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Abstract—Boundary element discretizations of exterior Maxwell
problems lead to dense complex non-Hermitian systems of linear
equations that are difficult to solve from a linear algebra point of
view. We show that the recently developed class of inverse-based
multilevel incomplete LU factorization has very good potential to
precondition these systems effectively. This family of algorithms can
produce numerically stable factorizations and exploits efficiently the
possible symmetry of the underlying integral formulation. The results
are highlighted by calculating the radar-cross-section of a full aircraft,
and by a numerical comparison against other standard preconditioners.

1. INTRODUCTION

The numerical solution of Maxwell’s equations in large unbounded
domains may be efficiently carried out using the boundary element
method, which reformulates the Maxwell’s equations as a set of integral
equations defined only on the surface of the scattering object and gives
rise to a system of linear equations. Consider a perfectly conducting
object Ω with boundary Γ (see Figure 1), illuminated by an incident
plane wave ( ~Einc, ~Hinc) of angular frequency ω = ck = 2πc/λ, where
we denote by c the speed of light, k is the wavenumber and λ = c/f
is the wavelength (f is the frequency). The scattering problem in the
unbounded region Ωe may be described in the frequency domain by
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Figure 1. The standard electromagnetic scattering problem,
considered in our study.

the following variational formulation: find the surface current ~j such
that for all tangential test functions ~j t, we have

∫

Γ

∫

Γ
G(|y − x|)

(
~j(x) ·~j t(y)− 1

k2
divΓ

~j(x) · divΓ
~j t(y)

)
dxdy

=
i

kZ0

∫

Γ

~Einc(x) ·~j t(x)dx. (1)

In Eq. (1), known as Electric Field Integral Equation (or shortly

EFIE), we denote by G(|y − x|) =
eik|y−x|

4π|y − x| the Green’s function and

by Z0 =
√

µ0/ε0 the characteristic impedance of vacuum (ε is the
electric permittivity and µ the magnetic permeability).

Equation (1) is not the only possible integral formulation for this
problem. For closed targets, the Magnetic Field Integral Equation
(MFIE) can be used, which reads

∫

Γ

(
~Rext j ∧ ~ν

)
·~j t +

1
2

∫

Γ

~j ·~j t = −
∫

Γ

(
~Hinc ∧ ~ν

)
·~j t.

The operator ~Rextj is defined as

~Rext j(y) =
∫

Γ

~gradyG(|y − x|) ∧~j(x)dx,

and is evaluated in the domain exterior to the object. Both the EFIE
and MFIE formulations suffer from interior resonances which make
the numerical solution more problematic at resonant frequencies. The
numerical instabilities due to resonance problems can be solved by
combining linearly EFIE and MFIE. The resulting integral equation
is known as Combined Field Integral Equation (CFIE) and it may be
considered the formulation of choice for modelling closed targets.

On discretizing Eq. (1) in space by using the Method of Moments
(MoM) over a mesh containing n edges, the surface current ~j is
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expanded into a set of basis functions {~ϕi}1≤i≤n with compact support
(the Rao-Wilton-Glisson basis [34], is a popular choice), and then
the integral equation is applied to a set of tangential test functions
~j t. Selecting ~j t = ~ϕj , we are led to compute the set of coefficients
{λi}1≤i≤n such that

∑

1≤i≤n

λi

[∫

Γ

∫

Γ
G(|y−x|)

(
~ϕi(x)·~ϕj(x)− 1

k2
divΓ~ϕi(x)·divΓ~ϕj(y)

)
dxdy

]

=
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(x)dx, (2)

for each 1 ≤ i ≤ n. System (2) can be recast in matrix form as

Aλ = b, (3)

where A = [Aij ] and b = [bi] have elements, respectively,

Aij =
∫

Γ

∫

Γ
G (|y−x|)

(
~ϕi(x)·~ϕj(y)− 1

k2
divΓ~ϕi(x)·divΓ~ϕj(y)

)
dxdy,

bj =
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(y)dx.

