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Abstract—In this paper, the properties of the omnidirectional
photonic band gap (OBG) realized by one-dimensional (1D) Fibonacci
quasi-periodic structure which is composed of superconductor and
isotropic dielectric have been theoretically investigated by the transfer
matrix method (TMM). From the numerical results, it has been
shown that this OBG is insensitive to the incident angle and the
polarization of electromagnetic wave (EM wave), and the frequency
range and central frequency of OBG cease to change with increasing
Fibonacci order, but vary with the ambient temperature of system,
the thickness of the superconductor, and dielectric layer, respectively.
The bandwidth of OBG can be notably enlarged with increasing the
superconductor thickness. Moreover, the frequency range of OBG
can be narrowed with increasing the thickness of dielectric layer and
ambient temperature. The damping coefficient of superconductor
layers has no effect on the frequency range of OBG under low-
temperature conditions. It is shown that Fibonacci quasi-periodic 1D
superconductor dielectric photonic crystals (SDPCs) have a superior
feature in the enhancement frequency range of OBG. This kind of OBG
has potential applications in filters, microcavities, and fibers, etc.
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1. INTRODUCTION

In the past few years, the propagation of electromagnetic waves (EM
waves) in periodic dielectric structures in one, two, three spatial
directions has received much attention on the experimental and
theoretical investigations since pioneering works of Yablonovitch [1]
and John [2]. This kind of periodic dielectric structures is called
photonic crystals (PCs), and can generate spectral regions named
photonic band gaps (PBGs), which is similar to the electronic band
gaps in a semiconductor. The propagation of EM waves with frequency
located in the PBG is strongly forbidden in PCs. The earlier studies
have been demonstrated [3–5] that a PBG can be formed as a result
of the interference of multiple Bragg scattering in a periodic dielectric
structure. If EM wave incident at any angle with any polarization
cannot propagate in PCs, the total OBG can be achieved. The larger
OBGs have been widely used in various modern applications, such as
omnidirectional high reflector [6], all-dielectric coaxial waveguide [7],
and omnidirectional mirror fiber [8]. The multilayer periodic structure
has been always applied in enhancement the OBGs as described in
most works [9–11] but the researchers pay more attention on the
disordered dielectric structures in recently. Within the intermediate
regime between complete order and disorder, quasi-periodic structures
following a deterministic sequence also display characteristic spectral
properties not present in either of these extreme cases. The
most common quasi-periodic structure is Fibonacci sequence [12–15].
Fibonacci sequence multilayer present a discrete Fourier spectrum
characterized by self-similar Bragg peak. The Fibonacci sequence
also has been extended to the investigation of the total OBGs of 1D
PCs [16, 17]. Some researchers have attempted to introduce negative-
index materials to 1D PCs with a Fibonacci sequence basis [18–20],
the OBG can be obtained. Such OBG also be called the zero-ñ gap
or single negative gap, but is insensitive to lattice parameter changed
in contrast with the behavior exhibited by Bragg gap. Therefore, the
dispersive or dissipative medium is used to form tunable PCs, such as
semiconductor [21], metal [22], plasma [23] and superconductor [24].

To date, the investigations of SDPCs have attracted the attention
of many researchers. If the superconductor is introduced in the
PCs, the frequency ranges of PBGs can be in the infrared/optical
frequencies (terahertz region) [25–27]. Lee et al. [28] studied the
transmission characteristics at visible light range in 1D SDPCs have
been analyzed based on the finite element method using COMSOL
RF module. They found that the cutoff frequency or PBGs can
be manipulated through the thicknesses of the superconductor and
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dielectric layers as well as the ambient temperature of system.
Aly et al. [29] have theoretically investigated that the properties of
transmission at terahertz region in a 1D superconducting metallo-
dielectric superlattice have been analyzed based on TMM using two-
fluid model. They found there is a cutoff frequency in such a bilayer
periodic structure, and the cutoff frequency is strongly dependent
on thicknesses of the superconductor and dielectric layers, and the
temperature as well. In temperature-dependent transmittance, strong
oscillations can be seen at higher temperature. Wu and Gao [30]
have theoretically calculated the transmittance of Fibonacci quasi-
periodic 1D PCs containing superconducting material by TMM. They
found that the shift of cutoff frequency becomes more noticeable
by adjusting the thickness of superconductor layer than that of the
dielectric one, and the cutoff frequency is very sensitive as the ambient
temperature of system is close to vicinity of the critical temperature
of superconductor. Lin et al. [31] used the 1D SDPCs to form the
multichanneled transmission filter in the presence of evanescent wave.
Li et al. [32] have systematically investigated the properties of PBGs
for 1D SDPCs by TMM. They found that the width of PBGs is
more sensitive to the thicknesses of superconductor layers, and damp
coefficient does not affect the PBG under low-temperature conditions.

