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Abstract—Simultaneous exposure to multiple electromagnetic signals
with widely differing carrier frequencies is a reality of daily life,
but its possible effects on health are unknown. In this study, we
exposed rats to non-thermal levels of 900 and 2450 MHz TEM-mode
radiation, applied individually or simultaneously, and we obtained
estimates of 1g mean SAR (specific absorption rate) in various
tissues using a numerical model of the rat and finite-difference time-
domain software. The experimental system comprised a GTEM
(gigahertz TEM) chamber connected to two vector signal generators,
a signal mixer and amplifier, a directional coupler, a spectrum
analyzer and a power meter. Tissue sections from rats sacrificed
24h after exposure, and from negative controls and positive controls
exposed to gamma radiation, were stained with haematoxylin-eosin
for evaluation of general cell morphology and with DAPI (4’, 6-
diamidino-2-phenylindole) for evaluation of apoptosis. Lesions, tissue
destruction and apoptosis were only observed in positive controls. The
results for rats exposed to either frequency, or to both simultaneously,
were similar to those of unexposed negative controls. It remains to
determine whether chronic exposure is similarly innocuous.
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1. INTRODUCTION

Electromagnetic (EM) fields are a vital part of our daily lives. The
presence of various kinds of antenna in towns and cities, including cell
phone antennas, exposes the majority of the population to radiation
of multiple frequencies, especially radio frequencies (RF). In spite of
this, there has been very little research on the biological effects of
simultaneous EM signals. In particular, legal limits on the specific
absorption rate (SAR) associated with exposure to multiple signals [1]
have not been based on experimental evidence, and there is accordingly
significant uncertainty regarding the effectiveness of these limits.

The few studies there have been in this area have not clearly
identified potential health risks related to multiple RF exposure: no
relationship has been established between multifrequency exposure
and cellular alterations in embryos during gestation [2], alteration of
testicular function [3], toxic or carcinogenic effects [4,5], or chronic
symptoms such as headaches or sleep alterations in adults [6] and
children [7]. Nevertheless, the paucity of information on the possible
bio-effects of multiple RF signals contrasts with the concern of the
general public and of various governmental entities [8,9].

In this study, we aimed 1) to develop an experimental system for
simultaneous exposure of small animals to multiple RF signals; 2) to
obtain SAR estimates for various tissues of rats exposed in the system
to simultaneous signals at the frequencies habitually used by wireless
communication systems, 900 and 2450 MHz; 3) to observe the state
and apoptosis status of those tissues in the experimentally exposed
rats; and 4) to examine possible correlation between tissue damage
and SAR-based absorption estimates. SAR estimates were obtained
by finite-difference time-domain (FDTD) calculations using SEMCAD
commercial software [10] with a numerical phantom (model) of the rat.

2. MATERIAL AND METHODS

2.1. Animals

The animals used in this study were adult male Sprague-Dawley rats
weighing 230-250g. They were housed in individual cages, with free
access to food and water, in an environment maintained at 22°C and
subjected to a 12 : 12h light /dark regime. All experiments were carried
out in accordance with European regulations on animal protection
(Directive 86/609), the Declaration of Helsinki and/or the Guide for
the Care and Use of Laboratory Animals, as adopted and promulgated
by the US National Institutes of Health (NIH Publication No. 85-
23, revised 1996). All experimental protocols were approved by the
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Institutional Animal Care and Use Committee of the University of
Santiago de Compostela.

2.2. Experimental Setup, and Calculation of SARs
2.2.1. The Experimental Radiation System

Figure 1 shows the experimental setup. Two vector signal generators,
VSG1 and VSG2, generate pure sinusoidal signals of 2450 and
900 MHz, respectively, at the required power levels. Their outputs
are combined in a signal mixer (SM), and the signal is then passed
through an amplifier (AMP) and a directional coupler (DC) before
entering the 125 x 65 x 35cm GTEM radiation chamber [11], where
the rat (R), immobilized in a plexiglass holder (RH), is positioned in
the region of maximum field uniformity (approximately 15 x 15 x 8 cm
for a maximum variation of 3dB) [12]. Despite this position, since the
EM wave hits the rat broadside (with E perpendicular and H parallel
to its midline), its right side is to some degree shielded by its left side.

