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Abstract—This paper is devoted to the experimental validation
of two direct near-field-far-field transformations with cylindrical
scanning for elongated antennas requiring a minimum number of
near-field measurements. They rely on the nonredundant sampling
representations of electromagnetic fields and employ two different
source modellings suitable to deal with electrically long antennas.
These transformations allow the accurate reconstruction of the antenna
far-field pattern in any cut plane directly from the collected near-field
data without interpolating them. Their effectiveness is assessed by the
good agreement between the so recovered far-field patterns and those
obtained by means of the classical near-field-far-field transformation
with cylindrical scanning.

1. INTRODUCTION

As well-known, near-field (NF) measurements can be profitably
exploited to reconstruct antenna far-field (FF) patterns by means
of NF-FF transformation techniques [1–5], when FF range size
limitations, transportation and mounting problems make impractical
the measurement of the radiation patterns on a conventional FF range.
Moreover, the NF measurements can be performed in a controlled
environment, as an indoor shielded anechoic chamber, thus overcoming
the drawbacks arising in FF measurements.

The NF-FF transformation with cylindrical scanning [6–14] is
particularly attractive when dealing with antennas that concentrate

Received 2 May 2012, Accepted 30 May 2012, Scheduled 6 June 2012
* Corresponding author: Claudio Gennarelli (gennar@diiie.unisa.it).



236 D’Agostino et al.

the electromagnetic (EM) radiation in an angular region centred on
the horizontal plane, as those employed for radio base stations. In fact,
unlike the planar scannings, it allows the reconstruction of the antenna
complete radiation pattern save for the angular regions nearby the
spherical polar angles, although with a slight increase in the analytical
and computational complexity.

A first attempt to reduce the number of needed NF data (and,
as a consequence, of measurements time) with respect to the classical
transformations [6, 7] has been made in [11] by applying the spatial
bandlimitation properties of the EM fields radiated by finite size
sources [15]. In such a case, the number of data on each ring decreases
moving from the central measurement rings to the peripheral ones, and
the spacing between the rings grows when the cylinder radius increases.
However, such an approach still exhibits the shortcoming that the
overall number of samples becomes unbounded when the height of the
scanning cylinder approaches infinity.

A more significant reduction of the number of required NF
measurements has been achieved in [12–14] by applying the
nonredundant sampling representations of EM fields [16]. According
to these representations, the EM fields radiated by finite size sources
enclosed in a convex domain bounded by a rotational surface Σ and
observed on a surface M having the same rotational symmetry can be
very well approximated by spatially bandlimited functions, provided
that a proper phase factor is singled out from the field (or voltage
acquired by a nondirective probe) and proper parameterizations are
adopted for describing M . It is worth noting that the number of
required samples is finite also for an unbounded observation domain,
independent of it, and essentially coincident with the number of
degrees of freedom of the field [16]. Two different approaches
have been developed in [12–14] to reconstruct the antenna far field
from the nonredundant NF measurements. An approach makes
use of the optimal sampling interpolation (OSI) formulas of central
type [16] to efficiently recover the NF data needed to carry out the
classical cylindrical NF-FF transformations [5, 6] from the collected
nonredundant ones. The other approach allows to reconstruct
the antenna far field in any cut plane directly from the acquired
nonredundant data without interpolating them. In particular, a
spherical modelling of the antenna under test (AUT) has been adopted
in [12], whereas a rounded cylinder, i.e., a cylinder ended in two half
spheres and a prolate ellipsoid have been considered for electrically
long antennas in [13] and [14], respectively. These last two modellings
allow one to further reduce the NF data number when the antenna
geometry departs significantly from the spherical one, as well as to
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consider measurement cylinders with radius smaller than one half the
antenna maximum size with a beneficial mitigation effect on the error
related to the scanning area truncation.

An experimental validation of the interpolation based approach
can be found in [17], whereas the one relevant to the direct approach
when adopting a spherical AUT modelling has been provided in [18],
wherein it is also highlighted the interesting property to eliminate the
characteristic ripple due to the discontinuity of the near field at the
edges of the scanning zone.

The aim of this paper is to provide the experimental validation of
the direct NF-FF transformations with cylindrical scan for electrically
long antennas [13, 14]. The experimental tests have been carried out
at the UNISA Antenna Characterization Lab, where an advanced
cylindrical NF measurement facility supplied by MI Technologies
is available. It must be stressed that, in both the cases, the
sampling arrangements have been properly modified in order to have
a symmetrical distribution of rings with respect to the middle plane.
Moreover, the ideal probe assumption originally made in [13] has been
removed.

