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Abstract—Multiple signal classification (MUSIC) algorithm has been
applied to localize small scatterers for super-resolution imaging. A
problem associated with this application is the estimation of the
number of scatterers in presence of noise and multiple scattering
between targets. In this paper, we show that the mathematical model
behind the scattering from the small objects is well compatible with the
minimum description length (MDL) model. This leads us to use the
MDL so as to estimate the number of scatterers before application
of the MUSIC algorithm. As the MDL assumes the sources are
independent, the nearby wave sources are grouped together to improve
the independency criterion. The application of MDL to synthetic and
experimental data verifies accurate estimation of the target number
with low complexity, even if the data embodies significant noise and
multiple scattering.

1. INTRODUCTION

Microwave imaging is a new technology to image interior of objects.
It solves an inverse problem, in which the profiles of objects
are reconstructed from the electromagnetic scattering data. Two
approaches, microwave tomography and time reversal (TR), have been
proposed to solve such an inverse problem. Microwave tomography
methods are based on optimization and needs to be solved iteratively
that make them very time consuming. Some methods such as using
phaseless data [1]; the artificial bee colony optimizer [2] and the
Forward-Backward Time-Stepping (FBTS) technique [3] that uses a
general formulation of the time domain scattering problem; and multi
scaling particle swarm optimization [4] are proposed to partly solve
this constraint.
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Time reversal (TR) method [5] has attracted increasing interest
recently with broad applications; including underwater acoustics,
radar, detection of defects in metals, communications and breast
cancer detection (see [2, 5–8]), due to its low computational complexity
over microwave tomography. It involves physical or synthetic
backpropagation of signals received by a sensor array (TR antenna
array) in a time-reversed fashion (first-in-last-out sequence) for
detection and localization of targets. Based on physics of wave
propagation in a reciprocal medium, in time reversal, the wave is traced
back to the origin of the signal and the location of the scatterers or
wave sources is obtained (see [5, 9, 10]). An improvement to TR is
the multiple signal classification (MUSIC) algorithm that exploits the
orthogonality of the scatterer and noise subspaces. In this way, the
MUSIC algorithm significantly improves the resolution of the time
reversal [11], as it is named super-resolution imaging (see [12–16]).

The resolution of the backpropagation algorithm is degraded with
noise and multiple scattering between targets, whereas this is not the
case for the MUSIC [17]. However, the noise and multiple scattering
increase the error in estimating the number of targets, what is required
in the MUSIC before running the imaging procedure. One way to solve
this problem is based on hypothesis testing using the eigenvalues of
the covariance matrix of the observed vector. Some proposals exist in
the literatures to model this order detection problem. Anderson [18]
proposes a hypothesis testing procedure based on the confidence
interval of the noise eigenvalue, in which a threshold value must
be assigned subjectively. Information theoretic criteria such as the
AIC derived by Akaike [19], the minimum description length (MDL)
given by Rissanen [20], and the Φ criterion proposed by Hannan [21]
were developed so that the setting of the subjective threshold can be
avoided. Wax and Kailath in [22] propose an approach based on the
MDL criterion in which the number of signals is determined by the
value for which the MDL criterion is minimized. The MDL is a low
complexity information theoretic criterion, which does not require any
subjective threshold setting usual in detection theoretic criteria. It is
shown that the statistical performance of the MDL is approximately
the same under both deterministic and stochastic signal models [23].

Conventional MDL methods work with time independent
components; however we employ a modified version of MDL algorithm
that works with independent sources obtained by a multistatic data
matrix. We apply this method to determine the number of targets (i.e.,
the number of signal eigenvalues) and then apply MUSIC procedure to
form pseudospectrum image. This paper compares the mathematical
model of the scattering phenomenon of small object with that of the
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MDL and shows they are the same. Therefore, the MDL can be used
to determine the number of scatterers. The paper, also, demonstrates
that grouping the nearby wave sources enhances the independency of
the sources and thus, the estimation error of the MDL is decreased.
The use of MDL indicates even in the presence of multiple scattering
and noise, the MDL provides satisfactory results and afterward the
MUSIC yields accurate estimates of the target locations.

