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MODEL PARAMETERS FROM NEAR FIELD MEASURE-
MENTS EMPLOYING STOCHASTIC ALGORITHMS

N. C. Kapsalis*, S.-D. J. Kakarakis, and C. N. Capsalis
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Abstract—In this paper, the problem of predicting far field magnitude
from near field measurements of an equipment under test (EUT)
is studied. Firstly, a multiple magnetic dipole model is developed
to simulate the magnetic behavior of the EUT. The parameters of
the model (dipoles positions and magnetic moments) are calculated
using the values of the near field applying the Particle Swarm
Optimization (PSO) algorithm. For the evaluation of the method,
extended simulations were conducted, producing theoretical values and
distorting them with noise, and then the developed algorithm was
used to create the proper model. Finally, the theoretical results are
compared to the field assessments the proper models produced.

1. INTRODUCTION

The problem of searching magnetic sources from locally measured
magnetic fields belongs to the category of inverse electromagnetic
problems and covers many applications [1–5]. Magnetic cleanliness is
crucial in space missions. Measuring equipment, placed on spacecrafts
and measuring magnetic fields, operates in a particularly magnetic
environment. The magnetic fields that these missions focus on
are usually weak, so the magnetometers must be placed in “clean”
specification points, where the total magnetic field of the spacecraft
lies between 0.1–1 nT [1].

In order to estimate the magnetic behavior of equipment placed
in spacecrafts, accurate models and new methods must be considered.
Such models have been developed in the past [1], and they are based
on the development of multiple magnetic dipole models (MDM). The
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parameters of the models (position, magnetic torque) are estimated
taking into account of measurements in coil facilities [1]. Based on
these measurements, algorithms of renowned capability are employed
to solve the inverse problem [4, 6].

The MDM technique has been employed in many applications
such as near field analysis in the antennas field [7], electrocardiography
simulation [8] and the representation of electromagnetic emissions of
an Integrated Circuit [9].

Alternative techniques for deterministic methods are nowadays
available to efficiently find global optima. In [10, 11] metaheuristic
methods have been employed to study electromagnetic radiation
problems. Stochastic search techniques start to be widely used
with their main advantage that they do not need assumption on
objective function’s properties and do not need identification of a
starting point. Therefore, they are more robust than deterministic
methods. Their main disadvantage is that due to the high number of
function evaluations that they are using, they need increased computer
power. One of these randomized methods is called Particle Swarm
Optimization (PSO).

The present work employs a PSO approach to implement an
algorithm in order to produce a set of magnetic dipoles that have the
biggest probability to predict the magnetic field produced by a specific
Equipment Under Test (EUT). PSO is a stochastic optimization
method, inspired by biology and used widely for a variety of problems,
such as antenna design [12–14] and resource allocation [15].

In order to evaluate the proposed method, initially a theoretical
model — composed by a number of magnetic dipoles randomly
positioned — is assumed. Based on that model, the theoretical
field values at the positions of possible measurements locations are
produced. These locations usually form a circle centered to the EUT
to be modeled. In this way, the theoretical values of the measurements
are produced.

Afterwards, these theoretical values are distorted with noise in
order to create a set of so-called measurements with a predefined
percentage of distortion which may vary from 1% to 5%.

The so-called measurements are then used to predict both the
positions and the magnetic moments of the set of dipoles composing
the model. Finally, as an evaluation criterion, the root mean square
(rms) error between the magnetic field values produced by the model
and the so-called measurements is calculated.

The paper is organized as follows. Section 2 includes the
theoretical background, while in Section 3 the numerical results are
presented followed by the conclusions of the process.
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Figure 1. Problem depiction.

2. MATHEMATICAL FORMULATION

2.1. Background

In Figure 1, geometry of the problem under consideration is depicted.
The EUT is assumed to be positioned at the point with

coordinates (0, 0, 0). The EUTs magnetic behavior may be modeled
by a set of magnetic dipoles. These dipoles are positioned at (xi, yi,
zi), i = 1, 2, . . . , N , with magnetic moments

~mi = mxi · x̂ + myi · ŷ + mzi · ẑ (1)

The M observation points are positioned at (x0j , y0j , z0j), j =
1, 2, . . . , M .