The DC enables measurement of incident power values (FPin)
by the power meter (PM) and of reflected power (Prgr) by the
spectrum analyser (SA); the SA also enables observation of the wave
configuration in the chamber and hence verification of spectral purity.
An isotropic probe (IP) is used to map the field in the ratless
chamber, which serves not only to identify the optimal position of
the rat, but also to calibrate input power and the parameters of the
simulations used for SAR estimation. It is preferable to use these
measurements rather than the field formula recommended by the
chamber manufacturer [12] because the latter, E = \/ZyPrr/(h*()
(where h is the height of the septum at the position of the rat,
Prr = PN — Prir, Zo = 50 [Q] is the GTEM input impedance, and ¢
is a ripple-dependent coefficient that is taken equal to 2 [12]), fails to
take into account the presence of more than one frequency.

2.2.2. Simulations

The SAR values were estimated by the FDTD method [13, 14] using
the simulation software package SEMCAD X [6] and a numerical
model of a 198.3 gram Sprague-Dawley rat (model R8 [10]) that
had been assembled from 1.15mm magnetic resonance sections and
distinguished among 60 different tissues. Simulated plane waves were
generated to reproduce the measured field. Simulations at 900 MHz
used 2.5 million volumetric cells and took 20 minutes on a desktop
PC with a 3.2GHz i7 Intel Core processor, 16 GB of RAM and an
Nvidia Tesla C1060 accelerator card, while simulations at 2450 MHz
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Figure 1. Schematic of the system. GTEM, Schaffner 250 GTEM
chamber; VSG1, Agilent E8267D vector signal generator (250 KHz—
20 GHz) operating at 2.45 GHz; VSG2, Agilent E4438C vector signal
generator (250 KHz—4 GHz) operating at 900 MHz; AMP, research
amplifier 1551G3 (0.8-3 GHz); DC, NARDA 3282B-30 directional
coupler (800-4000MHz); SA, Agilent E4407B spectrum analyzer
(9KHz-26.5 GHz); PM, Agilent E4418B power meter; SM, Agilent
11636% signal mixer; RH, rat holder; IP, EF Cube isotropic probe;
R, rat.

used 20.3 million volumetric cells and took 35 minutes. SAR values
were obtained as peak 1g averages in the tissue of interest, as per
IEEE-1529. SARs for simultaneous irradiation with 900 and 2450 MHz
signals were calculated as the average of the separate 900 and 2450 MHz
SARs.

To obtain SAR estimates for the experimental rats, the values
obtained for the numerical phantom were adjusted assuming uniform
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inverse dependence on total body weight:
SARE = SARg x Wg/Wg (1)

where SARE is the estimate for an experimental rat of weight Wg [g],
SARg is the SAR obtained for the phantom in the simulation, and
Wgs = 198.3 [g] is the weight of the phantom.

2.3. Experimental Design

A total of 30 rats divided in three groups of 10 were individually
exposed to radiation in the GTEM chamber.

— Group 1: Irradiation at 900 MHz (Prg = 2W).
— Group 2: Irradiation at 2450 MHz (Prg = 2W).

— Group 3: Simultaneous irradiation at 900 MHz (Prg = 1 W)
and 2450 MHz (PTR =1 W)

In addition, two control groups were included in the study:

— Group 4 comprised 10 rats that were not irradiated (negative
controls);

— Group 5 comprised 6 rats that were exposed to a full-body,
2 Gy dose of gamma radiation for 5 minutes and were slaughtered
6 hours later (positive controls).

All animals of groups 1-4 were immobilised in the rat holder for 1 h
(see Fig. 1), during which time the rats in groups 1-3 were individually
irradiated. Immobilized group 4 animals were placed in the GTEM
chamber but were not irradiated. Rats of groups 1-4 were slaughtered
24 h after removal from the GTEM chamber.