All the works mentioned above focused on the PBG characteristics
of 1D SDPCs composed of alternating superconductor and dielectric
material until Dai et al. [33] used the superconductor to design the
omnidirectional reflector. There are few works which are concentrated
on the enhancement of OBGs in 1D SDPCs with quasi-periodic
structures. In this paper, the OBG in 1D SDPCs with a Fibonacci basis
is investigated by TMM, and it is found that such OBG is insensitive to
the incident angle and the polarization of EM wave. The reflectance
is used to analyze the effects the thickness of superconductor layer,
the thickness of dielectric, the ambient temperature of system and
the damping coefficient of superconductor layers on the properties
of OBG, respectively. The results show that the frequency ranges
and central frequencies of OBG cease to change with increasing
Fibonacci order, but vary with the thickness of superconductor layer,
the thickness of dielectric layer, and the ambient temperature of
system, respectively. In contrast to the conventional dielectric PCs, the
frequency range of OBG is notably enlarged. This paper is organized
as follows: A physical model and transfer matrix formulas for both
the TE wave case and TM wave case are introduced in Section 2.
In Section 3, the enhancement of OBG frequency range in Fibonacci
quasi-periodic structure 1D SDPCs is studied. Then, the dependences
of OBG frequency range on the ambient temperature of system,
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the damping coefficient of superconductor layer, the thickness of the
superconductor, and dielectric layer are investigated, respectively.
Finally, conclusions are given in Section 4.

2. THEORETICAL MODEL AND NUMERICAL
METHOD

Schematic view of oblique indent EM wave in Fibonacci quasi-periodic
structure 1D SDPCs composed of dielectric layers and superconductor
layers is plotted in Fig. 1. We consider 1D periodic layered structure
in each cell following the Fibonacci sequence. The Fibonacci sequence
can be generated by the rule Sn+1 = Sn−1Sn for level n ≥ 1,
with the first two chains as S0 = {A} and S1 = {S}. In this
paper, layers A and S represent dielectric with thickness of dA,
and superconductor with thickness of dP , respectively. For the nth
generation of the considered Fibonacci sequence, the sequence can be
expressed as Fn = (Sn)N , in which N is the number of periods. As
an example, the fourth sequence of F4 is F4 = {ASSAS} as depicted
in Fig. 1. Here, we use εa and εs to describe the relative permittivity
for dielectric A and superconductor, respectively. As we known the
superconductor is a kind of frequency dependence dielectric. In order
to define the properties of superconductor, the Gorter-Casimir two-
fluid model [29–31] is adopted to describe the electromagnetic response
of the superconductor layer with the absence of external magnetic
field. The effective relative dielectric function of the superconductor is
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Figure 1. Schematic diagram of 4th order Fibonacci quasi-periodic
lD SDPCs consisting of dielectric (A) and superconductor (S) under
any incidence angle (θ) for TE and TM waves.
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represented as follows [32]:
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where εc is the dielectric constant of the crystal, ωnp and ωsp

are the plasma frequencies of the normal conducting electrons and
the superconducting electrons, respectively. γ is the damping
term of normal conducting electrons. ns and nn are densities
of superconducting electrons and normal conducting electrons,
respectively. e and m are the charge and mass of the electron. We can
rewrite Eq. (2) in the form by using the Gorter-Casimir result [32]:
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where λ0 is the London penetration length at temperature T = 0, and
Tc is the critical temperature of a superconductor. ω is electromagnetic
wave frequency, and c is the light speed in vacuum. Substituting
Eq. (3) into Eq. (1), the temperature dependent dielectric function
of the superconductor can be expressed as
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If the damping term γ is very small, the third term on the right-hand
side of Eq. (4) cannot be neglected [32].