The magnetic field of dipole i at the observation point j expressed
as the superposition of Bx, By, Bz

~Bij = Bxij · x̂ + Byij · ŷ + Bzij · ẑ (2)

where

Bxij =
µ0

4 · π ·
3 · (x0j − xi)

ρ5
ij

· (Lij)− µ0

4 · π ·
mxi

ρ3
ij

(3)

Byij =
µ0

4 · π ·
3 · (y0j − yi)

ρ5
ij

· (Lij)− µ0

4 · π ·
myi

ρ3
ij

(4)

Bzij =
µ0

4 · π ·
3 · (z0j − zi)

ρ5
ij

· (Lij)− µ0

4 · π ·
mzi

ρ3
ij

(5)

Lij = mxi · (x0j − xi) + myi · (y0j − yi) + mzi · (z0j − zi) (6)
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and
ρij =

√
(x0j − xi)2 + (y0j − yi)2 + (z0j − zi)2 (7)

The total magnetic field in observation point j is then calculated as
follows.

~Bj =
N∑

i=1

Bxij · x̂ +
N∑

i=1

Byij · ŷ +
N∑

i=1

Bzij · ẑ (8)

2.2. PSO: A Short Overview

PSO is a relatively new stochastic evolutionary computation technique
based on the movement and intelligence of swarms. Developed in
1995 by Kennedy and Eberhart [16], PSO based its ingenuity on the
movement of a swarm of bees (particles)in a field. The particles’
goal is to find the optimal location in a given search space. The
particles begin in random points and are also characterized by random
velocities. This process may be described as an initialization phase.
The velocities change in every iteration of the algorithm taking into
account both (i) the particle’s personal and (ii) the swarm’s global
optimum. The particles’ velocities depend on whether exploitation
of the possible global optimum or exploration of the search space is
predominant. The trade-off between exploring the search space and
exploiting the possible optima is monitored by two factors denoting
which option is ascendant. As the PSO algorithm unfolds and the
particles explore the search space, the global and personal optima
may be updated, resulting in updated velocities. Finally, the particles
converge towards an optimum. The PSO terms and the corresponding
entities are described below:

1. Particle or Agent: Each individual in the swarm. All particles
start from random locations and move towards the directions of the
(i) personal and (ii) global optimum.

2. Position: Position refers to a particle’s place in the search space,
represented by a (1× 6) vector D. Its elements represent the positions
and magnetic moments of each dipole. Evidently, the elements of Di

are (xi, yi, zi, mxi, myi, mzi), i = 1, 2, . . . , N . This 6-dimensional
space is the solution space for the problem being optimized, where any
set of N vectors represents a solution to the problem. In the present
work, the variable values that optimize the objective function need to
be defined.

3. Fitness: In PSO, a function must be defined as a figure of
merit of the adequacy of a position. This fitness function takes into
account of all the dipoles positions in the solution space and returns a
single number evaluating that position. In the present work, the fitness
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function represents the rms between the calculated and measured
magnetic field strengths. Evidently, in the present work, rms needs
to be minimized.

4. pbest : The position (Di) with the lowest fitness value
encountered by each particle is known as the personal best or pbest.
At each iteration, as the agent moves through the search space, it
compares the fitness value of its current location to that of pbest. If
the current location has a lower fitness value, pbest is replaced with its
current location.

5. gbest : The position (Di) with the lowest fitness value
encountered by all particles is known as the global best or gbest. At
each iteration, as the agent moves through the search space, it also
compares the fitness value of its current location to that of gbest. If
the current location has a lower fitness value, gbest is then replaced
with its current location. Obviously, in each iteration there is only one
gbest.

2.3. Applying PSO for MDM Problem

To formulate the MDM problem under consideration, a (3×M) matrix
TBth is created. Its elements correspond to the magnetic field values
at the observation points j = 1, 2, . . . , M . A (3 × M) matrix TB is
defined to include the produced magnetic fields at each iteration. As
the proposed scheme unfolds, each agent updates its position, and then
its value is employed to update TB by using equations (1)–(8). The
positions and velocities of the agents are originally randomly selected.
After the evaluation of pbest and gbest, the particles’ positions are
updated as shown in (9) [16]. The velocity of the element i of dipole
n, vin, is calculated as follows:

vin = w ·vin +c1 ·rand() ·(pbestin−pin)+c2 ·rand() ·(gbesti−pin) (9)

where w represents the scale of the previous iteration’s velocity, and
c1 and c2 are factors determining the trade-off between exploring
the search space and exploiting the possible optimal solution. pin

represents the position of element k of dipole i (corresponding to
the appropriate element of Di). In the present work after extended
simulations, the appropriate values of the aforementioned factors are
c1 = c2 = 2 and w = 0.5.