The remaining of the paper is organized as follows. After the
statement and formulation of the problem in Section 2, we introduce
fundamental time reversal concepts and theory. Then, we review
the theory of subspace signal processing first applied to time reversal
imaging. In this section, we develop a generalized version of the MUSIC
algorithm. Section 3 introduces the information theoretic criteria for
model selection and discusses the application of these criteria to the
problem of detecting the number of targets. Simulation results that
illustrate the performance of the MDL for both synthetic and real
experimental data are described in Section 4.

2. PROBLEM FORMULATION

We present a theoretic model of the multistatic response matrix that
is obtained from the measurements made by an array of antennas.
The imaging algorithms employ this matrix to detect and localize the
targets.

2.1. Multistatic Data Matrix

The imaging system consists of Nt transmitter and Nr receiver antenna
arrays centered at known positions denoted by Rt

i and Rr
i for the

ith ones, respectively. The transmitters are individually excited and
generate incident wave fields that propagate into a background medium
containing a number of discrete scatterers (targets). The incident wave
field generated by the jth source interacts with the scatterers, generates
a total wave field (incident plus scattered) and is measured at any
frequency ω by the ith receiver as,

ψj(Rr
i , ω) = ψinc

j (Rr
i , ω)+k2

0(ω)
∫

R
G(Rr

i , r, ω)O(r, ω)ψj(r, ω)dr, (1)

where, k0(ω) is the wave number of the background medium, G(r, r′, ω)
is the green function between locations r, r′; ψinc

j (r, ω) and ψj(r, ω)
are respectively the incidence and total waves, measured at location r,
and are generated by the jth transmitter. The object is described
by the object profile (also known as object distribution function)
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O(r, ω) = k2(r,ω)
k2
0(ω)

− 1, where k(r, ω) is the wave number of the total
medium (background plus targets [24]), and R is corresponded to
the surface occupied by the object, where R = {r ∈ R2}. From
Equation (1), the scattered wave, that is generated by the interaction
of the incident wave with the targets, can be written as

ψscatt
j (Rr

i , ω) = ψj(Rr
i , ω)− ψinc

j (Rr
i , ω)

= k2
0(ω)

∫

R
G(Rr

i , r, ω)O(r, ω)ψj(r, ω)dr. (2)

By considering approximations suggested in [12, 25], we can write
an Nr ×Nt matrix K, that is called multistatic data matrix, as below,

K(ω) = k2
0(ω)

∫

R
gr(r, ω)O(r, ω)gT

t (r, ω)dr, (3)

whose the (i, j)th element is the ratio of ψscatt
j (Rr

i , ω) to ej(ω), the
incident pulse (source excitation) spectrum of the jth source, in which
ψj(r, ω) = ej(ω)G(r,Rt

j , ω). In Equation (3), gt(r, ω), corresponds
to the transmitter array, represents a vector associated to the green
functions from transmitters to any point in the medium, r, (that known
as the green function of the transmitter), formulated as gt(r, ω) =
[G(r,Rt

1, ω), G(r,Rt
2, ω), . . . , G(r,Rt

Nt
, ω)]T and the green function of

the receiver is gr(r, ω) = [G(Rr
1, r, ω), G(Rr

2, r, ω), . . . , G(Rt
Nr

, r, ω)]T

corresponds to the receiver array, where the superscript [·]T is the
Transpose operation. The data matrix K is a key quantity that is
employed to generate an image of the target (the object profile O(r, ω)).
We will not explicitly display the frequency variable ω in subsequent
equations.

The object profile O(r) consists of D disjoint profiles Om(r) each
centered at a location Xm and each having an effective size that is
small relative to the wave length [12, 24], i.e.,

O(r) =
D∑

m=1

Om(r−Xm) =
D∑

m=1

τmδ(r−Xm), (4)

where τm =
∫
ROm(r)dr is the scattering coefficient of the object.

Substitution of Equation (4) into Equation (3) provides,

K = k2
0(ω)

D∑

m=1

gr(Xm)gT
t (Xm)

∫

R
Om(r−Xm)dr

= k2
0(ω)

D∑

m=1

τmgr(Xm)gT
t (Xm). (5)
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When there is multiple scattering between the targets, the jth element
of the green function of the receiver, gr(Xm), can be formulated as

G(Rr
j ,Xm) +

D∑
m′=1,m′ 6=m

τm′G(Rr
j ,Xm′)G(Xm′ ,Xm). The purpose of

the imaging algorithms is to investigate of Equation (5) and estimate
Xm (location of the targets).