Each unknown {λi} is associated with the vectorial flux across
the ith edge in the mesh. Vector b varies with the frequency and
the direction of the illuminating wave. Matrix A is dense complex
symmetric non-Hermitian, and has size n × n for metallic bodies and
2n× 2n for dielectric bodies (in this case, at each node are associated
one electric and one magnetic current). Notice that the number
of edges n increases linearly with the geometry of the object and
quadratically with the frequency of the illuminating radiation, leading
to very large dense systems to be solved at high frequency. We like to
remark that nowadays MoM-based solvers are very popular techniques
in Electromagnetics, see e.g., [15, 28, 29, 38, 41] for some recent studies.

Direct methods, based on variants of the Gaussian elimination
algorithm, can solve system (3) in O (n2) storage and O (n3) floating-
point operations. They are feasible to use only for solving small size
linear systems, even when parallel platforms are considered. On the
other hand, iterative methods may solve the bottlenecks of memory
of direct methods by exploiting the structure of A both in the search
of a good preconditioner and in the matrix-vector (M-V) multiply.
Krylov subspace methods solve system (3) in α · Niter · O (M-V)
flops, where α is a constant which depends on the implementation
of the specific iterative algorithm, Niter is the number of iterations
to attain convergence to a given user-defined accuracy, and O (M-
V) is the number of operations required for one M-V product. In
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recent years, a significant amount of work has been devoted to design
fast parallel algorithms that can reduce the O (n2) computational
complexity for the M-V product with boundary element equations, like
the Fast Multipole Method (FMM) by V. Rokhlin [35], the H-matrix
approach by W. Hackbush [25], the Adaptive Cross Approximation
by M. Bebendorf [4], and other approaches. Since the pioneering
work by Rokhlin and his co-authors, the Fast Multipole Algorithm
continues to receive considerable attention in Electromagnetics, see
e.g., [20, 21, 31, 32, 39].

Two-level implementations of FMM have O (n3/2) complexity,
which reduces to O (n4/3) using three levels, and to O (n log n) in the
multilevel implementation of the Multilevel Fast Multipole Algorithm
(MLFMA). The number of iterations of Krylov methods may vary
significantly depending on the choice of the integral formulation as
well as on the characteristics of the geometry and of the materials. For
closed targets, the CFIE formulation typically converges in O (n0.25)
iterations. The EFIE formulation is more tough to solve; the condition
number of the pertinent linear system may grow like the square
root of the size of the scatterer in terms of the wavelength, and
linearly with the number of points per wavelength [14]. On EFIE,
the number of iterations of Krylov subspace methods scale as O (n0.5)
and preconditioning is crucial to accelerate the convergence.

In this paper, we address preconditioning techniques for this
problem class. We analyse the recently developed class of inverse-
based multilevel incomplete LU (ILU) factorization algorithms [5],
and we apply them to the solution of dense complex symmetric
non-Hermitian linear systems arising from the boundary element
discretization of Maxwell’s equations in exterior domains. After
describing shortly, in Section 2, earlier work on preconditioning for
boundary integral equations, in Section 3 we present the inverse-based
multilevel incomplete LU factorization. In Section 4, we report on
our experiments of realistic radar-cross section calculations, also in
comparison to other popular methods used for this problem class.

2. PRECONDITIONING BOUNDARY INTEGRAL
EQUATIONS

The construction of robust and economic preconditioners for system (3)
may be challenging. Operator-dependent techniques, which attempt
to use information from the underlying physical problem (see
e.g., [3, 8, 40]), may be optimal in some sense for one integral
equation but there is little guarantee that one method working well
for one problem, works well for another. Algebraic methods use
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only information contained in the coefficient matrix of the linear
system; they may be far from optimal for any problem, but they
can be applied to different operators and geometries by tuning a few
parameters [9, 24, 33], and they can be adapted from existing numerical
software.