2. SAMPLING REPRESENTATION ON A CYLINDER

Let us consider an AUT, enclosed in a convex domain bounded by a
surface Σ with rotational symmetry, a nondirective probe scanning
a cylinder of radius d in the NF region and adopt the spherical
coordinate system (r, ϑ, ϕ) to denote an observation point P . Since,
for such a kind of a probe, the output voltage has the same effective
spatial bandwidth of the AUT field and a cylindrical surface can be
represented by generatrices and rings, in the following we deal with
the voltage representation on an observation curve C characterized
by an analytical parameterization r = r(ξ). According to [16], it is
convenient to introduce the “reduced voltage”

Ṽ (ξ) = V (ξ)ejψ(ξ), (1)
where V (ξ) is the measured probe voltage, ψ(ξ) is a proper phase
function and ξ is an optimal parameter used to describe C. The
bandlimitation error, occurring when Ṽ (ξ) is approximated by a
spatially bandlimited function, becomes negligible as the bandwidth
exceeds a critical valueWξ [16]. In fact, it exhibits a step-like behaviour
whose transition occurs at Wξ [15]. Therefore, such an error can be
effectively controlled by choosing a bandwidth equal to χ′Wξ, where
χ′ > 1 is the bandwidth enlargement factor.

When the observation curve is a generatrix, by adopting Wξ =
β�′/2π (β is the wavenumber and �′ is the length of the curve C ′,
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obtained as intersection between the meridian plane passing through
the point P and Σ), we get:

ψ =
β

2
[
R1 +R2 + s′1 − s′2

]
; ξ =

π

�′
[
R1 −R2 + s′1 + s′2

]
(2)

wherein s′1,2 are the arclength coordinates of the tangency points P1,2

between the cone of vertex at P and C ′.
When C is a ring, ψ is constant and then it can be chosen

coincident with the value relevant to the generatrix passing through P .
Moreover, it is convenient to use the azimuthal angle ϕ as parameter.
The corresponding bandwidth is given [16] by:

Wϕ=
β

2
max
z′

(R+ −R−)

=
β

2
max
z′

(√
(z−z′)2+(d+ρ′(z′))2−

√
(z − z′)2+(d−ρ′(z′))2

)
(3)

wherein ρ′(z′) is the equation of Σ in cylindrical coordinates. By using
the triangular inequality, it can be easily shown that the following
bound for Wϕ holds:

Wϕ ≤ βρmax (4)

ρmax being the maximum transverse radius of Σ.
By taking into account the above results, the voltage at any point

P on the generatrix at ϕ can be evaluated by means of the following
OSI expansion:

Ṽ (ξ(ϑ), ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ξn, ϕ)ΩN (ξ − ξn)DN ′′ (ξ − ξn) (5)

where n0 = Int [(ξ − Δξ/4)/Δξ] is the index of the sample nearest
(on the left) to P , 2q is the number of retained intermediate samples
Ṽ (ξn, ϕ), namely, the reduced voltage values at the intersection points
between the rings and the considered generatrix, and

ξn = nΔξ + Δξ/4; Δξ = 2π
/(

2N ′′ + 1
)

(6)

N ′′ = Int(χ N ′) + 1; N ′ = Int(χ′Wξ) + 1 (7)

χ > 1 is an oversampling factor [16], and Int(x) denotes the integer
part of x. In (5),

DN ′′ (ξ) =
sin [(2N ′′ + 1) ξ/2]
(2N ′′ + 1) sin(ξ/2)

;

ΩN (ξ) =
TN
[
2cos2 (ξ/2)

/
cos2

(
ξ̄/2
)− 1

]
TN
[
2
/
cos2

(
ξ̄/2
)− 1

] (8)
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are the Dirichlet and Tschebyscheff sampling functions [16], TN (·)
being the Tschebyscheff polynomial of degree N = N ′′ − N ′ and
ξ̄ = qΔξ. Note that the shift Δξ/4 in the sampling position allows
to have a symmetrical distribution of rings with respect to z = 0, thus
giving rise to an equal amount of truncation error at both the cylinder
ends.