The EM wave is incident from the vacuum to the nth order
Fibonacci multilayer with incident angle θ. For the transverse electric
(TE) wave, the electric field E is polarized along the y direction.
Suppose wave vectors K(ω) lie in xz plane. In order to calculate
the reflectance for a Fibonacci multilayered structure, the TMM is
used [31]. According to this method, we can set up the characteristic
corresponding to the electric and magnetic fields at any two positions
in the adjacent layer which is given as

Mk =
(

cosβl
j
pl

sinβl

jpl sinβl cosβl

)
(5)

where βl = k0nldl cos θl and pl = nl
Z0

cos θl (TE wave), pl = 1
Z0nl

cos θl

(TM wave) with l = A,S and impedance of vacuum Z0 =
√

µ0/
√

ε0.
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Here dl is the thickness of periodic length of the dA, dB and dP with
refractive indices nA, nB and ns, respectively. Thus, the transfer
matrices Mj are M2 = MAMS , M3 = MSMAMS , and M4 =
MAMSMSMAMS for S2, S3, and S4, respectively. If the order of the
Fibonacci sequence is N , the total transfer matrix of the Nth order
Fibonacci sequence MN can be deduced from the following recursion
relations:

MN = MN−2MN−1 (N ≥ 2) (6)

So, the total translation matrix M is obtained to be

M =
N∏

k=1

Mk =
(

M11 M12

M21 M22

)
(7)

The reflection coefficients of the considered structure are given by

r =
(M11 + M12ps)p0 − (M21 + M22ps)
(M11 + M12ps)p0 + (M21 + M22ps)

(8)

Here p0 and ps are the first and last mediums of the structure,
which given as p0 = n0 cos θ0/Z0, ps = ns cos θs/Z0 (TE wave) and
p0 = cos θ0/(n0Z0), ps = cos θs/nsZ0 (TM wave). In our case we have
taken n0 = ns = 1 for the vacuum. The reflectance is related by

R = |r|2 (9)

3. RESULTS AND DISCUSSIONS

In this section, we investigate the properties of OBG for Fibonacci
quasi-periodic 1D SDPCs in the terahertz region, and subsequently
study how the OBG frequency range relation of Fibonacci quasi-
periodic 1D SDPCs vary with thickness of superconductor, dielectric,
the ambient temperature of system and the damping coefficient
of superconductor layer, respectively. We choose the structure
parameters as follows: εA = 4, µA = 1, dA = 400 nm, respectively.
The superconductor layer is taken to be Tc = 9.2 K, λ0 = 83.4 nm,
and γ = 1 × 105 Hz, respectively [32]. Assumed the thickness of
superconductor layer dP = 30 nm, the ambient temperature of system
T = 4.2K, and εc = 1, respectively. The Fibonacci order is 10. Here,
we only focus in the band gap in the frequency domain 0–250THz.

3.1. Introduced the Superconductor Layer to Enhance the
OBG with Fibonacci sequence

Firstly, we discuss the OBG of 1D dielectric PCs consisting of alternate
dielectric A and air. Assumed the thickness of air layer is 30 nm. We
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plot the influence of the PBG on the frequency and incident angle for
TM polarization in the Fig. 2(a). The red areas correspond to the
Bragg gaps or high-reflectance ranges (reflectance greater 0.99). It
can be seen from Fig. 2(a) that there do not exist OBG obviously for
1D dielectric PCs, and the Bragg gap of TM polarization is closed at
an incident angle between 54◦ and 74◦ due to Brewster’s angle [34].
In order to avoid the Brewster’s window, we replace the air layers
with superconductor layers, and are arranged with a Fibonacci basis
to form a new quasi-periodic structure SDPCs. For comparison, we
also plot the dependence of the PBG on the frequency and incident
angle for TM polarization of the 1D SDPCs in the Fig. 2(b). As
shown in Fig. 2(b), there is a Bragg gap obviously of TM polarization,
and the Bragg gap is opened at an incident angle between 54◦ and
74◦. The dependence of photonic band structure of Fibonacci quasi-
periodic 1D SDPCs on the incident angle and angular frequency for
both polarizations is plotted in Fig. 3(a). The area between two white
lines is the total OBG. Reflectance spectra of Fibonacci quasi-periodic
1D SDPCs at various incident angles is also plotted in Fig. 3(b). The
gray areas correspond to PBGs. We can see clearly from Fig. 3 that
there exists OBG obviously. The frequency range of OBG runs from
191 to 223.5 THz, and the frequency width is 32.5 THz. From Fig. 3(a),
we can clearly see that the OBG is insensitive to the incident angle
for TM polarization but is sensitive for TE polarization. The upper
edges of the OBG shift upward to higher frequencies with increasing
incident angle for both polarizations. It also can be seen that the lower

(a) (b)