2.2. TR Imaging by MUSIC Method

The theory of MUSIC is rooted in eigenvector decomposition of the
matrix T = KHK as below [12],

KHKuj = γ2
j uj ,

KKHwj = γ2
j wj ,

(6)

where [·]H denotes the conjugate Transpose, uj , wj are respectively the
jth eigenvectors of matrices T and TH , and γ2

j is the jth eigenvalue
of T. The matrix T is known as the time reversal matrix [12], and
it is shown [25] that for well-resolved scatterers (scatterers with long
enough distance between them), those eigenvectors corresponding to
nonzero eigenvalues, span the signal subspace and are associated in a
one-to-one manner to the scatterer locations. The noise subspace is
proportional to the other eigenvectors. The time reversal invariants
can also be directly worked out from the singular value decomposition
(SVD) of the matrix K [25]. Hence the singular vectors of the matrix
K are the eigenvectors of the matrices T and TH and its singular
values γj , are the square root of the eigenvalues of T.

The MUSIC algorithm is based on orthogonality of the signal
and noise subspace spanned by u and w [24]. The MUSIC image (or
MUSIC Pseudospectrum) at each point r, can be defined as follows [25],

P (r) =
1

min(Nt,Nr)∑
j=D+1

(∣∣∣uT
j gt(r)

∣∣∣ +
∣∣∣wH

j gr(r)
∣∣∣
) , (7)

where, gt(r), gr(r) are respectively the green functions of transmitters
and receivers at each point r, and D is the number of targets which
is proportional to the number of non-zero eigenvalues. The target
locations are corresponded to the poles of P (r), so it will have distinct
peaks at the scatterer locations (i.e., Xm).
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3. STATISTICAL PROCESSING OF EIGENVALUE

The performance of the MUSIC will be degraded in environments with
noise and multiple reflections between targets. In such a situation,
the magnitudes of the eigenvalues are close to each other and it is
difficult to separate signal and noise eigenvalues. Any mixing of the
eigenvalues makes some targets are either missed or falsely added to
the pseudospectrum. In order to solve this problem, we use a modified
version of MDL algorithm to determine the number of targets (i.e.,
number of signal eigenvalues) and then apply MUSIC procedure to
form pseudospectrum image. Conventional MDL methods work with
time independent components [22, 26], whereas our MDL algorithm
works with independent sources.

3.1. MDL Method

Consider a sensor array of N elements by which we acquire M
observations {xm|m = 1, . . . , M} in which xm is an N dimensional
vector. Each xm is a linear transformation of D dimensional source
vector sm, plus noise vector vm, i.e.,

xm = Asm + vm, (8)

where A ∈ CN×D, the steering matrix, is composed of D linearly
independent column vectors of array response {ak|k = 1, . . . , D} and
D < N . It is assumed that the noise is white Gaussian.

In order to estimate the number of independent sources D,
the eigenvalues of the correlation matrix R = E(xxH) are used.

This matrix is approximated as R̂ = 1
M

M∑
m=1

xmxH
m. The eigen-

decomposition of R̂ is,
R̂vi = λivi. (9)

This decomposition includes D larger eigenvalues λ1 > . . . >
λD and the remaining N − D eigenvalues are theoretically equal,
i.e., λD+1 = . . . = λN = σ2, where σ2 is the variance of the
noise. The number of targets D, is determined as the value of
d ∈ {0, . . . , min(Nt, Nr) − 1} that minimizes the MDL criterion as
below [23, 27],

MDL(d) = M(N − d)log
(

αd

gd

)
+

1
2
d(2N − d) log(M), (10)
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where,

αd =
1

N − d

N∑

i=d+1

λi, (11)

gd =
N∏

i=d+1

λ
( 1

N−d)
i . (12)

The first term in Equation (10) is obtained from ML (maximum
likelihood) criterion while the second one is a penalty function that is
based on the number of free parameters in the model [22].