Haematoxylin-eosin-stained rat tissue sections prepared as
described below were examined under a conventional microscope at
40X and 100X magnifications for evaluation of the general organization
and cell morphology of the tissue in question. Sections stained with
DAPI (4’, 6-diamidino-2-phenylindole dihydrochloride) were examined
under a fluorescence microscope for evaluation of nuclear morphology.
In both cases the sections were evaluated by a researcher who was blind
to their group of origin.

2.4. Tissue Extraction and Preparation

After radiation, the rats rested for 24 hours and were then slaughtered
by intra-peritoneal injection of sodium pentothal (to diminish stress
levels) followed by an overdose of ethyl ether and immediate perfusion
via the ascending aorta with paraformaldehyde at 4°C. The cerebral
cortex, cerebellum, pituitary gland, tongue, trapezoid muscle, thymus,
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interscapular fat and a testicle were then extracted and immersed in
fixative solution (10% formaldehyde in phosphate buffer). Tissues were
prepared for microscopy using standard techniques, as follows.

After 4 hours in fixative solution, tissues were dehydrated for
embedding in paraffin by transfer to para-formaldehyde, refrigeration
at 4°C for 24 hours, transfer to 70° alcohol for 2 hours and then to
fresh 70° alcohol, stirring for 12 hours, and then successive transfer
to 90° alcohol for 2 hours, to fresh 90° alcohol for 2 hours, to 100°
alcohol for 2 hours, and to fresh 100° alcohol for 1 hour. After clearing
in toluene for 12 hours, the tissues were then embedded by three
successive immersions in paraffin wax.

The embedded tissues were cut in 5 pm sections with a microtome,
and the sections were mounted on microscope slides and dried in an
oven at 37° for at least 24 hours.

General tissue organization and cell morphology were examined in
sections stained with haematoxylin-eosin as follows. The sections were
deparrafinated by heating in an oven at 60° for 30 minutes, and then
transferred successively to xylol (2x5min), 100° alcohol (2x5min), 96°
alcohol (2 x 5min), 70° alcohol (1 x 5min), and distilled water. They
were then transferred to haematoxylin solution for 10 min, washed
under running tap water for 10min, and finally transferred to eosin
solution for 5 min before redehydration by passage through 90° alcohol
(2 x 1min), 100° alcohol (2 x 1min) and xylol (2 x 5min). They
were then mounted, covered and code-labelled pending microscopic
examination.

For examination of nuclear morphology, sections were deparaf-
finated and rehydrated as described in the previous paragraph,
transferred for 15min to a 0.8mg/ml solution of 4’, 6-diamidino-
2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich) in phosphate-
buffered saline (PBS), and then washed several times in PBS before
being mounted, covered and code-labelled for microscopic examination.

3. RESULTS

3.1. SAR Estimates

The optimal position of rats in the GTEM chamber was found to be
where the height of the septum above the chamber floor was 0.215m.
Figs. 2, 3 and 4 show maps of 1g average SAR in the numerical rat
phantom for radiation at respectively 900 MHz, 2450 MHz, and both
frequencies simultaneously. Asymmetry due to the shielding of the
rat’s right side by its left side adds to that resulting from asymmetric
distribution of organs.
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Figure 2. Distribution of 1g average SAR in vertical and horizontal
sections of the numerical rat phantom when radiated at 900 MHz
(Prr = 2W). SAR is expressed relative to absorption of the entire
local power density in the absence of the rat.
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Figure 3. Distribution of 1g average SAR in vertical and horizontal
sections of the numerical rat phantom when radiated at 2450 MHz
(Prr = 2W). SAR is expressed relative to absorption of the entire
local power density in the absence of the rat.

Table 1 lists the experimental conditions, weights and estimated
whole-body peak SAR values obtained for the various experimental

groups, and Table 2 the estimated peak SAR values for individual
tissues.