In our study, we follow a purely algebraic approach. We consider
splitting the discretized operator A in the form A = S + B, where
S is a sparse matrix retaining the most relevant contributions to the
singular integrals in Eq. (3), and is easy to invert, while B can be dense.
For Fredholm-type boundary integral equations, if the continuous
operator S underlying S is bounded and the operator B underlying
B is compact, then S−1B is compact and

S−1 (S + B) = I + S−1B
so that we may expect that the preconditioned system (I + S−1B)x =
S−1b has a good clusterization of eigenvalues close to one (see
e.g., [13, pp. 182–185]). The local matrix S may be computed
by dropping the small entries of A below a threshold or, when all
the entries of A are not available, by using information from the
physical mesh. The fast exponential decay of the discrete Green’s
function induces strong local coupling amongst the currents in the
mesh, so that retaining two or three levels of neighbours per grid
node may suffice to compute a good sparse approximation S to A.
Comparative experiments revealed that pattern selection strategies
based on matrix- and mesh-based approaches can both provide very
good approximations for moderately low sparsity ratio, between 1%
and 2% [10].

The mesh-based approach is to be preferred in combination
with multipole techniques, in particular with MLFMA. Multipole
algorithms partition the object into small cubes, whose length is a
fraction of the wavelength of the incident radiation. From a linear
algebra point of view, they yield a matrix decomposition of the form

A = Adiag + Anear + Afar, (4)

where Adiag is the exact sparse block diagonal part of matrix A, which
is associated with interactions of basis functions belonging to the same
cube, Anear is the exact sparse block near-diagonal part of A, associated
with interactions within one level of neighboring cubes (they are 8 in
2D and 26 in 3D), and Afar is the approximate far-field part of A. In
a multipole setting, the matrix Adiag + Anear is a suitable choice for
S [11].

Sparse preconditioners approximately factorize or invert S.
Clearly, they may maintain the O (n log n) memory and algorithmic
cost of the multipole method. However, the compact support of S
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allows exchanges only of the near-field mesh information. This means
that on some applications it may be necessary to introduce some
mechanism in the construction of the preconditioner to recover the
far-field information from the discrete Green’s function, enhancing the
solver scalability. As these mechanisms always require the inversion
of the near-field matrix at some stage of the iterative solution (see
e.g., [11, 24, 30]), in this study we consider efficient matrix solvers for
S.

2.1. Earlier Work

Many techniques that have proved successful for the field of partial
differential equations, have been adopted for integral equations.
However, while there may be general lessons to be learned from results
in other areas, it is still not clear which solution technology is better to
use. In recent years, considerable interest have received methods that
compute a sparse approximate inverse M of the coefficient matrix by
minimizing the quantity, for A = S,

‖I −AM‖2
F =

n∑

j=1

‖ej −Am•j‖2
2, (5)

where ej is the jth canonical unit vector, m•j is the column vector
representing the jth column of M , see e.g., [11, 24, 33]. In the case of
left preconditioning, because S is symmetric, the analogous relation

‖I −MA‖2
F = ‖I −AMT ‖2

F =
n∑

j=1

‖ej −Amj•‖2
2 (6)

may be used, where mj• is the column vector representing the jth row
of M . The sparse approximate inverse, referred to as SPAI, can be
applied at each step of an iterative solver by performing a sparse M-V
product.

Owing to the decay of the discrete Green’s function, the inverse of
A has a very similar structure to A with many small entries far from
the diagonal, as it is visible in Figure 2 for the case of a sphere. The
discrete Green’s function can be considered as a row or as a column
of the exact inverse depicted on the physical computational grid. A
good pattern for the approximate inverse is the nonzero pattern of a
sparse approximation to A (see Figure 2(a)), which corresponds to the
pattern of the near-field multipole matrix in the multipole context. The
pattern can be computed and applied in advance, before calculating
the entries of M .