The intermediate samples Ṽ (ξn, ϕ) can be reconstructed [13, 14]
via an OSI expansion along ϕ, quite similar to (5) and not reported
here for space saving, thus allowing to retrieve the probe voltage at
any point on the scanning cylinder from a nonredundant number of its
samples. It is so possible to recover the NF data needed to carry out
the classical NF-FF transformation with cylindrical scanning [6] or [7].

2.1. The Prolate Ellipsoidal Modelling

An effective modelling for elongated antennas is obtained by choosing
the surface Σ coincident with a prolate ellipsoid having major and
minor semi-axes equal to a and b (see Fig. 1). In such a case, the
bandwidth Wξ, the optimal expressions for the phase factor ψ and
parameterization ξ relevant to a cylinder generatrix become [14, 16]:

Wξ =
4a
λ
E
(
π/2

∣∣ε2 ) ; ξ =
π

2

[
1 +

E
(
sin−1u

∣∣ε2 )
E (π/2 |ε2 )

]
(9)

ψ = βa

[
v

√
v2 − 1
v2 − ε2

− E

(
cos−1

√
1 − ε2

v2 − ε2
∣∣ε2
)]

(10)

where E(·|·) denotes the elliptic integral of second kind, λ is the
wavelength, and u = (r1 − r2)/2f and v = (r1 + r2)/2a are the elliptic
coordinates, r1,2 being the distances from the observation point P to
the foci of the ellipse C ′. Moreover, ε = f/a is the eccentricity of
C ′, 2f being its focal distance. The expression of ξ in (9) is valid
when the angle ϑ belongs to the range [0, π/2]. The case in which ϑ
belongs to [π/2, π] can be easily handled by determining the value ξ′
corresponding to the point specified by the angle π−ϑ and then setting
ξ = π − ξ′. As shown in [16], the curves ψ = const and ξ = const are
ellipses and hyperbolas confocal to C ′. Moreover, the bandwidth Wϕ

is
Wϕ(ξ) = βb sinϑ∞(ξ) (11)

ϑ∞ = sin−1 u + π/2 being the polar angle of the asymptote to the
hyperbola through P .
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Figure 1. Cylindrical scanning:
prolate ellipsoidal modelling.
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Figure 2. Cylindrical scanning:
rounded cylinder modelling.

2.2. The Rounded Cylinder Modelling

An alternative effective modelling for elongated antennas is obtained
by considering them as enclosed in a cylinder of height h′ ended
in two half-spheres of radius a′ (see Figs. 2 and 3). In such a
case, the bandwidth Wξ can be obtained by taking into account that
�′ = 2(h′ + πa′), whereas the optimal expressions for the phase factor
ψ and parameterization ξ relevant to a generatrix can be determined
by substituting in (2) the appropriate values of s′1,2 and R1,2, whose
expressions, as shown in [13], are:

R1,2=
√

(z∓h′/2)2+d2−a′2; s′1 = a′ sin−1

(
a′d+R1 ((h′/2)−z)

R2
1 + a′2

)
(12)

s′2=h′ + a′
[
π − sin−1

(
a′d+R2 ((h′/2) + z)

R2
2 + a′2

)]
(13)

As regards Wϕ, it can be shown [13] that the maximum in (3) is
attained at

z′ =

⎧⎨
⎩

z |z| ≤ h′/2[
h′

2
+

(|z| − h′/2) a′2

d2 + (|z| − h′/2)2

]
sgn(z) |z| > h′/2 (14)

where sgn (.) is the sign function.
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Figure 3. Rounded cylinder modelling: relevant to a cylinder
generatrix.

3. CLASSICAL NF-FF TRANSFORMATION

According to the classical probe compensated NF-FF transformation
with cylindrical scanning [6], the cylindrical wave expansion coefficients
aν and bν of the AUT field are related to: i) the two-dimensional
Fourier transforms I1,2

ν of the voltage acquired by the probe in two
independent sets of measurements (the probe is rotated 90◦ about its
longitudinal axis in the second set); ii) the cylindrical wave expansion
coefficients (cm, dm) and (c′m, d′m) of the field radiated by the probe
and the rotated probe, when used as transmitting antennas. As shown
in [6], it results:

aν (η) =
β2

Λ2Δν (η)

[
I1
ν (η)

∞∑
m=−∞

d′m (−η)H(2)
ν+m (Λd)

−I2
ν (η)

∞∑
m=−∞

dm (−η)H(2)
ν+m (Λd)

]
(15)

bν (η) =
β2

Λ2Δν (η)