Figure 2. Photonic band structure of (a) 1D binary dielectric PCs,
and (b) 1D Fibonacci quasi-periodic SDPCS in terms of angular
frequency and incidence angle for TM polarization. The background
corresponds to Bragg gaps or high-reflectance ranges.
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(a) (b)

Figure 3. (a) Photonic band structure of 1D Fibonacci quasi-periodic
SDPCS in terms of angular frequency and incidence angle. The areas
between two white lines are the total OBG, and (b) reflectance spectra
of 1D Fibonacci quasi-periodic SDPCS at various incident angles is
calculated by TMM. The black solid (red dash dot) curves are for TM
(TE) polarization, and the gray areas correspond to the PBGs.

edges of the OBG is insensitive to the increase of the incident angle
for both polarizations. As shown in Fig. 3(a), there is an OBG for TE
polarization in the display frequency range from 191 to 223.5 THz, and
frequency width is 32.5 THz. For TM polarization, frequency region
of the OBG runs from 185.5 to 223.5 THz, and bandwidth is 38 THz.
Thus, we can know that the TE omnidirectional gap determines the
bandwidths of the OBG. This property is obviously different from that
of the OBG in Fibonacci structure containing single negative materials,
in which the lower or upper band edges of the single negative gap are
insensitive to incident angle for both polarizations. The main reason
for the different results is because their mechanisms of band formation
are different. The band formation originates from EM wave scattering
of propagating modes in Fibonacci quasi-periodic 1D SDPCs; while
for Fibonacci structures with single negative materials, it comes from
tunneling of evanescent modes [20].

3.2. Effects of Fibonacci Order on OBG

Secondly, we analyze the dependence of the PBG on the frequency and
Fibonacci order (N ≥ 4) for normal incidence. In Fig. 4, we plot the
normal incidence reflection spectra for the different Fibonacci orders
as a function of the frequency with S5 (Fig. 4(a)), S6 (Fig. 4(b)),
S7 (Fig. 4(c)), and S8 (Fig. 4(d)). It can see from the Fig. 4 that,
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Figure 4. Normal incident
reflection spectra for the different
Fibonacci orders as a function of
the frequency with (a) S5, (b) S6,
(c) S7, and (d) S8.

Figure 5. Normal incident
reflection spectra for the different
Fibonacci orders as a function of
the frequency with (a) S9, (b) S10,
(c) S11, and (d) S12.

with increasing order of Fibonacci sequence, the central frequency of
the Bragg gap (195.72 THz) remain invariant, and the edges of the
reflectance become much shaper. We also can see from Fig. 4 that,
when increasing the Fibonacci order N from 5 to 8, the upper edges of
the Bragg gap shift up to higher frequencies, while the lower edges of
the Bragg gap shift down to lower frequencies, and the frequency range
of Bragg gap becomes larger. If we continue to increase the Fibonacci
order, the influence of the PBG on the frequency and Fibonacci order
for normal incidence is plotted in Fig. 5. In Fig. 5, the reflection spectra
for normal incidence is shown in the cases of Fibonacci structures where
S9 (Fig. 5(a)), S10 (Fig. 5(b)), S11 (Fig. 5 (c)), and S12 (Fig. 5 (d)).
It is demonstrated that, if increasing the Fibonacci order N from 9
to 12, the upper and lower edges of the Bragg gap remain constants,
the frequency region of the Bragg gap which we focus on spans from
168.03 to 223.03 THz, and the frequency width is 55THz. Therefore,
the frequency range and central frequency of the OBG cease to change
with increasing Fibonacci order.

3.3. Effects of the Thickness of Superconductor Layer on
OBG

Next, we discuss the influence of the thickness of superconductor layer
on the OBG of Fibonacci quasi-periodic 1D SDPCs. We plot the
reflectance of Fibonacci quasi-periodic 1D SDPCs versus frequency
as a function of the thickness of superconductor layer at normal
incidence in Fig. 6. The red regions denote the high-reflectance
ranges. It can be seen from Fig. 6 that the edges of the Bragg gap
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Figure 6. Reflection coefficients
of Fibonacci quasi-periodic 1D
SDPCs versus frequency as a
function of the superconductor
thickness at normal incidence.

