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Abstract—A fast and efficient multi-dimensional adaptive sampling
method (ASM) based on Stoer-Bulirsch (S-B) algorithm for frequency
selective surface (FSS) analysis and design is presented in this
paper. The multivariate rational function is established according to
the functional relation of the scattering parameters with frequency
and direction of incident wave, medium parameters and geometry
dimensions of FSS structure, et al.. In order to evaluate the values
of the multivariate rational function fully automatically without
determining the coefficients of the targeted rational interpolant, the
one-dimensional S-B algorithm is expanded into multidimensional
method. The sampling points in each dimension are chosen at the areas
of maximum error in an adaptive way. The recursive interpolation
results of one dimension are used as the initial values of next dimension
in the recursive tabular until nth-dimensional recursive interpolation is
accomplished. The initial values of recursive algorithm are calculated
by spectral domain method of moments (MoM) at every sample
point. The current distribution of FSS cell is predicted by Rao-
Wilton-Glisson (RWG) subdomain basis functions which are applicable
for arbitrarily shape elements. Four examples, including FSS with
the eight-legged, cross and ring elements and FSS radome enclosed
antennas, are considered to demonstrate the feasibility of applying
the multi-dimensional ASM to analysis and optimal design of FSS.
Numerical results show that the proposed method is superior in
computation efficiency compared to the direct MoM. Good agreement
between the proposed technique and the direct MoM is observed.
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1. INTRODUCTION

The FSS which consists of a periodic array have been the subject
of extensive studies [1–9] in recent years owing to its capability of
spatial filters in widespread application. The classic examples of these
applications are radar antennas radome in stealth technology and
subreflector in multiband communication. Therefore, more attention
has been paid to numerical method to the treatment of FSS and the
angular stability, complex structure of FSS [1, 2]. Among various
numerical methods, the most popular technique [3] is the MoM. The
RWG subdomain basis function [4] has been used for arbitrary shape
geometry of FSS cell [5], in which the RWG basis function is uniform
discretization which limits the flexibility of modeling the complex
geometry.

When the structure of FSS is large relative to wavelengths of
interest, the direct MoM often results in large matrices that can be very
time-consuming to solve. It is more preferred to employ an iterative
procedure, e.g., the conjugate gradient method (CGM) [5] or multilevel
fast multiple algorithm (MFMA) [6]. With the increasing complexity of
applications and design of FSS, it is often needed to do the calculations
at finer increment to obtain an accurate representation of the response
over a broad frequency or incident angle range [7]. There is a strong
desire to find approximate solution techniques to eliminate repetition
computation. One effective method is using the rational function to
interpolate the required data by model-based functions.

Various methods have been proposed to establish appropriate
rational function. The asymptotic waveform evaluation (AWE)
technique has been used in various electromagnetic problems [10]. It
is found to be superior in terms of the CPU time to obtain frequency
response. But the accuracy is limited by the radius of convergence
and the high derivatives of the dense impedance matrix must be
storied that will result in consuming great memory. The Maehly
approximation which is efficient without increasing any memory and
computing time, has already successfully used in the scattering analysis
of arbitrarily shaped objects [11] and FSS [12] over a broad frequency
band. However, the numerical error is always caused with the large
number of samples because of the resultant ill-conditioned coefficient
matrix whose inverse is inevitable to determine the coefficient of
rational function. The general S-B algorithm is employed in adaptive
frequency sampling scheme (S-B AFS) for analyzing the scattering
characteristic of a general microwave circuit [13] and FSS [14] over
a broad bandwidth. The S-B AFS is a recursive tabular method
and requires no matrix inversion. Therefore, it can process a large
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number of sampling data without suffering from singularity problems
and effectively estimates the orders of the required rational function.
The S-B AFS greatly simplifies the traditional AFS process, but it
is only applicable to frequency response. Only a few multivariate
sampling algorithms have been published. For multidimensional cases
Lehmensiek and Meyer used a Thiele-type branched continued fraction
for microwave circuits [15]. The multidimensional parameterized
analytical models which cover whole parameter and frequency space
for general planar microwave structures are presented in [16]. In [17],
Peik et al. extend the one-dimensional Cauchy method for frequency-
response interpolation to a multidimensional Cauchy interpolation,
with respect to both frequency and physical dimensions.