[
I2
ν (η)

∞∑
m=−∞

cm (−η)H(2)
ν+m (Λd)

−I1
ν (η)

∞∑
m=−∞

c′m (−η)H(2)
ν+m (Λd)

]
(16)
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Δ ν (η) =
∞∑

m=−∞
cm (−η)H(2)

ν+m (Λd)
∞∑

m=−∞
d′m (−η)H(2)

ν+m (Λd)

−
∞∑

m=−∞
c′m (−η)H(2)

ν+m (Λd)
∞∑

m=−∞
dm (−η)H(2)

ν+m (Λd) (17)

I1,2
ν (η) =

∞∫
−∞

π∫
−π

V 1,2 (ϕ, z) e−jνϕ ejηz dϕdz (18)

where Λ = (β2 − η2)1/2, H(2)
ν (·) is the Hankel function of second kind

and order ν, and V 1, V 2 are the output voltages of the probe and the
rotated probe at the point of cylindrical coordinates (d, ϕ, z).

In the classical approach [6], the fast Fourier transform (FFT) is
employed to evaluate in an efficient way the Fourier transforms (18) of
the probe and rotated probe voltages, and the NF data are collected
on a cylindrical grid wherein the sample spacing Δz between the rings
is smaller than one half a wavelength and the one Δϕ on each of them
is fixed according to the so called minimum cylinder law, i.e.,

Δz ≤ λ/2; Δϕ ≤ π
/
(βρ′) = λ

/
(2ρ′) (19)

ρ′ being the radius of the smallest cylinder enclosing the AUT. In
practice, Δϕ is chosen such that the number of samples Nc on each
ring is the smallest integer, power of two or product of powers of
2, 3 and 5, equal or greater than 2[Int(βρ′) + 10], depending on the
available routine implementing the FFT algorithm. It must be stressed
that the rigorous justification of the minimum cylinder law is a trivial
consequence of (4).

At last, the FF spherical components of the electric field are
determined by means of the following relations:

Eϑ (r, ϑ, ϕ) = Fϑ (ϑ,ϕ)
e−jβr

r

= −j2β
e−jβr

r
sinϑ

∞∑
ν=−∞

jνbν (β cos ϑ) ejνϕ (20)

Eϕ (r, ϑ, ϕ) = Fϕ (ϑ,ϕ)
e−jβr

r

= −2β
e−jβr

r
sinϑ

∞∑
ν=−∞

jνaν (β cos ϑ) ejνϕ (21)

which can be efficiently evaluated via the FFT algorithm.
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4. DIRECT NF-FF TRANSFORMATION

By taking into account (5), we can rewrite the Fourier transforms (18)
in the form:

I1,2
ν (η) =

∑
n∈Nr

∞∫
−∞

π∫
−π

Ṽ 1,2 (ξn, ϕ) DN ′′ (ξ(z) − ξn)

·Q (ξ(z) − ξn) e−jψ(z)e−jνϕejηzdϕ dz (22)

Nr being the indexes set of all considered NF rings and Q = ΩN , if
|ξ(z) − ξn| ≤ qΔξ, or Q = 0, otherwise. It is convenient to express
Ṽ 1,2 as a Fourier series in ϕ, namely,

Ṽ 1,2 (ξn, ϕ) =
M ′∑

k=−M ′
Ṽ 1,2
k (ξn) ejkϕ (23)

where M ′ is the smallest integer, obtained as product of the prime
factors 2, 3, and 5, greater or equal to Int[χ∗Wϕ(ξn)] + 1 and χ∗ =
1 + (χ′ − 1)[sin ϑ(ξn)]−2/3. By substituting (23) in (22), it results:

I1,2
ν (η) =

∑
n∈Nr

Ṽ 1,2
ν (ξn)Gnη (24)

wherein

Gnη = 2π

zf∫
zi

DN ′′ (ξ(z) − ξn)ΩN (ξ(z) − ξn) e−jψ(z)ejηzdz (25)

with zi = z(ξn + qΔξ) and zf = z(ξn − qΔξ).
As shown in [18], the direct NF-FF transformation exhibits the

very interesting feature to eliminate the ripple due to the discontinuity
of the near field at the scanning zone edges. This is due to the
different method adopted to compute I1,2

ν . In fact, in the classical
transformations [6, 7], they are evaluated via FFT by taking into
account only the NF data falling in the scanning zone and, therefore,
the integration over z is truncated to the measurement cylinder height.
Whereas, in the direct NF-FF transformation, according to (25),
the effect of each NF sample is considered in the range [zi, zf ], so
that the peripheral samples affect the evaluation even far from the
scanning area. Thus, this technique intrinsically eliminates the field
discontinuity at the scanning zone edges.