On the other hand, disappointing results are reported with
factorized approximate inverses for this problem class. From Figure 3,
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(a) (b)

Figure 2. Structure of A (on the left) and A−1 (on the right) after
scaling the matrix and discarding all the entries of relative magnitude
smaller than 5.0×10−2. The test problem is a small sphere. (a) Pattern
of the large entries of A. (b) Pattern of the large entries of A−1.
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Figure 3. Sparsity patterns of the inverse factor L−1 of A after
dropping all the entries of relative magnitude smaller than 5.0× 10−2.
The test problem is a small sphere.

we see that the inverse factors of A can be totally unstructured and any
dropping strategy, either computed in advance or dynamically updated
during the construction of M , may be very difficult to tune as it can
easily discard relevant information and potentially lead to a very poor
preconditioner.

Due to indefineteness of the coefficient matrix, the important class
of standard incomplete LU (ILU) factorization may fail because of the
presence of small pivots and/or may produce ill-conditioned L and
U factors [10, 30]. For the CFIE formulation, ILU preconditioners
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proved to be effective. Selecting the nonzero pattern of the lower/upper
triangular part of S for the factors may deliver rates of convergence
comparable to a complete LU factorization, and decidedly faster than
the block Jacobi preconditioners [30]. On the EFIE formulation, the
factors L and U are often ill-conditioned and the triangular solves are
unstable. By shifting the eigenvalues of the coefficient matrix along
the imaginary axis may sometimes help to compute a more stable
preconditioner. However, the shift is not easy to tune a priori and
its effect on the convergence is difficult to predict [10]. Pivoting may
yield better results [30]; in this case, the ith row of the triangular
factor is computed as long as permtol · |sij | > |sii|, where permtol
is the permutation tolerance and sij are the entries of S. However,
pivoting may completely destroy the system symmetry.

3. INVERSE-BASED MULTILEVEL ILU
FACTORIZATION PRECONDITIONER

In this study, we investigate symmetric multilevel preconditioners
based on an incomplete LDLT factorization for solving system (3).
Following [5, 7], we initially rescale and reorder the initial matrix A = S
as

P T DADP = Â (7)

which yields Âx̂ = b̂ for appropriate x̂, b̂. Since the given system
matrix A is assumed to be complex symmetric, we employ symmetric
maximum weight matchings [17, 18] by default prior to any fill-reducing
ordering. i.e., using symmetric maximum weight matchings we first
rescale A such that Ã = DAD has entries |ãij | ≤ 1 whilst |ãi,πi | =
|ãπi,i| = 1 for a suitable permutation π. Following [18] one can easily
construct a permutation matrix P0 such that the entries ãi,πi , ãπi,i are
at least located in the tridiagonal part of P T

0 DAD P0 having many
2× 2 blocks (

aii ai,i+1

ai+1,i ai+1,i+1

)

such that |ai,i+1|=|ai+1,i| = 1, 1 × 1 blocks aii such that |aii| = 1,
while in exceptional cases also 1 × 1 blocks with aii = 0 may occur.
For details we refer to [18]. This typically improves the block diagonal
dominance of the system significantly. After preprocessing A such that
P0DADP0 consists of an improved block diagonal part, a symmetric
reordering is applied to reduce the fill-in bandwidth. The symmetric
reordering is applied to the compressed graph of P0DADP0, i.e., block
rows and block columns associated with a 2× 2 block are replaced by
a single row and column having the union of the block column/row
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pattern as nonzero pattern. This leads to a block-structure-preserving
permutation P1 and the total reordered system is P T DADP , where
P = P0P1. We point out that these scalings and reorderings maintain
the symmetry of A. Next, an inverse-based ILU with static block
diagonal pivoting is computed where the block diagonal pivots are
either 1 × 1 or 2 × 2 pivots depending on which of the two choices
yields more block diagonal dominance. More precisely, during the
approximate incomplete factorization Â ≈ LDLT such that L is unit
lower triangular and D is block diagonal, the norm ‖L−1‖ is estimated
and if at factorization step l a prescribed bound is exceeded, the current
row l and column l are permuted to the lower right end of the matrix.
Otherwise the approximate factorization is continued. One single pass
leads to an approximate partial factorization

ΠT ÂΠ =
(

B ET

E C

)
≈

(
LB 0
LE I

)(
DB 0
0 SC

)(
LT

B LT
E

0 I

)