In this paper, the S-B AFS algorithm is expanded into
multivariate adaptive sampling method to analyze the electromagnetic
characteristics of FSS for multi-dimensional parameter space. The
current distribution of FSS cell is predicted by RWG basis functions
for arbitrarily shape elements. In conjunction with MoM, the multi-
dimensional interpolation starts with low-order interpolant. The
technique systematically increases the order by optimally choosing
new sampling points of each dimension in the areas of highest
error. The algorithm converges until the desired accuracy is reached.
Sufficient required knowledge has been acquired for rational function
interpolation. Employment of adaptive sampling schemes reduces the
required number of samples without oversampling the interpolation
space. Using the interpolation results of one dimension as the
initial values of next dimension, the final interpolation value of
the multivariate rational function can be obtained. The model
of multivariate rational function covers the whole parameter and
frequency space and can easily be used for analysis and optimization
purposes.

2. MODEL AND MOM ANLAYSIS OF FSS

An infinite array of perfectly conducting patches with periodicities Tx

and Ty in the x, y directions, respectively, resides between lth and
(l+1)th (l = 0, 1, . . . , L) plane dielectric slab. The FSS is illuminated
by a plane incidence from the direction of (θi, ϕi), as shown in Fig. 1.

The induced current on the perfectly conduct is expanded using
the RWG basis functions. The electric filed integral equation
(EFIE) [18] can be discretized into the following linear equation by
using MoM. Through application of Galerkin’s technique, the EFIE is
reduced to a matrix equation

[Zmn] · [In] = [Vm] (n,m = 1, 2, . . . N) (1)
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Figure 1. The FSS illuminated by a plane incident wave.

where In is unknown coefficient, the elements are expressed as

Zmn = f̃∗xmG̃xxf̃∗xn + f̃∗xmG̃xyf̃
∗
yn + f̃∗ymG̃yxf̃∗xn + f̃∗ymG̃yyf̃

∗
yn (2)

Vm = Einc
x f̃∗xm + Einc

y f̃∗ym (3)

where Einc and ˜̄G represent the incident filed and the pertinent dyadic
Green’s function [18] in the spectral domain, respectively. f̃ denotes
the Fourier transforms of RWG basis functions. Referring to [19], it
can be represented as
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ẑ · Ln × k

2
j1

(
k · Ln

2

)}
(4)

where, Ln = rn+1 − rn, r = xx̂ + yŷ, k = kxx̂ + kyŷ, A± is the area
of triangle T±, l is the length of common edge, * denotes the complex
conjugate.

Once Eq. (1) is solved, the scattering parameters of FSS can
be found rather easily. The reflection coefficients of TE and TM
polarization are represented as

STE =
j
(
kyqE

+
x − kxpE

+
y

)
(
k2

xp + k2
yq

) (5)

STM =

(
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+
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+
y

)
(
k2

xp + k2
yq

)
γpq/ωε

(6)

where kxp, kyq and γpq are the Flouqet wavenumber in the x, y and
z directions. E+ is a sum of the reflection fields of the incident
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wave through the dielectric structures with all the conducting screens
removed and the scattered fields radiated by the conducting screens.
More details of the derivation can refer to [18].

3. THEORY OF ADAPTIVE SAMPLING METHOD

The scattering parameters of FSS are related with some variables, for
instance the direction of incidence (θi, ϕi), the incident frequency (f)
and the parameters of structure (such as geometry dimensions of FSS
or the thickness of dielectric slab). These factors can be expressed
as vectors Π = (x1, x2, . . . , xn) in n-dimensional parameters space
and the relationship with scattering parameters can be expressed as a
rational function S (x1, x2, . . . , xn). Let x1 to be f , it is easy to obtain
frequency response S (x1). If x1 and x2 are θi and ϕi, respectively, it
is easy to obtain incident angle response S (x1, x2). For traditional
MoM, Eq. (1) is required to solve at every finer increment over a
broad range. In order to eliminate repetitive computation, the ASM
is proposed. Using rational function as interpolation function yields
an accurate representation of response with no matrix inversion for
unknown coefficients of rational function.