It is worth noting that the Gnη values can be evaluated (once
and for all) for given sets of antennas, since they depend only on the
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measurement cylinder radius and on the geometric parameters of the
AUT modelling.

By summing up, the far field can be evaluated through the
following steps: i) the samples of V 1 and V 2 are multiplied by the
phase factor ejψ and the corresponding Fourier series coefficients
are calculated via FFT; ii) for each required value of ϑ, fixing the
corresponding value of η by the relation η = β cos ϑ, the Gnη values
are computed or read, if pre-calculated. Then, the Fourier transforms
I1,2
ν (η) are determined by performing the summations (24). The

corresponding values of the modal coefficients aν and bν can be
finally obtained. Once they have been calculated, the FF spherical
components of the electric field are determined by evaluating (20) and
(21) via the FFT.

From the efficiency viewpoint, it is convenient to use this method
to evaluate only the FF samples necessary to recover the antenna
pattern via the following far-field OSI expansion using even numbers
of samples along the meridians and parallels [13, 14]:

Fϑ,ϕ(ϑ(ξ), ϕ) =
2N ′′

F−1
2N ′′

F

n0+q∑
n=n0−q+1

{
ΩNF

(ξ−ξn)DN ′′
F−1 (ξ−ξn)2M

′′
n−1

2M ′′
n

·
m0+p∑

m=m0−p+1

Fϑ,ϕ(ξn, ϕm,n)ΩMn
(ϕ− ϕm,n)DM ′′

n−1(ϕ−ϕm,n)
}

(26)

wherein n0 = Int [ξ/Δξ] and m0 = Int [ϕ/Δϕn] are the indexes of the
sample nearest (on the left) to the output point, and

ξn=nΔξ = nπ/N ′′
F ; N ′′

F =2
[
Int(χN ′/2)+1

]
; NF =N ′′

F−N ′(27)

ϕm,n=mΔϕn = mπ/M ′′
n ; M ′′

n = 2i ≥ Int(χM ′
n) + 1;

M ′
n=Int[χ∗Wϕ(ξn)] + 1 (28)

Mn=M ′′
n −M ′

n (29)

Obviously, there is no need to extract the phase factor e−jψ(ξ) from
the FF expression, since it is constant on the FF sphere. The need of
an OSI expansion using an even number of samples along the parallels
is due to the employment of an efficient power of two FFT algorithm
for computing (20) and (21). Whereas, N ′′

F has been chosen according
to (27) in order to have FF samples on the equator.

It is worth noting that, when adopting the rounded cylinder
modelling, the expressions of Wϕ and ξ relevant to the FF
representation are simpler than those valid in the NF region. In fact,
as shown in [13], they become:

Wϕ=Wϕ (ϑ(ξ))=βa′ sin (ϑ(ξ)) ; ξ =
π

�′
[
(1 − cos ϑ)h′ + 2a′ϑ

]
(30)
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At last, it must be pointed out that the direct NF-FF
transformation allows the accurate reconstruction of the antenna far
field in any cut plane at ϕ = constant and not only in those attainable
by computing (20) and (21) via the FFT algorithm.

5. EXPERIMENTAL RESULTS

The experimental validation of the described direct cylindrical NF-
FF transformations has been performed in the anechoic chamber of
the UNISA Antenna Characterization Lab. An open-ended WR90
rectangular waveguide is used as probe and its response has been
collected on a cylinder with d = 19.6 cm and h = 240 cm. The
amplitude and phase measurements are carried out by means of a
vectorial network analyzer. Two antennas have been employed in the
experimental tests, both working at 10 GHz.

The first AUT is a H-plane monopulse antenna, located in the
plane y = 0 and operating in the sum mode. It has been realized
by using two pyramidal horns (8.9 × 6.8 cm) at a distance of 26 cm
(between centers) and a hybrid tee (for its photo see [19]). It has
been modelled as enclosed in a prolate ellipsoid with a = 24 cm and
b = 6 cm.