≡ L1D1L
T
1 , (8)

with a suitable leading block B and a suitable permutation matrix,
where ‖L−1‖ ≤ κ. The remaining system SC approximates C −
EB−1ET and from the relations

{
Bx̂1 + ET x̂2 = b̂1

Ex̂1 + Cx̂2 = b̂2

⇒




x̂1 = B−1
(
b̂1 −ET x̂2

)

(
C − EB−1ET

)
x̂2 = b̂2 − EB−1b̂1

,

at each step of an iterative solver we need to store and invert
only blocks with B and SC ≈ C − EB−1ET while for reasons of
memory efficiency, LE is discarded and implicitly represented via
LE ≈ EU−1

B D−1
B . When the scaling, preordering and the factorization

is successively applied to SC , a multilevel variant of (7) is computed.
After a one additional level we obtain

P̃ T D̃AD̃P̃ =




B ET
1 ET

2

E1 C11 CT
21

E2 C21 C22




≈




LB 0 0

LE1 I 0

LE2 LC21 I







DB 0 0

0 DC11 0

0 0 S22







LB LT
E1

LT
E2

0 I LT
C21

0 0 I


 .

The multilevel algorithm ends at some step m when either SC is
factored completely or it becomes considerably dense and switches
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to a dense LAPACK solver [2]. We also like to point out that
intermediate Schur complements SC can be discarded as soon as the
Schur complement matrix S22 of the next level is computed. After
computing an m-step ILU decomposition, for preconditioning we have
to apply L−1

m AL−T
m . From the error equation Em = A−LmDmLT

m, we
see that ‖L−1

m ‖ contributes to the inverse error L−1
m EmL−T

m . Monitoring
the growth of this quantity during the partial factorization is essential
to preserve the numerical stability of the solver. Furthermore, at
least for real symmetric matrices, eigenvalue inclusion bounds for the
eigenvalues near the origin of SC and A can be shown [7]. It can
be shown that eigenvalues µ of SC near zero are bounded by their
counterparts λ of A and κ2λ. This in turn means that eigenvalues with
small modulus are inherited by SC , at least when dropping is avoided.
An important feature of the algorithm is that it preserves explicitly
the symmetry of the coefficient matrix, enabling in this case the use
of symmetric Krylov methods such as the simplified QMR method for
complex symmetric matrices [22].

4. EXPERIMENTS

In our experiments, we selected linear systems arising from radar-cross-
section (RCS) calculation of realistic targets, modelled using the EFIE
formulation, that is Eq. (1). As discussed in Section 1, the pertinent
systems are dense complex symmetric non-Hermitian. The advantages
of this formulation are numerous. In particular, it does not require any
hypothesis on the geometry of the object, which makes it the model
of choice for solving problems with cavities. We should nevertheless
mention that, for closed geometries, also the CFIE can be used. The
pertinent linear systems typically have a more favourable eigenvalue
distribution, and can be solved efficiently by, e.g., the block Jacobi
or the additive Schwarz preconditioners. Because the linear systems
arising from the CFIE model are not challenging from a linear algebra
point of view, we do not consider them further in this study.

We show the characteristics of the test cases in Table 1. The
selected problems are representative of realistic RCS calculations in
industry. Although not very large in absolute sense, their solution
demanded considerable resources on our computers. Storing the
coefficient matrix of the linear system for the Airbus A318 problem
required approximately 18 GB of RAM. The solution of larger problems
would necessitate the use of multipole techniques for the M-V products
and a parallel implementation of the multilevel ILU algorithm, which
are beyond the scope of this paper and will be subject of future analysis.
In our study, we carried out dense M-V products at each iteration using
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the LAPACK library [2]. We declared convergence if the initial residual
was reduced by 12 orders of magnitude within 3000 iterations. All
the experiments were run on one node of the Millipede cluster facility
located at University of Groningen. Each node features 12 Opteron
2.6GHz cores and 24 GB of physical RAM. The codes are compiled in
Fortran using the gfortran compiler version 9.