3.1. One-dimensional ASM

For one-dimensional case, a rational function can be defined as [13]

S(x0) =
a0 + a1x0 + . . . + aµxµ

0

b0 + b1x0 + · · ·+ bνxν
0

(7)

where µ and ν are orders of numerator and denominator polynomials.
a and b are unknown coefficients which can be obtained by solving a
set of linear equations from µ + ν + 2 samples.

To avoid coefficients matrix inversion, the S-B algorithm of
Neville-type [20] is used. The S-B algorithm performs the interpolation
on tabular chart in a recurrence manner, as shown in Fig. 2. The value
of scattering parameters Si0 (x0i) calculated by the MoM form Eqs. (5)
or (6) at sample x0i is used as the initializing value of the first column
in tabular chart. The three different recurrent rules is provided by the
S-B algorithm as

Sj,k =
(x0 − x0,j)Sj+1,k−1 + (x0,j+k − x0)Sj,k−1

x0,j+k − x0,j
(8)

Sj,k =
x0,j+k − x0,j

x0 − x0,j

Sj+1,k−1
+

x0,j+k − x0

Sj,k−1

(9)
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Figure 2. The tabular chart of the S-B algorithm.

Sj,k = Sj+1,k−2 +
x0,j+k − x0,j

x0 − x0,j

Sj+1,k−1 - Sj+1,k−2
+

x0,j+k − x0

Sj,k−1 - Sj+1,k−2

(10)

By using a distinct combination of the above three recursive rules
in association with a step sequence, an analytical function implemented
along a path establishes a rational function model. Based on the
recursive rules, the algorithm is organized as follow.

The results recursively calculated corresponding to paths I–III
in [13] are defined as three approximate rational function models
S1 (x), S2 (x) and S3 (x). Select S1 (x) and S2 (x) as rational function
models. Find the sampling point at the areas of highest error
(max |S1(x) − S2(x)|). When this error is larger than a given error
tolerance, the sampling point is added into the sampling collection.
Then select S2 (x) and S3 (x) as rational function models and choose
the sampling point at the areas of highest error (max |S2(x)− S3(x)|).
When this error is larger than a given error tolerance, the sampling
point is added into the sampling collection. Do the cycle until the
convergence error satisfies a termination criterion.

For more details, refer to [13]. The difference between the rational
function value SASM from interpolation and the actual sampling value
SMOM from the MoM defines as the convergence error ε

ε = |SASM − SMoM|/|SMoM| (11)

3.2. Muti-dimensional ASM

The multi-dimensional rational function is in the form

S(x1, x2, . . . , xn) =

a0 +
M∑

j=1
aj

(
n∏

i=1
x

µi(j)
i

)

b0 +
D∑

j=1
bj

(
n∏

i=1
x

υi(j)
i

) (12)
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where µi (j) and υi (j) are integer functions of j, represent orders
of parameters xi in numerator and denominator polynomials,
respectively. a and b are unknown coefficients. M + D + 2 samples
are required to determine the coefficients of Eq. (12). Once the
Eq. (12) is solved, the response S (x1, x2, . . . , xn) can be obtained.
The one-dimensional ASM as described in Section 3.1 is extended to a
multidimensional ASM to avoid coefficients matrix inversion.

3.2.1. Selecting Sampling Points in an Adaptive Way

Let [xmin
i , xmax

i ] denotes the calculating rang of the ith-dimensional
parameter. Ψi and Φi express the set of testing points and the
set of sampling points separately in the ith-dimensional parameter
space. The testing points xtest

it (t = 0, 1, . . . , Ti) scatter in all range
of [xmin

i , xmax
i ] with sufficiently fine space. The sampling points must

completely fill grid of points which do not have to be equidistant. Ki

is the number of sampling points in Φi. xik is the sampling point in
Φi (k = 0, 1, . . . , Ki − 1). The process starts with Ki = 2, xi0 = xmin

i ,
xi1 = xmax

i (i = 1, 2, . . . , n). The complete flowchart of the algorithm
is given in Fig. 3. More detail of algorithm implementation as follow.