Figure 7. The frequency range
of the OBG for Fibonacci quasi-
periodic 1D SDPCs as a function
of the superconductor thickness.
The gray area is OBG.

are sensitive to increasing the thickness of superconductor layer, and
the frequency shift of the edges is every obvious. The upper edge of
the Bragg gap shifts upward to higher frequencies but the lower edge
is downward to lower frequencies with increasing the superconductor
thickness. Thus, the bandwidth and central frequency of the Bragg
gap can be modulated by increasing the thickness of superconductor
layer. To take a close look at the dependence of the OBG on the
thickness of superconductor layer, we also plot the frequency range
of the OBG for Fibonacci quasi-periodic 1D SDPCs as a function of
the superconductor thickness in Fig. 7. The gray area is OBG. Form
Fig. 7, one can see that the upper edge of the OBG is upward to higher
frequencies and the lower edge is downward to lower frequencies with
the increasing the thickness of superconductor. The bandwidth of the
OBG is broadened, and central frequency of the OBG is increased
with increase of the superconductor thickness. As shown in Fig. 7,
the frequency range of the OBG runs from 170.87 to 248.33 THz, and
the frequency width is 77.46 THz. If the thickness of superconductor
layers is less than 11.71 nm, the OBG does not exist. As thickness
of superconductor layers is creased from dP =11.71 nm to dP =70nm,
here is a increasing of 77.46 THz in bandwidth of the OBG as compared
to dP =11.71 nm. From the aforementioned discussions, the frequency
range of the OBG is obviously enlarged with increasing the thickness
of superconductor layer. Consequently, the bandwidth of OBG is
enlarged.
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Figure 8. Reflection coeffi-
cients of Fibonacci quasi-periodic
1D SDPCs versus frequency as a
function of the thickness of dielec-
tric layer at normal incidence.

Figure 9. The frequency range
of OBGs for Fibonacci quasi-
periodic 1D SDPCs as a function
of thickness of dielectric layer.
The gray area is OBG.

3.4. Effects of the Thickness of Dielectric Layer on OBG

In order to investigate the effect of the thickness of dielectric layer on
the OBG of Fibonacci quasi-periodic 1D SDPCs, the reflectance of 1D
SDPCs versus frequency as a function of the thickness of dielectric layer
at normal incidence is plotted in Fig. 8. As shown in Fig. 8, the number
of PBGs is sensitive to increasing the thickness of dielectric layer and
the more PBGs appear. The edges of the PBGs shift downward
to lower frequencies and the frequency ranges of PBGs are changed
obviously. The central frequencies of the PBGs also are downward
to lower frequencies regions. Thus, we can draw a conclusion that the
bandwidths and central frequencies of the PBGs can be modulated, and
the number of the PBGs is increased, with increasing the thickness of
dielectric layers. To show the dependence of the OBG on the thickness
of dielectric layer, Fig. 9 is demonstrated that frequency range of
the OBG for Fibonacci quasi-periodic 1D SDPCs as a function of
the thickness of dielectric layer. From Fig. 9, we can see that the
edges and central frequencies of the OBGs shift downward to lower
frequencies, and the frequency range of the OBG are narrowed with
increasing the thickness of dielectric layer. The frequency range of the
OBG runs from 101.78 to 126.73 THz, and the bandwidth is 24.95THz,
when the thickness of dielectric layer is creased from dA = 300 nm to
dA = 800 nm. Here is a decreasing of 10.05 THz in bandwidth of the
OBG as compared to dA = 300 nm. As mentioned above, the frequency
range of the OBG is obviously narrowed, central frequency of the OBG
is decreased and the number of PBGs is increased with increasing the
thickness of dielectric layer. Consequently, the bandwidths of OBGs
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and the number of PBGs can be modulated by the thickness of the
dielectric layer.

3.5. Effects of the Ambient Temperature on OBG

In order to study the effect of the ambient temperature on the OBG
of Fibonacci quasi-periodic 1D SDPCs, the reflectance of Fibonacci
quasi-periodic 1D SDPCs versus frequency as a function of the ambient
temperature at normal incidence is shown in Fig. 10. As shown in
Fig. 10, it is clearly that bandwidths of PBGs are slightly reduced,
when the ambient temperature is less than 5K. If the ambient
temperature is larger than 5 K, the frequency shifts of the edges and
central frequencies of the PBGs are downward to lower frequencies, and
the frequency ranges of PBGs become smaller obviously. Therefore, we
can get a conclusion that the bandwidths of PBGs can be enlarged
by decreasing ambient temperature. To take a close look at the
dependence of the OBG on the ambient temperature, we also plot
the frequency range of OBG for Fibonacci quasi-periodic 1D SDPCs
as a function of the ambient temperature in Fig. 11. We can see from
Fig. 11 that the edges of the OBG are unchanged first then shift to the
lower frequencies, but the frequency shift of lower edge of the OBG
is small as compared to the upper edge. As shown in Fig. 11, the
frequency range of the OBG runs from 187.98 to 191.09THz, and the
frequency range is 3.11THz, as the ambient temperature is creased
from T = 1 K to T = 9 K. Here is a decreasing of 27.90 THz in
frequency range of the OBG as compared to T=1K. As mentioned
above, the frequency ranges of the OBG can be enlarged by decreasing
the ambient temperature. Consequently, Fibonacci quasi-periodic 1D

Figure 10. Reflection coeffi-
cients of Fibonacci quasi-periodic
1D SDPCs versus frequency as a
function of the ambient tempera-
ture.