We computed the preconditioner from a sparse approximation
matrix S to the dense coefficient matrix A, as described in Section 2.
The matrix S was extracted from A by selecting the p largest entries
per row in A. We chose a value for the parameter p that returns a
number of nonzeros in S approximately equal to that of the multipole
operator for the same problem. For the multilevel ILU method, we used
the algorithmic implementation available in the ILUPACK package [6]
developed by the second author. In all our experiments, we used four
level of recursive factorization, we prescribed the bounds ‖L−1

1 ‖ ≤ 100,
‖U−1

1 ‖ ≤ 100 for the inverse factors, and we set t = 10−2 for the
threshold parameter that is applied for dropping the small entries in
the triangular factors. On the tough aircraft problem, we had to use
t = 10−3 to achieve convergence.

We combined the inverse-based multilevel incomplete LU
factorization with three Krylov methods, that are the restarted
GMRES method [37], the recently developed CORS method [12] and
the SQMR method [22]. We summarise the relative costs of the
three solvers in Table 3. Restarted GMRES method is virtually
always used for solving non-Hermitian dense linear systems, as it
can significantly reduce the expensive re-orthogonalization costs of
the GMRES algorithm and sometimes result in considerably faster
simulation time [11]. The CORS iterative solver is a non-optimal
Krylov subspace method developed from a variant of the non-
symmetric Lanczos procedure, and is based on cheap three-term vector
recurrences. In the experiments reported in [26], it turned out to be the

Table 1. Characteristics of the model problems.

Ex.
Mesh

description
Size/Memory

(Gb)
Frequency

(MHz)
κ1 (A)

1 Satellite 1699/0.1 57 1 · O(105)
2 Cube 7200/1.7 249 2 · O(105)
3 Open cylinder 6268/1.3 362 1 · O(105)
4 Sphere 12000/4.6 535 6 · O(105)
5 Airbus A318 23676/18.0 800 1 · O(107)
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Table 2. Experiments with inverse-based multilevel ILU precondi-
tioner.

Ex.1 − densi ty (S ) = 1.69% - ordering: metise

prec mem t ime GMRES (50) CORS SQMR

none +3000 +101.99 742 44.99 809 24.14

MILUT( t =10       )−2 6.0 0.47 78 2.74 60 3.36 70 2.37

Ex.2 − densi ty (S ) = 0.47% − ordering: amd

prec mem t ime GMRES (50) CORS SQMR

none − − +3000 +1862.99 1133 1032.76 1453 697.62

MILUT( 4.6 7.81 430 236.57 145 164.69 155 115.66

Ex.3 − densi ty (S ) = 0.57% − ordering: amd

prec mem t ime
GMRES (50) CORS SQMR

none +3000 1361.71 1683 1299.71 1947 698.02

MILUT( 4.2 4.33 926 369.83 176 138.03 168 62.05

Ex.4 − densi ty (S ) = 0.65% − ordering: amd

prec mem t ime
GMRES (50) CORS SQMR

none +3000 +4891.44 809 2570.93 999 1260.70

MILUT( 5.2 64.12 274 461.49 128 469.02 185 472.48

Ex.5 d ensi ty (S ) = 2.73% − ordering: pq

prec mem t ime
GMRES (50) CORS SQMR

none +3000 +15278.08 +3000 +27287.82 +3000 +13723.47
MILUT( 6.8 753.50 98 906.59 69 802.67 70 480.46

− −

− −

− −

− −

its time

its time

its time

its time its timeits time

its time its time

its time

its time its time its time

its time its time its time

−

t =10       )−2

t =10       )−2

t =10       )−2

t =10       )−3

fastest non-optimal Krylov solver for this problem class. The SQMR
method is also developed upon short-term vector recurrences like
CORS, but in addition it can exploit the symmetry of the coefficient
matrix A, provided a symmetric preconditioner is used. Indeed the
inverse-based multilevel ILU method preserves symmetry, provided the
given matrix is exactly symmetric. Furthermore, in this case only one
of the factors L and U is computed and symmetry is fully exploited, i.e.,
the preconditioner is equivalent to some kind of multilevel incomplete
Cholesky decomposition. The problem of having an indefinite system
is resolved using symmetric maximum weight matchings and pivots of
size 1× 1, 2× 2.