Step 1: Initialize nth-dimensional parameter space Φj and Ψj (j =
1, 2, . . . , n) and set i = 1;

Step 2: Implement one-dimensional ASM with constant xs (s 6= i)
parallel to the xi-axes;

Step 3: Find the point at which maximum of error occurs εmax (xtest
it );

i
x

s
x

YES

NO NO

YES

i)(max

test

it
x

)(max

test

it
x

test

it
x

ε

ε ε< Φ

stop

Figure 3. Float chart of multi-dimensional ASM.
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Step 4: By a given error tolerance ε, if εmax (xtest
it ) < ε, the process

switches to step 6; otherwise, calculate the value of scattering
parameters SMoM (xtest

it ) at xtest
it with constant xs (s 6= i) by the

MoM , and add point xtest
it and SMoM (xtest

it ) to Φi; set Ki = Ki+1,
i = i + 1;

Step 5: if i > n, set i = 1 and go back to step 2; otherwise, go back
to step 2 to find the next sample;

Step 6: Sufficient samples have been acquired for interpolation and all
samples have fallen on the grid; Ki is the total number of samples
in each dimensional parameter space.

3.2.2. N-dimension Recursive Interpolation Method

S (x∗1, x∗2, . . . x∗n) is the goal to interpolate the rational function value
at an arbitrary located point (x∗1, x∗2, . . . x∗n). The algorithm is divided
as following steps.
Step 1: The samples selected in Section 3.2.1 and the value of

scattering parameters calculated by the MoM at these samples
are employed as initializing values of interpolation and set i = 1;

Step 2: By using the recursive method, implement one-dimensional
interpolation at x∗i with constant xs (s > i) parallel to the xi-axes,
as shown dashed lines in Fig. 4 for two-dimensional parameter
space, and then obtain the transition points S (x∗1, x2, . . . , xn)
required for interpolation; set i = i + 1;

Step 3: The transition points of the last interpolation step used as
initializing values of the next interpolation step; implement one-
dimensional interpolation at x∗i with constant xs (s > i) parallel
to the xi-axes, and then obtain the new transition points required
for the next interpolation; set i = i + 1;

Step 4: Go back to step 3 until i = n; implement one-dimensional
interpolation at x∗n parallel to the xn-axes, as shown doted lines in
Fig. 4 for two-dimensional parameter space, then the target point
S (x∗1, x∗2, . . . x∗n) can be finally got.

4. NUMERICAL RESULTS

To test the accuracy and efficiency of proposed method, the cases of
the patch-type eight-legged element FSS, the patch-type cross element
FSS and the aperture-type ring element FSS, as shown in Fig. 5, are
considered. The multi-dimensional ASM is also applied in calculating
the pattern and power transmission of FSS radome enclosed antennas.
In the following example, ε is set −80 dB.
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Figure 5. Geometry of FSS cell. (a) Patch-type cross cell.
(b) Aperture-type ring cell.

4.1. The Patch-type Eight-legged Element FSS

The eight-legged array is investigated as the first example and the
testing frequency band is from 0.2 GHz to 19 GHz, with incident angle
θi = 0◦, ϕi = 0◦. The structure is described in Fig. 6 of [8]. The
geometric parameters of dielectric, as shown in Fig. 1, are L = 1,
l = 0, εr1 = 4.33, h1 = 1.6 mm. The eight-legged element is discretized
with 78 triangles resulting in 93 current unknown coefficients. Fig. 6
shows the comparison of the transmission coefficients between the
direct MoM, one-dimensional ASM and experimental results given
by [8]. Excellent agreement between the results of direct MoM, one-
dimensional ASM and results in Ref. [8] has been achieved. The direct
MoM responses are smoothed with 188 sampling points of equal space,
whereas the responses of the ASM are interpolated by a single rational
function obtained only by 27 MoM simulation samples. The CPU time
to obtain accurate results is 1.2 CPU hours for direct MoM calculation
and 0.3 CPU hours for ASM calculation, respectively.
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Figure 6. Frequency response of the eight-legged array.