The direct NF-FF transformation incorporates the probe
characterization, therefore, we have first of all characterized (see the
Appendix of [18]) the employed probe according to [20], as done
in the software package MI-3000 implementing the standard probe
compensated NF-FF transformation [7], and verified that practically
identical results are obtained when the same NF data are transformed
by using the MI package and our so developed version of the probe
compensated NF-FF transformation [6].

In Figs. 4 and 5, the H-plane and E-plane FF patterns
reconstructed by using the direct NF-FF transformation based on
the ellipsoidal AUT modelling are compared with those obtained via
the MI software (reference pattern 1). As can be seen, the H-
plane patterns are practically indistinguishable, whereas very small
differences are present in the E-plane in the zones characterized by
low field levels. They are due to the fact that two different NF data
sets have been used. This can be overcome by retrieving, via a proper
interpolation expansion, the NF data needed by the software package
MI-3000 from the same data used by the nonredundant direct NF-
FF transformation. A better agreement thus results comparing the
reconstructed E-plane with this new FF pattern (reference pattern 2).

The second AUT is an E-plane monopulse antenna, again located
in the plane y = 0 and operating in the sum mode. It has
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Figure 4. H-plane pattern.
Solid line: reference pattern 1.
Crosses: reconstructed via the di-
rect NF-FF transformation using
the prolate ellipsoidal modelling.
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Figure 5. E-plane pattern.
Black solid line: reference pat-
tern 1. Red solid line: reference
pattern 2. Crosses: reconstructed
via the direct NF-FF transforma-
tion using the prolate ellipsoidal
modelling.
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Figure 6. E-plane pattern.
Solid line: reference pattern 1.
Crosses: reconstructed via the di-
rect NF-FF transformation using
the rounded cylinder modelling.
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Figure 7. H-plane pattern.
Black solid line: reference pat-
tern 1. Red solid line: reference
pattern 2. Crosses: reconstructed
via the direct NF-FF transforma-
tion using the rounded cylinder
modelling.

been assembled by using the same horns, whose centers in this case
are distant 26.5 cm, and a hybrid tee. A rounded cylinder with
h′ = 33.3 cm and a′ = 4.95 cm has been now adopted to model it.
Fig. 6 shows the reconstruction in E-plane, whereas Fig. 7 shows
the comparison between the reconstructed H-plane pattern and those
obtained from the directly acquired classical cylindrical data using
the MI software (reference pattern 1) and from the data retrieved via
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interpolation from the nonredundant ones (reference pattern 2). The
same comments as for Figs. 4 and 5 hold. The results in Fig. 6 confirm
the peculiar characteristics of the developed technique to eliminate the
ripple caused by the discontinuity of the near field at the edges of the
scanning surface. This effect is now visible, since the near field level
at the edge of the scanning cylinder is about 20 dB higher than in the
first example.

It is interesting to compare the numbers of NF data used by the
direct NF-FF transformation based on the prolate ellipsoidal modelling
(1638) when considering the former AUT and on the rounded cylinder
one (1422) for the latter, with that (5796) required by the MI software
to perform the transformation for both the antennas.

For what concerns the time needed for the NF data acquisition,
the proposed technique is certainly quicker than the traditional one,
since the number of measurement rings is lower than the one relevant
to the classical technique. Accordingly, by assuming for both the
techniques the same time to acquire the NF data on each ring†, the
measurement times are directly proportional to the numbers of needed
rings. For what concerns the comparison between the different NF-FF
transformation techniques from the computational viewpoint, it can be
found in [12] and stays valid also for the direct transformations in [13]
and [14].

6. CONCLUSION

Two direct nonredundant NF-FF transformations with cylindrical
scanning for electrically long antennas have been experimentally
validated in this paper. They make use of a minimum number of
NF data and are based on two different source modellings (the prolate
ellipsoidal and the rounded cylinder one) particularly suitable to deal
with electrically long antennas, but at the same time quite general.
These transformations allow one to accurately reconstruct the antenna
FF pattern in any cut plane directly from the acquired NF data without
interpolating them and exhibit the interesting property to eliminate the
characteristic ripple due to the discontinuity of the near field at the
edges of the scanning zone. The experimental results, carried out at the
UNISA Antenna Characterization Lab, have proved the effectiveness
and the accuracy of both these techniques. Accordingly, since there is
no practical difference between them from a computational viewpoint,
the choice depends only on the modelling which better fits the actual
AUT geometry.
† The number of NF data on each ring can be significantly lower for the proposed technique
on the peripheral ones.
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