of
two distinct regions of convergence (a circumstance also noticeable in
the results of [12, 13]), which we dub slow- and fast-decay regions of
the Arnoldi coefficients. The former is characterized by slow decay
rate and possibly oscillations, whose amplitude and number seem to
depend on the dielectric contrast between host medium and inclusions.
In the fast-decay region, on the contrary, the as exhibit a steady and
exponentially rapid decrease to zero with a slope that — in the present
set of experiments — is somewhat independent of the actual value of ε3.
Besides, the onset of exponential decay is postponed for higher ratios
ε3/ε2 until a critical value of nA is attained. For instance, in case 1
(ε3 = ε0) the exponential decay rate kicks in at nA ≈ 70, whereas in
case 5 (ε3 = 9 ε0) it starts at nA ≈ 130.

To gain insights into the time requirements of LEGO, in Table 1
we have listed a few times relevant to the cases set up in Fig. 3. As the
total number of computed ABFs was varied, it makes sense to compare
the average time 〈tABF 〉 taken to generate a single ABFs: such time is
found to be approximately constant, in fact. The overall time tLEGO,
by contrast, increases with nA. Finally, it is not superfluous to notice
that the calculation of the transfer operators was performed only once,
i.e., in correspondence with the first problem. A comparatively large
amount of time can thus be saved by loading [Tkn] from disk to analyze
structures modelled with bricks whose position and shape are kept
fixed.

4.3. Convergence of ABFs: Discussion

Admittedly, since so many parameters concur in determining the con-
vergence pattern of as, it may not be possible to come up with a
quantitative explanation of the behaviors observed so far. It may well

Table 1. CPU times* relevant to the cases detailed in Fig. 3.

ε3 ε0 3ε0 5ε0 7ε0 9ε0

nA 200 200 220 220 240
tTkn

[min] 2.46 - - - -
〈tABF 〉 [s] 1.96415 1.98170 1.90668 1.84331 1.96216

tLEGO [min] 24.65** 22 22.52 26.03 25.42
* On a PC equipped with an Intel Core Quad CPU 2.66-GHz
processor and 4-GB RAM
** This value includes tTkn



Progress In Electromagnetics Research M, Vol. 24, 2012 137

be the case, though, that the eigenvalues of [T ]diag{[Snn]} play a
major role. In fact, all the parameters affect the eigenvalues of [Snn]
(which in magnitude are smaller than unity [17]). On the other hand,
the transfer operators [Tkn] chiefly depend on the distance between
the bricks. Furthermore, the ABFs are just but an orthonormal
basis of the nA-dimensional Krylov subspace spanned by the vectors
{([T ]diag{[Snn]})s−1[qi]}nA

s=1, which in turn form the Neumann series
solution to the system. In this regard, although a series solution may
not exist in general, the system is solvable and its solution can always
be expressed as a linear combination of ABFs, as we just showed.

We speculate that (for a given level of accuracy) nA depends on
the specific form of spectrum of [T ]diag{[Snn]}. More precisely, the
smaller the eigenvalues, the fewer the ABFs required for the as to
attain the threshold of numerical noise, and the faster the convergence
rate (see Fig. 4). Conversely, the closer the eigenvalues are to the unit
circle in the complex plane, the larger is nA and correspondingly, the
more delayed is the onset of the fast-decay region.

Lastly, we must mention that in [11], by means of extensive numer-
ical experiments, we determined an approximate relationship linking
the accuracy of the computed current coefficients [qi

tot] to the relative
incremental difference δa defined in (5). Convenient and captivating as
that relation can be, it appears to be less general than we had initially
surmised. Tests conducted successively pointed out that it applies
when the size of the bricks is in the neighborhood of the wavelength in
the background medium‡.

4.4. Choosing the Threshold for δa

In practical circumstances the best course of action is the adaptive
generation of ABFs [11, Table 1]. Then, the question arises of how to
choose the threshold against which δa is to be compared. In the light
of (5) and the convergence curves of Fig. 4 one can argue that a smaller
threshold most surely guarantees better accuracy of the solution, but
obviously it also increases the computation time, because more ABFs
need to be obtained.

We have found that setting the threshold at 10−5 affords a good
tradeoff between accuracy and CPU-time. To substantiate this claim,
we have solved the first scattering problem outlined in Fig. 3 with
δa(nA) = 10−5. This translates into nA = 85 ABFs, the computation
of which requires tABF ≈ 165 s. In Fig. 5 the RCS thus computed
is compared to the RCS obtained with nA = 200 ABFs (which take
tABF ≈ 393 s to calculate); the latter result can legitimately stand as a
‡ Basically, all the cases addressed in [11] met this condition.
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reference in view of the pertinent convergence pattern of Fig. 4. As the
two curves in Fig. 5 are undistinguishable for all practical purposes,
this experiment demonstrates that δa(nA) = 10−5 constitutes a viable
choice.

5. CONCLUSION

By means of numerical examples we have discussed the convergence
properties of the ABFs, which are employed to reduce the order of
the LEGO algebraic system. Specific “rules of thumb” have been
derived that can help predict how the number nA of ABFs and the
convergence rate of as will relatively change, in the event a certain
physical or geometrical parameter is modified. Such information comes
really handy when solving many similar EM scattering problems, in
which one modifies one parameter at a time, e.g., in a design process.
Nonetheless, since a general relationship that can absolutely predict nA

is not available, the adaptive generation of the ABFs constitutes a valid
workaround. We have shown that quitting the Arnoldi algorithm when
δa ≈ 10−5 yields quite accurate results while saving on CPU-time.
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