3.2. Histopathological Results
3.2.1. Haematoxylin-eosin-stained Sections

Figure 5 shows details of typical haematoxylin-eosin-stained sections
of the eight types of tissue examined. In all cases, the evident damage
caused by gamma radiation in group 5 contrasts with the absence or
near-absence of any pathological signs in tissues from the other groups.

— In groups 1-4 the cerebral cortex, cerebellum and pituitary
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Figure 4. Distribution of 1g average SAR in vertical and horizontal
sections of the numerical rat phantom when radiated simultaneously
with 900 MHz (Prg = 1W) and 2450 MHz (Prg = 2W). SAR is
expressed relative to absorption of the entire local power density in
the absence of the rat.

gland showed at most faint traces of haemorrhage (isolated red
blood cells), with no increase in dark neurons or visible signs of
apoptosis. By contrast, sections from group 5 showed significant
haemorrhage, an increase in dark neurons and, in neurons of the
cerebral cortex, intracytoplasmic aggregates. Signs of apoptosis
and neuron destruction in these tissues in group 5 included the
decreased size of the nuclei of pituitary neurons and smaller
numbers of Purkinje cells in the cerebellum.

The tongues of group 5 animals showed signs of lesions that
included haemorrhage and microphages in the submucosal layer,
a decrease in the thickness of the epithelium, and an increase in
the number of apoptotic nuclei. Animals of groups 1-4 showed
no visible signs of cell lesion, haemorrhage or apoptosis in either
mucous or muscle layers.

The interscapular fat of groups 1-4 exhibited the typical hexagonal
morphology of adipocytes in different phases of development,
along with undifferentiated fatty tissue cells. In group 5,
adipocytes had lost their hexagonal morphology and shrunk,
there were fewer early-phase adipocytes, and haemorrhage was
abundant.

In the trapezoid muscle tissue of groups 1-3 the nuclei retained
their morphology, presented no signs of cellular destruction or
haemorrhage, and were in all other respects likewise histologically
similar to that of group 4, in sharp contrast to the cell
destruction, abundant haemorrhage, morphological changes and
nuclear disaggregation of group 5 muscle tissue.
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Table 1. Experimental conditions,

a

549

weights, and estimated whole-

body peak 1g average SARs of the experimental groups subjected to

RF radiation.

f P E w SARg
TR m E
[W/kg]
[MHz] (W] [V/m] (]
(Whole-body)
Min.
0.1587
182.9
Max. 0.1898
GROUP 1 900 2 475 218.8 '
Mean
0.1718
198.7
Min.
0.0601
198.1
Max.
074
GROUP 2| 2450 2 40.2 243.7 0-0740
Mean
0.0683
224.7
Min.
0.0879
153.4
Max. 0.1755
GROUP 3[90042450| 141 34.4 306.3 '
M
ean 0.1322
230.8

¢ f, frequency; Prr, transmitted power (see Subsubection 2.2.1); E,,, measured

r.m.s. electrical field strength.

— In groups 1-4 the external morphology of the thymic cortex

and medulla was normal, as were the lymphocyte populations
and Hassall’s corpuscles. Reticulo-endothelial cells were few
(most abundant in group 3), and isolated non-active macrophages
appeared sporadically. The thymi of group 5 rats showed
clear signs of haemorrhage in the cortex and medulla, along
with changes in medullary structure consisting in an increase
in connective tissue and decreased cellularity. Group 5 also
exhibited increased auto-immune activity, with abundant, active
macrophages and an increase in reticulo-epithelial cells in all
layers.

Dynamic spermatogenesis in the testicles of group 1-4 animals
was shown by the observation of spermatocytes of different



550

Lépez Furelos et al.

Table 2. Group mean estimated tissue-specific peak 1 g average SARs.