3.2. Estimating the Number of Scatterers Using MDL

In microwave imaging, the available data, at each frequency ω, is a
noisy matrix Kn as follows,

Kn(ω) = K(ω) + N(ω), (13)

in which K(ω) is multistatic data matrix, and N = [n1, n2, . . . , nNr ]T
is the additive noise. This model is well matched to MDL,
as it can be inferred from Equation (5). Let sj =
[τ1G(X1,Rt

j , ω), τ2G(X2,Rt
j , ω), . . . , τDG(XD,Rt

j , ω)]T , j = 1, . . . , Nt

be a source signal (here is a scatterer signal). According to
Equation (5), the jth column of K can be given by kj =
Asj , where A is an Nr × D matrix whose qth column is aq =
k2

0[G(Rr
1,Xq),G(Rr

2,Xq), . . . ,G(Rr
Nr

,Xq)]T , q = 1, . . . , D. It is
straightforward to extend this model when there is multiple scattering
between the targets. This indicates that Equation (13) is compatible
with the MDL model in Equation (8).

The above discussion suggests that the number of scatterers D
might be estimated from Kn using MDL. In practice, the data (i.e.,
the column of Kn) are available from different transmitters as well as
different frequency components. This paper develops a version of MDL
that uses the data due to different transmitters so as to decrease the
error in the estimation of D. This is a correct idea if sources be far
enough from each other. Because the signals at the scatterer locations
are linear combination of the sources signals, separate transmitters
will lead to independent ones and this results independent signals. To
apply MDL on multistatic response matrix, it can rewrite as

Kn =
[
kn

1 ,kn
2 , . . . ,kn

Nt

]
,

kn
i =

[
kn

i1, k
n
i2, . . . , k

n
iNr

]T
,

(14)

where, kn
i is a vector with dimension, Nr × 1.
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The noise is zero mean and independent of the signals, so the
covariance matrix of Kn, can be written as

R = Ψ + σ2I, (15)

where I is the identity matrix and Ψ denoting the covariance matrix
of the signals, i.e., Ψ = E[KKH ].

Denoting the parameter vector of the model by θ, it follows
from [22] that unknown parameters of θ are given by,

θ =
[
λ1, . . . , λd, σ

2,vT
1 , . . . ,vT

d

]T
, (16)

where λ1, . . . , λd and v1, . . . ,vd are the eigenvalues and eigenvectors of
R, respectively, and d ∈ {0, 1, . . . , Nr − 1} is the rank of R.

Since the observations are regarded as statistically independent
Gaussian random vectors with zero mean, their joint probability
density function for independent transmitters is given by,

f
(
Kn

1 ,Kn
2 , . . . ,Kn

Nt
|θ)=

Nt∏

i=1

1
πNr det(R)

exp
(−(Kn

i )HR−1Kn
i

)
. (17)

With this parametrization, the log-likelihood function L(θ) is given by,

L(θ) = −Nt log (det(R))− tr
(
R−1R̂

)
, (18)

where tr denotes the trace of a matrix and R̂ is the sample covariance
matrix defined by

R̂ =
1
Nt

Nt∑

i=1

Kn
i (Kn

i )H , (19)

The maximum likelihood estimation is then the value of θ which
maximizes Equation (18). Following Wax [22], we obtain

L(θ) = log




Nr∏
i=d+1

λ̂
1

Nr−d

i

1
Nr−d

Nr∑
i=d+1

λ̂i




(Nr−d)Nt

, (20)

where λ̂1 > . . . > λ̂Nr are the eigenvalues of the sample covariance
matrix R̂. Applying penalty function, the form of MDL for this
problem is therefore given by,

MDL(d) = −L(θ) +
1
2
d(2Nr − d) log(Nt). (21)

The estimate of D is the value of d that minimizes Equation (21).
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4. APPLICATION EXAMPLES

The algorithm is applied to both synthetic and real experimental data
so as to investigate its performance.

4.1. Results Employing Synthetic Data

The synthetic data is generated by method of moments (MOM) for
2-D TM (transverse magnetic) electromagnetic wave incident. The
simulated ensemble employs a uniform linear array consisting of 12
transmitters and 22 receivers with equal space of 0.5λ (that λ represent
wavelength). The probing environment is an air-filled 100 × 100 cm
rectangular area in which different configurations of scatterers will
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Figure 1. (a) Simulated ensemble, (b) singular values, (c)
pseudospectrum and (d) tomography image, obtained from noise free
data at 2GHz.
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be arranged. The dielectric targets are filled dielectric cylinders,
with circular cross section of radius a = 15 mm with the relative
permittivity of εr = 3. Infinite unit current lines serve as the
transmitters, which radiate wave into the environment. The data
collection scenario to form each column of K matrix is as follows: a
transmitter corresponding to a specific column radiates wave and the
scattering electric fields at the receivers form that column.