Then, the positions are calculated as follows:

pin = pin + vin (10)

As the proposed scheme unfolds, the particles’ positions and velocities
are updated, resulting in updating TB. Accordingly, a (3×M) matrix
TBg represents the total magnetic field produced by gbest, and a
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Figure 2. Flowchart of the proposed scheme.

(3 × M) matrix TBp represents the total magnetic field produced
by pbest.

To evaluate the suitability of each solution, rms is used as the
fitness function and defined as follows:

F =

√√√√√
N∑

i=1

M∑
j=1

(TBij − TBthij)2

N
(11)

Evidently, if a solution’s fitness is lower than pbest, then pbest is
replaced with the current solution, and gbest is possibly replaced too.
The flowchart of the proposed scheme is depicted in Figure 2.

3. NUMERICAL RESULTS

In order to check the efficiency of the proposed method, a set of
N dipoles was used to create a sample of the magnetic field in
various points. This sample was created by using equations (1)–(8)
comprising TBth. In each iteration of the proposed scheme, these so
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called “measurements” are used to estimate the models’ positions and
magnetic moments (hereafter referred to as models parameters). The
models’ parameters are used to update TB, as mentioned above, in
order to equate its elements with the TBth elements.

Initially, these “measurements” (TBth) were produced based on
one dipole, i.e.,

(x=−0.03, y=0.05, z=−4.05,

mx =452.34, my =−484.63, mz =−550.47);

Positions are measured in centimeters, and magnetic moments are
measured in mAm2. The proposed scheme, aiming at minimizing the
aforementioned fitness function F , converges at the MDM represented
by

D1 = (−0.03, 0.05,−4.0499, 452.3406,−484.627,−550.471)

Evidently, the proposed scheme was able to reconstruct the theoretical
models parameters, since these values are practically identical.

To evaluate the proposed schemes’ ability to create the correct
MDM even in cases where the “measurements” are distorted by noise,
each element of the original TBth was altered using a uniform
distribution, as follows:

TBthij = TBthij + TBthij · (a · rand()− a · rand()) (12)

where α stands for the maximum distortion percentage of the
“measurements”. The proposed scheme was tested for two values for
α, i.e., 1% and 5%. The models’ parameters for the theoretical model
and the MDM, produced by the proposed algorithm, for 1% and 5%
distortion, are included in Table 1.

As readily observed by Table 1, as the percentage of the
distortion increases, the divergence between the estimated MDM

Table 1. Comparison between the theoretical models parameters
and the MDMs parameters, calculated by the proposed scheme, when
α = 1% and 5%.

Theoretical MDM 1% MDM 5%
x (cm) −0.03 −0.0158 −0.0146
y (cm) 0.05 0.0495 −0.0502
z (cm) −4.05 −4.0476 −3.9933

mx (mAm2) 452.34 452.9344 450.8042
my (mAm2) −484.63 −485.013 −483.137
mz (mAm2) −550.47 −550.608 −549.991
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and the theoretical model increases too. However, the proposed
scheme ameliorates the noises effects in the total magnetic field. The
differences between the theoretical magnetic field values and the so
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Figure 3. Differences between the theoretical magnetic field and the
MDMs magnetic field for α = 1%. (a) x axis, (b) y axis, (c) z axis.
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Figure 4. Differences between the theoretical magnetic field and the
MDMs magnetic field for α = 5%. (a) x axis, (b) y axis, (c) z axis.
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called “measurements” for 1% distortion are depicted in Figure 3 in
dashed line, and the differences between the theoretical magnetic field
values and the MDMs values are depicted in continuous line. The
same differences for 5% distortion are depicted in Figure 4. Note, as
expected, that the difference between the theoretical and the predicted
values increases as the distortion percentage increases from up to 1%
to up to 5%.