TISSUE GROUP 1 | GROUP 2 | GROUP 3
Cerebral 0.0902 0.0749 0.1009
hemispheres
Pituitary 0.2088 0.2633 0.3139
Cerebellum 0.2152 0.0981 0.1551
Trapezoid muscle 0.1601 0.0654 0.1130
Thymus 0.2880 0.0637 0.1755
Testicle 0.0902 0.2870 0.2165
Interscapular fat 0.0323 0.0195 0.0266
Tongue 0.1215 0.2402 0.1740

developmental stages. Group 5 testicle exhibited more primary
spermatocytes but hardly any advanced spermatids in the
semeniferous conducts, along with decreased spermatogenesis and
an increase in cellular apoptosis and the number of fragmented
nuclei.

3.2.2. DAPI-stained Nuclei

Examination of DAPI-stained tissues at 100X under a fluorescence
microscope showed the following features of nuclear morphology

(Fig. 6).

In cerebral cortex, cerebellum and pituitary gland from animals of
groups 1-4, signs of apoptosis (chromatin condensation or DNA
fragmentation) were rare, appearing in fewer than 3% of cells in
group 3 cerebellum. The neuronal nuclei of animals exposed to
ionizing gamma radiation (group 5) exhibited clustered material.

Apoptosis rates in the tongues of animals radiated with just a
single frequency (groups 1 and 2) were insignificant and similar
to those of non-exposed group 4 animals. Apoptosis was more
frequent in group 3 tongue, but never exceeded 4% (found in
mucous epithelial cells. Animals exposed to gamma radiation
exhibited much higher apoptosis rates.

In groups 1-4 fewer than 4% of interscapular fatty tissue cells were
apoptotic, whereas group 5 levels were much higher.

The trapezoid muscles, thymi and testicles of groups 1-4 showed
few or no signs of apoptosis. By contrast, apoptosis was common
in these tissues in the positive control animals of group 5, as shown
by deformed or fragmented nuclei.
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Figure 5. Tissue sections stained with haematoxylin-eosin, showing
the cerebral cortex (a)—(e), trapezoid muscle (f)—(j), thymus (k)—(o)
and testicular seminiferous ducts (p)—(t) of rats of groups 1-5 (columns
G1-G5, respectively). The tissues of animals exposed to 0.9 GHz
(G1), 2.4GHz (G2) and 0.9 and 2.45 GHz simultaneously (G3) were
similar to those of the non-irradiated negative control group (G4) in
their appearance and the minimal prevalence of signs of lesions. In
photomicrographs of sections from rats exposed to gamma radiation
(G5), arrows or asterisks indicate the presence of dark neurons in
cerebral cortex (e), red blood cells in trapezoid muscle (j), active
macrophages interacting with other cells in thymus (o), and signs of
destruction in the seminiferous ducts (t). 100X.

4. DISCUSSION

In this research, we 1) developed a multi-frequency radiation test
system allowing simultaneous exposure of rats and similarly sized
animals to EM signals of two different frequencies in the 800-2700 MHz
band; 2) obtained SAR values for representative tissues of a standard
rat irradiated at 900 MHz, 2450 MHz and an equipotent combination
of these two frequencies (Prr = 2W), and scaled these SAR values
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Figure 6. Grey-scale photomicrographs of DAPI-stained sections
of the cerebral cortex (a)—(e), lingual mucous membrane (f)—(j) and
testicular seminiferous ducts (k)-(o) of rats of groups 1-5 (columns
G1-G5, respectively). The tissues of animals exposed to 0.9 GHz (G1),
2.45 GHz (G2) and 0.9 and 2.45 GHz simultaneously (G3) had similar
nuclear integrity to those of the non-irradiated negative control group
(G4). In photomicrographs of sections from rats exposed to gamma
radiation (G5), arrows indicate dark neurons typical of pre-apoptotic
states in the cerebral cortex (e), and apoptotic cells in the lingual
mucosa (j) and testicular seminiferous ducts (o). 100x.