The results of Table 2 show that the proposed preconditioner
was very effective to reduce the number of iterations of all the three
Krylov solvers, and highlight the good performance of the SQMR
method. In our runs, SQMR was competitive with GMRES for large
restarts and was always faster than CORS. Exploiting the symmetry
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Table 3. Algorithmic cost and memory expenses of the
implementation of Krylov algorithms that are used for the experiments.
We denote by n the problem size and by i the iteration number.

Solver Type
Products

by A

Products

by AH
Memory

CORS non-Hermitian 2 − matrix + 14n

GMRES ” 1 − matrix + (i + 5)n

SQMR complex symmetric 1 − matrix + 10n

2
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Figure 4. Convergence histories on (a) example 4 and (b) example 5.

of the linear system not only enabled us to halve memory costs in
the factorization, but also enhanced the iterative solution. The result
on the Airbus aircraft is remarkable: the three solvers converged in
less than one hundred iterations and the computation of a moderately
sparse factorization took around ten minutes on one core. We were
not able to achieve a comparable result with any other algebraic
preconditioner that we tested. In our experiments, we selected a very
low tolerance for the residual reduction in the stopping criterion, that
is 10−12. In practical electromagnetics calculations, a tolerance of
O (10−3) may enable the correct reconstruction of the RCS of realistic
aircrafts [11]. We can see from the convergence plots depicted in
Figure 4, that in our run this level of residual reduction could be
obtained after only few iterations of SQMR.

In combination with the multilevel ILU preconditioner, we tested
the performance of different orderings available in ILUPACK [6],
that are Approximate Minimum Degree (amd) [1], Metis Multilevel
Nested Dissection by nodes (metisn) and edges (metise) [27], Reverse
Cuthill-McKee (rcm) [16], Minimum Degree (mmd) [23], and the
nonsymmetric ddPQ (pq) [36] orderings. Indeed we observed some
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Table 4. Experiments with different orderings for the multilevel ILU
factorization preconditioner.

ordering Ex.1 Ex.2 Ex.3
mem its mem its mem its

amd 6.0 132 4.6 155 4.2 168
mmd 5.6 213 4.4 158 4.1 178
rcm 7.2 69 4.1 175 4.6 168

metisn 6.2 163 3.7 170 3.9 167
metise 6.0 70 3.8 189 4.0 167

pq 6.0 132 4.6 155 4.2 168

minor difference of performance, and these are shown in Table 4, but
they were problem-dependent. We cannot draw a sound conclusion on
the best ordering for this problem class; in Table 2, we report the best
results for each geometry.

In Table 5, we compare the multilevel ILU factorization
preconditioner with the SPAI method, which computes the matrix
M that minimizes, for A = S, ‖I − MA‖F (or ‖I − AM‖F for
right preconditioning) subject to certain sparsity constraints. We
imposed on M the sparse pattern of S. For fair comparison, in
these experiments we set the maximum number of nonzeros in the
triangular factors approximately equal to the density of S. In addition
to the original SPAI algorithm with prescribed pattern, we consider
a symmetric variant that computes only the lower triangular part of
M , including the diagonal, and reflects the calculated nonzeros with
respect to the diagonal. More precisely, in the computation of the
kth column of the preconditioner, the entries mik for i < k are set
to mki that are already available and only the lower diagonal entries
are computed. The entries mki are then used to update the right-
hand sides of the least-squares problems which involve the remaining
unknowns mik, for k ≥ i. The least-squares problems are as follows:

min
∥∥∥ẽj − Âm̃•j

∥∥∥
2

2
(9)

where êj = ej −
∑

k<j â•kmkj , m̃ = {mkj}k≥j and Â = A(•, k), for
all k < j. We refer to this preconditioner as MSym-SPAI in Table 5.
The preconditioner built using this approach only computes (m+n)/2
nonzeros where we denote by m the number of nonzeros entries in
S. However, it does not any more minimize any Frobenius norm. We
notice again the remarkable robustness of the ILU preconditioner, that
was much cheaper to construct compared to SPAI and delivered good
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Table 5. Comparative results with the SPAI preconditioner. The
parameter p denotes the maximum number of nonzeros computed
in each column of the triangular factors L, U and of the SPAI
preconditioner.