4.2. The Patch-type Cross Element FSS

The reflection characteristic of the cross patch array, as shown in
Fig. 5(a), is investigated under 21 GHz TE-polarization incident wave
with incident angle changing. The testing ranges of θi and ϕi are from
1◦ to 81◦ and from 0◦ to 45◦, respectively. The geometric parameters
are presented as follow: Ld = 6 mm, Lw = 1mm, Tx = Ty = 8mm,
L = 3, l = 0, εr1 = εr3 = 3, εr2 = 1, h1 = h3 = 0.2mm, h2 = 10 mm.
The induced current on the conductor of FSS cell is expended by 64
RWG basic functions. Fig. 7 shows the comparison of the reflection
coefficients between the direct MoM and the multi-dimensional ASM
at ϕi = 6◦, 16◦ and 36◦. As seen, the model of ASM simulation is
in very good agreement with the MoM simulated result. The direct
MoM responses are smoothed with 80 × 40 sampling points of equal
space, whereas 31× 17 sampling points are chosen in interpolation by
the multi-dimensional ASM. It has to perform a simulation requiring
17 CPU hours by direct MoM. The proposed method computes the
same information in less than 3 CPU hours.

The behavior of error convergence of the one-dimensional ASM
modeling for the eight-legged array and the multi-dimensional ASM
modeling for the cross patch array are given in Fig. 8. With the
increase of the number of samples, two approximate models are close
to the desired curves as much as expected, hence, the convergence of
ASM is guaranteed.

4.3. The Aperture-type Ring Element FSS

A bivariate model was determined with ASM for the reflection
characteristic of the aperture-type ring array as a function of the
average radius (r) of ring and the thickness (h1) of dielectric slab,



Progress In Electromagnetics Research B, Vol. 41, 2012 223

(a) (b)

Figure 7. Reflection coefficient of the cross patch array as a function
of incident angle. (a) Magnitude of reflection coefficient. (b) Phase of
reflection coefficient.

(a) (b)

Figure 8. Convergence error. (a) One-dimensional ASM for the eight-
legged array. (b) Two-dimensional ASM for the cross patch array.

as shown in Fig. 9. The geometric parameters of FSS cell, as shown in
Fig. 5(b), are wr = 0.3mm, Tx = Ty = 7.24 mm. The geometric
parameters of dielectric are L = 1, l = 0, εr1 = 4. The FSS
is illuminated by an 11 GHz normal incident wave. The model is
determined for the average radius r ∈ [2.2, 3.2] and the thickness of
dielectric slab h1 ∈ [6, 10] (unite: mm), which define the interpolation
space. At initialization, the 202 equispaced grid points are chosen as
testing points. Finally, the 82 sampling points are chosen and it costs
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Figure 9. Reflection coefficient
of the ring array as a function of
h1 and r.

Figure 10. Model of FSS
radome.

0.4 hours to calculate accurate results. Obtaining the same information
by direct MoM, it requires 15 hours to perform a simulation.

4.4. The FSS Radome

The FSS Radome in design is a periodic array with aperture-type
ring element mounted on a parabolic cylindrical surface, as shown
in Fig. 10. The FSS cells are arranged periodically along the cross-
sectional generatrix and y-axes, respectively. The cross section of FSS
radome is parabola, which can be expressed as x2 = −a(z − hz).
hz is the distance from top of radome to the origin of coordinates
along z-axes. Ly is defined as the length of radome along y-axes.
The parameters of radome are a = 12λ, hz = 12λ, Ly = 36λ. λ
is wavelength in free space. The rectangular aperture antenna with
uniform distribution is selected and laid on the origin of coordinates.

4.4.1. Optimal Geometric Parameters Design of FSS

Using the model in Section 4.3, the geometric parameters r and h1 of
aperture-type ring element FSS have been optimized by particle swarm
optimization with respect to the minimum magnitude of reflection
coefficient at 11 GHz. The permittivity of dielectric slab is 4 and
the tangent loss is 0.01. After 13 iterations, the optimization process
is accomplished with the results of r = 3mm, h1 = 6.68 mm. The
frequency response of the optimized FSS is shown in Fig. 11 and
compared with the response of different r and h1 with const h1 and
r, respectively. The multi-dimensional ASM solves the problem within
0.4 CPU hours. If using the direct MoM, the design of FSS geometric
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(a) (b)

Figure 11. Frequency response of FSS (a) with const h1 = 6.68mm,
(b) with const r = 3mm.

parameters would cost much more effort for repeated computation on
a very fine increment.