For the first configuration, we insert 3 point targets in the
environment, which are centered at [0 0], [2λ 2λ] and [2λ − 2λ] in
rectangular coordinates, as shown in Figure 1(a) and obtain multistatic
response matrix at 2 GHz. When there is no noise, Figure 1(b)
illustrates the existence of 3 non-zero singular values. Running the
MUSIC for three targets, Figures 1(c), 1(d) show pseudospectrum and

0 5 10 15 20 25
0

5

10

15

20

25

Number of receivers

M
a

g
n

it
u

d
e

 o
f 

s
in

g
u

la
r 

v
a

lu
e

s

X coordinate (cm)

Y
 c

o
o

rd
in

a
te

 (
c
m

)

 -30  -15 0 15 30

30

15

0

 -15

 -30 1

1.5

2

2.5

3

0 2 4 6 8 10 12
0

50

100

150

200

250

Number of transmitters

M
a

g
n

it
u

d
e

 o
f 

M
D

L

X coordinate (cm)

Y
 c

o
o

rd
in

a
te

 (
c
m

)

-30  -15 0 15 30

30

15

0

 -15

 -30
5

10

15

20

25

30

35

(a) (b)

(c) (d)

Figure 2. Results of the data with SNR = 4dB. (a) Singular values
and (b) tomography image when MUSIC is run for the number targets
= 2, (c) the MDL criterion for various number of targets, detecting 3
targets and (d) tomography image after applying the MDL algorithm.
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tomography image of the received signal. It can be seen that MUSIC
can exactly detect all positions if the number of targets is known in
advance. Figure 2(a) shows that the performance of MUSIC can be
degraded, when we have noise in the system. In this case, the noise
is additive Gaussian with SNR = 4 dB. The singular values are close
to each other and hence, different target numbers can be inferred.
In Figure 2(b), this number is set to 2 (according to Figure 2(a))
and MUSIC can detect only 2 target positions. Applying MDL to
the singular values of multistatic response matrix, the MDL criterion
(Equation (21)) reaches the minimum at d = 3 (Figure 2(c)) and using
this in MUSIC will locate the targets reasonably (Figure 2(d)).

The performance of the estimation algorithms should be analyzed
in different noisy situations. This can be done by applying various
noisy matrix, Kn, to the algorithms. Because the added noise ought to
be modeled as a stochastic process, the noisy matrix, Kn, is generated
randomly several times and the probability of correct detection of
sources, pD, (which is the percentage of the experiments in which the
number of targets are correctly estimated) is obtained at each SNR.
The usual estimation of the target numbers in MUSIC is according
to major eigenvalues [12]. These are the eigenvalues that the least of
them is greater than the twice of the next one and there is no other
eigenvalues with this feature after it. Figure 3 indicates the variation
of pD against SNR and illustrates the superiority of MDL over Usual
estimation.

To study the performance of the algorithms with respect to
scatterer distances, the simulations are carried out for two targets with
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Figure 3. Probability of correct
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Figure 5. (a) Probability of correct estimation as a function of
distance between the transmitters at 2GHz, (b) correlation coefficients.

different separations. Figure 4 shows pD as a function of the distance
in terms of wavelength (λ) at SNR = 5dB. It is observed that the
increase of the distance makes the reduction of the multiple reflections
between targets and thus, the signal eigenvalues separate well from
the noise ones and two estimation algorithms behave the same at large
distances. However, the MDL algorithm can resolve the location of the
targets better than usual estimation, at short distances.

As it mentioned, independence between the transmitters is a
fundamental requirement in MDL algorithm. But in the most data
gathering systems, because of small space between the transmitters,
this constraint may not be established, exactly. In this case,
performance of MDL will impair for low SNRs. This can be seen in
Figure 5(a) for a system with 20 transmitters on a circle with different
space between them in terms of degree. It is evidence that transmitters
with larger space have better performance with MDL algorithm. We
solve the constraint of non-independent transmitters by grouping them.
It means that signals of some near transmitters (columns of matrix Kn)
are replaced by their average. It can also reduce somewhat the noise
of the data. We do grouping by averaging of any two adjacent columns
of the matrix Kn. To prove this, we compare correlation coefficients
of two adjacent columns of Kn (that are proportional to two adjacent
transmitters) in both nongrouped and grouped modes. the correlation
coefficient can be calculated for the ith and jth columns as below,

ri,j =
(k̃n

i )H k̃n
j

‖k̃n
i ‖ ‖k̃n

j ‖
, (22)

in which ‖ · ‖ is the norm operation and k̃n
i = kn

i −mean(kn
i ). Smaller
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amount of ri,j represent fewer correlation between the ith and jth
sources.