Afterwards, the proposed algorithms performance is evaluated
by simulating a set of three dipoles to create a new TBth. The
theoretical models’ parameters used are tabulated in Table 2. In
order to estimate the models’ parameters from the new so called
“measurements” (TBth), extended simulations were performed to find
the minimum number of test points. The total number of the models’
parameters to be estimated is eighteen, since the MDM is composed
by three dipoles. Thus, theoretically, the number of test points needed
to be examined is at least six. These test points must be carefully
chosen in order to result in “independent” equations regarding to the
parameters to be estimated. It is observed that the aforementioned test
points instead of being positioned in a circle, as described in Section 2,

Table 2. Theoretical models parameters for a set of three dipoles.

Theoretical Model
dipole 1 dipole 2 dipole 3

x (cm) 0.3 1 1.4
y (cm) 1.1 0.5 2
z (cm) 1.6 1.8 0.5

mx (mAm2) 400 −500 600
my (mAm2) −400 500 −600
mz (mAm2) 450 −550 450

Table 3. Calculated MDMs parameters when 3 dipoles are simulated.

MDM
dipole 1 dipole 2 dipole 3

x (cm) 0.2487 1.0171 1.4131
y (cm) 1.2204 0.5908 1.9635
z (cm) 1.6019 1.7444 0.5067

mx (mAm2) 374.1063 −494.799 619.9692
my (mAm2) −392.608 512.5497 −619.298
mz (mAm2) 429.4842 −554.979 474.9911
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is preferred to be located in symmetrical positions. Based on equations
(1) to (8), it is observed that the set of test points is preferable to be
in the dipoles’ near field. In the present work, the test points (20, 0,
0), (0, 20, 0), (0, 0, 20), (15, 15, 0), (15, 0, 15) and (0, 15, 15) were
selected. The results concerning the models estimation are tabulated
in Table 3. As readily observed, the proposed scheme achieves an
adequately accurate estimation of the theoretical model.

Since the proposed scheme is based on a stochastic approach, it is
evident that the fitness function is needed to be minimized as much as
possible. Three typical fitness function values are tabulated in Table 4.
These values are characterized as good, mediocre and bad. As the

Table 4. Good, mediocre and bad fitness function values and the
according MDM parameters.

Fitness (rms) 5.6667
dipole 1 dipole 2 dipole 3

x (cm) 0.2487 1.0171 1.4131
y (cm) 1.2204 0.5908 1.9635
z (cm) 1.6019 1.7444 0.5067

mx (mAm2) 374.1063 −494.799 619.9692
my (mAm2) −392.608 512.5497 −619.298
mz (mAm2) 429.4842 −554.979 474.9911
Fitness (rms) 26.5556

dipole 1 dipole 2 dipole 3
x (cm) 0.5495 1.3353 1.5443
y (cm) 1.5492 0.532 1.7487
z (cm) 1.2256 1.6128 0.561

mx (mAm2) 402.3375 −498.134 593.2879
my (mAm2) −413.967 481.7637 −569.153
mz (mAm2) 426.5415 −512.787 436.8797
Fitness (rms) 49.3333

dipole 1 dipole 2 dipole 3
x (cm) 1.8863 1.8044 1.0036
y (cm) −0.2348 −0.4224 2.1399
z (cm) 0.2558 1.0537 0.5857

mx (mAm2) 400.9172 −496.603 585.5265
my (mAm2) −355.013 475.6016 −623.263
mz (mAm2) 454.1464 −537.38 441.9469
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fitness function value decreases, the model’s prediction is significantly
more accurate.

In order to succeed in minimizing the fitness function value,
extended simulations must be conducted to estimate the parameters
bounds. This process is of crucial importance, since the convergence
speed of the proposed scheme depends on the selected boundaries.

4. CONCLUSIONS

A stochastic based approach is proposed in the present work to create
an efficient MDM based on a set of measurements employed. The
proposed scheme is able to create an accurate MDM. A set of 1
or 3 dipoles were used to create these measurements for evaluation
purposes. In the simulations presented, the proposed scheme was able
to create an accurate MDM even in cases where the “measurements”
were distorted by noise and to mitigate its effects.
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