4.4.2. Pattern and Power Transmission of FSS Radome

The pattern of the radome enclosed antenna is evaluated by calculating
the reaction between the field propagating through the selective
radome and the equivalent currents on the antenna aperture. In the
computation of the transmitted field, the curved frequency selective
structure is replaced by the locally planar one which is tangent at
the incidence point. The ASM is applied to efficiently derive the
transmission coefficients of FSS under different incident angles, which
is similar to the description in Section 4.2. The high-order Floquet
modes of FSS effect have been ignored throughout.

The aperture-type ring element FSS, as selected in Section 4.4.1,
is applied in FSS radome, which contains 132× 135 ring cells. Fig. 12
shows that the radiation of the antenna is simulated individually when
the FSS radome is presented or not. The scan angle of the antenna is
assumed to be 0◦. The operating frequency is 11 GHz. The transmitted
field of curved FSS is evaluated separately by direct MoM and the
ASM. Fig. 13 gives a quantitative description to present the relative
error of the transmitted field at different locations of FSS radome
obtained by the direct MoM and by the ASM, respectively. It is easy
to found that a great agreement have archived. The maximum relative
error for TE- and TM-polarization are below 0.2% and 0.8%, and the
mean square deviations are 0.02% and 0.037%, which can satisfy the
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(a) (b)

Figure 12. Pattern of FSS radome enclosed antenna. (a) E-plane.
(b) H-plane. The pattern of antenna without radomes is also plotted
for reference.
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Figure 13. Relative error of the transmitted field obtained by the
multi-dimensional ASM. (a) TE-polarization. (b) TM-polarization.

engineering demand. It requires 111.9 CPU hours for direct MoM
simulation, whereas it only needs less than 0.8 CPU hours to compute
the same information by the ASM. It seems that the ASM can save
over 90% of extra computation effort.

The computation time for the direct MoM simulation of FSS
radome is related to the number of FSS cells on the radome. However,
during the ASM process, the cost of evaluating one interpolation grows
in proportion to the number of sampling points in each dimension, i.e.,

O (
n∏

i=1
Ki) and have nothing to do with the number of FSS cells. There
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Figure 14. Power transmission of FSS radome.

are thousands of FSS cells on the radome for engineering project. Some
performance of large FSS radome, such as the frequency response,
scan angle of antennas and radar scattering cross section, should be
considered that is unfeasible by the direct MoM. Fig. 14 gives the
behavior of the power transmission of FSS radome from 8 GHz to
14GHz through applying the ASM. At frequency 11 GHz, which is in
the pass-band of the FSS radome, the maximum power transmission
is archived 89%. It is verified that the FSS radome in design has a
desired band-pass response and is prospectively useful for out-of-band
RCS control. It costs 10.6 CPU hours by the ASM to obtain frequency
response of FSS radome. Theoretically, it will require 1678.5 CPU
hours for direct MoM simulation.

5. CONCLUSIONS

A fast adaptive sampling method to build multivariate rational
function model for analysis and design of FSS is proposed. Since
the proposed approach is based on the S-B algorithm which provides
a great flexibility to construct various models of rational functions,
the required model of rational function can be derived in an adaptive
manner with the rapid convergence. Using the proposed approach, the
response of FSS as function of incident frequency, incident direction
and geometry dimensions of FSS can be modeled by one rational
function with quite less number of sampling points of MoM calculation.
The algorithm can be applicable in a very broad rang and does not
require any a priori knowledge of FSS.

Various models were built for FSS with different shape elements
and FSS radome to verify the propose approach. The results
using multi-dimensional ASM compare very well to electromagnetic
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simulation by the direct MoM. The proposed method offers tremendous
computational savings in terms of CPU time that makes it possible
to analyze and design FSS with arbitrary element more efficiently,
especially for the large FSS radome in engineering project.
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