Ex . p
MILUT (  , p)

+

SQMR

SPAI
+

GMRES

MSym SPAI
+

SQMR

Setup It

1 50 0.23 213 5.97 28.36 366 9.25 26.43 809 18.41

2 60 1.47 248 104.59 627.46 760 346.36 754.22 370 158.58

3 60 1.54 1586 627.45 705.45 2315 802.00 645.82 +3000 1050.24

-

It CPUSetup It CPUSetup CPU

10       −2

Table 6. Experiments with shifted incomplete Cholesky algorithm
with level of fill IC (`).

Satellite
level-of-fill density shift = 0 shift = 0.001 shift = 0.1

0 3.968 2295 2765 1592
1 14.809 1294 1764 +3000
2 28.567 62 64 270

cube7200
level-of-fill density shift = 0 shift = 0.001 shift = 0.1

0 0.928 +3000 +3000 +3000
1 2.348 777 826 1050
2 4.127 637 637 1014

CYLINDER
level-of-fill density shift = 0 shift = 0.001 shift = 0.1

0 1.114 +3000 +3000 +3000
1 3.152 +3000 +3000 +3000
2 5.141 +3000 +3000 +3000

rates of convergence except on example 3, which is tough and needed
more nonzeros in the preconditioners.

In our experiments, the multilevel ILU algorithm was decidedly
more robust than other one-level ILU factorization algorithms.
In Table 6, we show experiments with an incomplete Cholesky
factorization with sparsity pattern based on levels of fill, denoted as
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(a) (b)

Figure 5. Sparsity patterns of S and of the multilevel ILU
preconditioner (using four levels) for the satellite problem. (a) Pattern
of S. (b) Pattern of ILU.

IC (`). We also attempted to overcome the possible ill-conditioning
of the triangular factors computed by IC (`) by applying, before
computing the factorization, a complex diagonal matrix perturbation
to S. More specifically, we used

Sτ = S + iτh∆r, (10)

where ∆r = diag(Re(A)) = diag(Re(S)), and τ stands for a
nonnegative real parameter, while

h = n−
1
d with d = 3 (the space dimension). (11)

The intention is to move the eigenvalues of the preconditioned system
along the imaginary axis and thus avoid a possible eigenvalue cluster
close to zero. In Table 6, we report the number of SQMR iterations
for different values of shift τ and various level of fill-in `. In our set of
problems, standard one-level algorithms were not competitive against
the multilevel ILUPACK solver. Finally, in Figure 5 we display for
the satellite problem the sparsity patterns of S and of the triangular
factors computed by the ILUPACK preconditioner; we clearly see that
the two patterns do not resemble very much, differently from the case
of SPAI.

5. SOME CONCLUSIONS

We have shown by numerical experiments that the recently developed
class of inverse-based multilevel incomplete LU factorization methods
can effectively precondition highly indefinite boundary element
matrices arising in electromagnetic scattering applications. They
produce well-conditioned factorizations, have moderate construction
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cost, are simple to combine with multipole techniques, and can
exploit any symmetry of the integral formulation enabling the use of
fast convergent symmetric Krylov methods. The multilevel nature
of these algorithms has good potential for parallelism and offers a
favourable trade-off between memory costs and performance for this
problem class. Some algebraic preconditioners are nonsymmetric by
construction and cannot be natively used with symmetric Krylov
methods. And even in the case a symmetric preconditioner is available,
due to round-off errors the multipole operator may sometimes loose the
theoretical symmetry of the system [19]. However, if your matrix is
exactly (complex), using a robust symmetric preconditioner may give
a significant improvement in both performance and cost.
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