for experimental rats; and 3) observed the effects of the two-frequency
signal on the cells of these tissues in comparison with the effects of
the single-frequency signals, gamma radiation, or non-exposure. In
conformity with Spanish [1] and international [8] legislation, and with
the few previous studies of multifrequency exposure, SAR values for
exposure to the mixed signal were calculated as the appropriately
power-weighted average of those of the single-frequency exposures. The
non-detection of biological effects of EM radiation in the experiments
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with rats prevented evaluation of whether this averaging procedure
is really valid, of whether the effects of multifrequency signals, when
they occur, differ in any way from those of the individual component
frequencies, and of whether estimated absorption correlates with
biological effects at the exposure levels employed (our fourth initial
objective). Since different organs are not all equally sensitive to EM
radiation (if only because of their different anatomical locations), we
examined the effects of radiation in eight different tissues.

Since the region of the human body that absorbs most energy
during the use of a cell phone is the head, there has been
extensive research on the effects of non-ionizing radiation of cell
phone frequencies on small mammal head and nervous system tissues.
Authors working at 900 or 2450 MHz have reported that acute
effects in the cerebral cortex and striatum, such as glyosis, neuronal
activation and cell stress, are associated with SARs ranging from brain
averages of 6.0 W /kg to 1-g-average peaks as low as 0.3 W /kg [15-
17]. Alterations in neuronal apoptosis rates or non-caspase-dependent
apoptotic pathways have also been observed after single or repeated
exposure of whole rats or human or animal neuronal cell lines [18-22].
In other studies, however, no biological effects of 0.8-2.0 GHz radiation
on apoptosis have been observed in nervous system tissue [23-25].

The effects of electromagnetic radiation on germ cells and male
fertility have been the subject of numerous studies prompted by
the common practice of carrying a cell phone in a pocket close to
the testicles. In 28-day-old rats, reduced spermatogenesis has been
observed after repeated exposure to 0.9 or 2.45 GHz radiation, together
with decreased numbers of Leydig cells and increased oxidative stress
and apoptosis in testicular tissue [26,27]. Once more, however, the
available information is contradictory, no morphological or biochemical
indications of increased apoptosis [5, 28] or of pre-apoptotic states with
increased caspase activity [29, 30] having been observed in male sexual
cells in other studies after exposure of animals to single or combined
radio frequencies.

Lymphoid organs such as the thymus appear to be particularly
sensitive to EM fields. Immature rats have been found to have
high levels of irreversible oxidative stress after exposure to 900 MHz
radiation [31], and repeated exposure at 42 GHz has been associated
with altered immunogenic response [32]. Thymic involution during
prolonged exposure to 50 Hz radiation [33] is accelerated by continuous
light exposure [34].

Fatty tissue is also sensitive to radio frequencies: adipocyte lysis
has been observed after repeated exposure to 2.4 MHz microwaves [35],
and inflammation and decreased cell counts may be seen at 6 MHz [36].
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Repeated exposure of skeletal muscle to 2.45 GHz radiation has
been found to cause fatigue and a decrease in acetylcholinesterase
activity [37,38], and to reduce muscle volume [39]. Nevertheless, a
relevant review named several in vitro and chronic in vivo studies of
multiple animal tissues that found no increase in cellular apoptosis in
response to exposure to non-thermal 800-3000 MHz RF [40].

Real-world exposure to electromagnetic contamination in public
or private spaces does not usually involve a single frequency, but the
interaction of several radio frequencies [41]. There have been several
reports that non-thermal levels of RF radiation can increase apoptosis
in response to ionizing ultra-violet or gamma radiation [42, 43]. Studies
investigating whether such synergism extends to exposure to multiple
radio frequencies have been few, and their results, like ours, negative,
whether epidemiological [2,3] or experimental [4-7]. In the present
case, the absence of significant effects may have been due in part
to the low specific absorption rates employed (< 0.3 W/kg except in
the pituitary glands of group 3) and the use of just a single exposure
period rather than repeated exposures. The multifrequency radiation
system designed for this study will facilitate the performance of further
experiments aimed at a more complete characterization of biological
effects in animals exposed to multifrequency RF radiation.
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