Figure 11. The frequency range
of OBGs for Fibonacci quasi-
periodic 1D SDPCs as a function
of the ambient temperature. The
gray area is OBG.
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SDPCs has potential applications in tunable filters or microcavities,
which are controlled by the ambient temperature.

3.6. Effects of the Damp Coefficient of Superconductor
Layer on OBG

Finally, we investigate the effect of the damp coefficient of
superconductor layers on the OBGs of Fibonacci quasi-periodic 1D
SDPCs. If temperature of superconductor is larger than 4.55 K, the
damp coefficient of superconductor layers should be considered [32].
Based on T = 6K for different damp coefficient of superconductor
layer, the reflectance of Fibonacci quasi-periodic 1D SDPCs versus
frequency at normal incident in Fig. 12. From Figs. 12(a)–(d),
one can see that the frequency range of Bragg gap at normal
incident is obviously unchanged with increasing damp coefficient of
superconductor layer. Fig. 12(a) shows that the bandwidth of the
Bragg gap that we focus on is 168.47 and 222.64THz, as damp
coefficient of superconductor layers is null. When damp coefficient
of superconductor layer is γ = 1 × 1011 Hz, the Bragg gap is still
unchanged as shown in Fig. 12(d), as compared to Fig. 12(a). To
take a close look at the dependence of the OBG on damp coefficient
of superconductor layer, we present reflectance of Fibonacci quasi-
periodic 1D SDPCs versus frequency as a function of lgγ at T = 6 K
in Fig. 13.

We can see from Fig. 13 that the edges of the OBG are almost
unchanged with increasing lg.γ . The frequency range of the OBG spans
from 191.31 to 223.07 THz, and the frequency range is 31.76THz, as the

Figure 12. Reflectance of Fi-
bonacci quasi-periodic 1D SDPCs
versus frequency at normal inci-
dence with different damp coeffi-
cient of superconductor layers at
T = 6K.

Figure 13. The frequency range
of OBGs for Fibonacci quasi-
periodic 1D SDPCs as a function
of lgγ at T = 6 K. The gray area
is OBG.



428 Zhang et al.

lgγ is creased from lgγ = 0 to lgγ = 11 at T = 6 K. As mentioned above,
the frequency range of the OBG can not be changed by increasing the
damp coefficient of superconductor layer. Consequently, whether or
not the contribution of the normal conducting electrons is considered,
the damping coefficient of superconductor layer has no effect on the
frequency range of the OBG.

4. CONCLUSIONS

In summary, the band structure and OBG of 1D quasi-crystals
composed of isotropic dielectric and superconductor, arranged
according to a recursion rule of the Fibonacci sequence, have been
investigated by TMM. It is shown that this kind of SDPCs has the
OBG obviously, which is insensitive to the incident angle and the
polarization of EM wave. In contrast to the OBG originating from a
zero-ñ gap or single negative gap, the OBG originating from the Bragg
gap are found in Fibonacci quasi-periodic 1D SDPCs, which originates
from EM wave scattering of propagating modes. The numerical results
show that the frequency range and central frequency of the OBG cease
to change with increasing Fibonacci order, but the bandwidth of the
OBG can be notably enlarged by increasing with the thickness of
superconductor layer and decreasing with the ambient temperature
system. The number of the PBGs can be increased, and their
bandwidth can be narrowed by increasing the thickness of dielectric
layer. Increasing the thickness of dielectric layer means the frequency
range of OBG is narrowed, and changing the damping coefficient of
superconductor layer has no effect on the frequency range of the OBG
under low-temperature conditions. It also show that Fibonacci quasi-
periodic 1D SDPCs has a superior feature in the enhancement of OBG
frequency width compared with the conventional 1D dielectric PCs as
described in our paper. The OBG has potential applications in filters,
microcavities, and fibers, etc.
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