In Figure 5(b) we show r1,2 (the correlation coefficient between
columns 1 and 2) for three states of transmitters. It is clear that
larger distance between the transmitters results in smaller correlation
coefficient, which means that they are more independent. In Figure 6,
performance of MDL in normal and grouped modes is compared for
different SNRs, when the distance between the transmitters is 3◦. As
we expected, MDL with grouped transmitters has better operation
even at low SNRs, whereas in normal mode this algorithm has no
precise decisions up to 6 dB.

4.2. Results Employing Experimental Data

Experimental data are gathered from CCRM lab. at Marseille,
France [28]. The experimental setup consists of a large anechoic
chamber, 14.50 m long, 6.50m wide and 6.50 m hight, with a set of
three positioners to adjust antennas or target positions [28]. In this
construction, the number of transmitters and receivers are equal to 36
and 49, respectively, so K is an 49× 36 matrix. Transmitters are on a
circle with radius of 720 mm and rotate from 0◦ to 350◦ in steps of 10◦,
so the receivers rotate from 60◦ to 300◦ in steps of 5◦ on a circle with
radius of 760mm. The frequency ranges from 1 GHz to 4 GHz with
step of 1 GHz. The dielectric targets are two filled dielectric cylinders,
with εr = 3 ± 0.3, having circular cross section of radius a = 15 mm
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and placed about 45 mm from the center of axis.
The columns of matrix K correspond to the received signals due

to different transmitters so that the receiver set does not change from
column to column, i.e., from transmitter to another transmitter. This
is not compatible exactly with the data collection described above [28].
For our purpose, the data of the transmitters that are corresponded to
common receivers are used to form K. In this way, several K matrices
can be generated with respect to different view angles, e.g., Figure 7
shows the transmitter-receiver structure for 75◦ view angle. We employ
the 19× 16 matrices with four view angles of 75◦, 165◦, 225◦ and 315◦
and compute the MDL in Equation (21) for them separately and, then,
the candidate d is the one that minimizes the sum of four MDLs.

In Figure 8, we compare MDL operation for raw and common
data. Figures 8(a), 8(b) show the magnitude of MDL for these data.
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Figure 8. Experimental data: the MDL criterion for (a) raw data, (b)
common data, and tomography image for (c) raw data, (d) common
data, all at 2 GHz.
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Figure 9. Experimental data: (a) correlation coefficients, (b)
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Figure 10. A comparing between (a) our results and (b) results in [28].

The result of applying the estimated numbers to the MUSIC algorithm
is shown in Figures 8(c), 8(d). As it expected, the target locations
accurately have been determined by the common data.

The correlation coefficients of the grouped K which is a 19 × 8
matrix is shown in Figure 9(a) as a function of frequency. It is clear
that correlation coefficients for grouped mode are smaller than the
normal state. In Figure 9(b), performance of MDL in normal and
grouped modes is compared for different SNRs. As we expected, MDL
with grouped transmitters has better operation even at low SNRs.

Figures 10(a), 10(b) compare the image of MUSIC+MDL method
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with what is obtained in [28] from the same real data. The images are,
nearly, the same; nevertheless, the MUSIC+MDL method needs about
50 seconds that indicates it can do the microwave imaging in real time.

5. CONCLUSIONS

The MUSIC algorithm can significantly improve the resolution of
the time reversal. A problem associated with this application is
the estimation of the number of scatterers in presence of noise and
multiple scattering between targets. In this paper, we show that the
mathematical model behind the scattering from the small objects is
well compatible with the minimum description length (MDL) model.
This leads us to use the MDL so as to estimate the number of
scatterers before application of the MUSIC algorithm. The paper,
also, demonstrates that grouping the nearby wave sources enhances
the independency of the sources and thus, the estimation error of the
MDL is decreased. The use of MDL indicates even in the presence of
multiple scattering and noise, the MDL provides satisfactory results
and afterward the MUSIC yields accurate estimates of the target
locations. Future work will be devoted to extending the method not
only in freespace imaging, but also to subsurface imaging and through
wall imaging problems.
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