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Abstract—A new design consideration is explored for a hair-pin
resonator. A grounding via at the mid-point of the resonator acts as a
perturbation to split the resonant frequencies. The via also suppresses
even harmonics of the fundamental. The principle operation of the
hair-pin resonator with a via is analyzed and verified by measurement.
It is shown that such a hair-pin resonator can be made more compact
using stepped impedance line. A compact 4-pole bandpass filter using
the modified compact hair-pin resonator with a via is demonstrated.
Simulation and measured results showed good agreement.

1. INTRODUCTION

Many applications, such as mobile stations, require compact and
light weight electronics; compact designs are also important for IC
technology. For RF applications, these have led to the research on
compact RF band pass filters. One way of making such filters is to use
dual mode resonators, since dual mode resonator can replace 2 single
mode resonators.

Many RF filters using distributed elements, such as ring
resonators, also exhibit passband response at harmonics of the
fundamental (centre frequency of the filter). It is sometimes necessary
to suppress some or all harmonic responses. Several papers have been
published on compact filters employing single [1–4] and dual modes [5–
8]. On the other hand, several papers have also been published on
harmonic suppression [9–15]. In [12], the authors combine dual mode
and harmonic suppression. The suppression is quite low; about 9 dB

Received 8 May 2012, Accepted 25 July 2012, Scheduled 30 July 2012
* Corresponding author: Ker Chia Lee (kclee@swinburne.edu.my).



242 Lee et al.

at the first harmonic and about 6 dB at the second harmonic. Other
dual mode resonators [13–15] suppress only the first harmonic, but
the suppression is better. Only [12, 14, 15] illustrate filter design with
harmonic suppression.

The objective of this paper is to report on a hair-pin microstrip
resonator which has a dual mode with suppression of all even harmonics
of the fundamental. The dual mode allows the design of compact
hair-pin resonator filters. The principle of operation and further
size reduction are illustrated by calculated expression, simulation and
measurement. The circuit analysis employed here is an approximate;
the resonator and filter designs have to be fine tuned by simulation.
The expressions from the circuit analysis serve as guidelines for the
variation of the parameters in the simulation. Finally, the simulated
and measured response of a 4-pole filter employing the reduced size
resonator is presented. The simulated and measured results are in
reasonable agreement. The measured results exhibit good suppression
of even harmonics of the fundamental.

2. PRINCIPLE OF OPERATION

A half wavelength microstrip transmission line open circuited at both
ends and bent into a U shape is called a hair-pin resonator. This
resonator can resonate at frequencies at which its length, �, is an integer
multiple of half wavelength, λ, that is at frequency f = nvp/(2�), where
vp is the phase velocity in the microstrip line and n is an integer.

Consider now the mid point A of a lossless hair-pin resonator
excites from two sides as shown in Fig. 1.

 I1                                                 I2  

   V1       Z0          L   Z0      V2 

1                 2 

 λ0/4 λ0/4 

A

(a) (b) (c)

Figure 1. (a) Hair-pin resonator with a via at the centre. λ0 is the
wavelength of the fundamental resonant frequency, f0 of the resonator
without a via. (b) Photograph of the resonator with weak coupling.
(c) Equivalent circuit of a hair-pin resonator with a via. �1 and �2 are
the lengths of the two arms measured from the grounding via.
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At the fundamental and its odd harmonics, there is a voltage
minimum. A perfect ground at point A has no effect on the
fundamental and its odd harmonics. On the other hand, point A has
a voltage maximum at the even harmonics of the fundamental. Hence,
a perfect ground will terminate such harmonics.

A perfect ground does not exist in practice. Grounding through a
via has a small inductance, L, which acts as perturbation; this splits the
resonance of the fundamental and its odd harmonics. The imperfect
ground does not eliminate the even harmonics, but rather suppresses
them. The equivalent circuit is shown in Fig. 1(c). Consider the circuit
as a two-port network, the currents at each port is given by[

I1

I2

]
=

[
Y11 Y12

Y21 Y22

] [
V1

V2

]
(1)

Non-zero values of the voltages, V1 and V2, are for open circuit
boundary conditions, and I1 = I2 = 0 can occur at the resonance
if the determinant of the above Y -matrix above is zero [16],

Y11Y22 − Y21Y12 = 0. (2)

As the structure is cascaded, it is algebraically easier to analyze using
ABCD parameters. By substituting Y11 = D/B, Y22 = A/B, and
Y12 = Y21 = −1/B (reciprocal network) into (2), this gives the
resonance condition of

AD = 1. (3)

By matrix multiplication,

A = cos β(�1 + �2) +
Z0

ωL
sin β�1 cos β�2 (4)

D = cos β(�1 + �2) +
Z0

ωL
cos β�1 sinβ�2 (5)

where β is the propagation constant, and ω is 2πf .

3. HAIR-PIN RESONATORS WITH EQUAL AND
UNEQUAL ARM LENGTHS

3.1. Hair-pin Resonator with Equal Arm Lengths and a Via
at the Center

The lengths of the arms are λ0/4 each at the frequency, f0, where λ0 is
the guided wavelength at the center frequency of the passband. When
the network is symmetric, then A = D. Hence from (3),

A = ±1 (6)
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Considering �1 = �2 = � in (6),

cos 2β� +
Z0

2ωL
sin 2β� = ±1 (7)

The right-hand side of (7) equals −1 when β� = π/2, and the frequency
for β is f0 when � = λ0/4.

The solution of (7) is very close to f0, when the right-hand
side equals +1, as the perturbation is small. By including the first
correction, it is given approximately by

f ≈ f0

(
1 − 8f0L

Z0

)
(8)

Thus, one of the resonant frequencies is the same as the resonant
frequency of the hair-pin resonator without a via, while the other is
not. This is also supported by considering the odd and even modes
for the symmetric structure of the resonator. The odd modes produce
a zero voltage at the central point, A; the resonant frequency is not
affected by the perturbation at this point. On the other hand, the even
modes produce a voltage at this point and so the resonant frequency
is affected.

For a band pass filter with resonators tuned to the same frequency,
fC , which is also the centre frequency of the filter, the coupling
coefficient between two single mode resonators is given in [17] as

k =
f1 − f2

fC
(9)

where f1 and f2 are the resonant frequencies of the two coupled
resonators. If the dual mode hair-pin resonator replaces two coupled
single mode resonators, one must have

k =

(
8f2

0 L
)
/Z0

fC
. (10)

As fC is close to f0,

k ≈ 8fCL

Z0
and f0 ≈ fC

(
1 +

4fCL

Z0

)
. (11)

We can determine the required values of f0 and L for a chosen value
of Z0 given the values of k and fC from bandpass filter design. The
physical length of the quarter wavelength lines is determined by f0.

In this paper, a via is implemented on RT Duroid 6010.2 with
a substrate thickness of 1.27 mm. To implement the via, we use a
copper wire with a diameter of 0.52 mm. The inductance of the via is
extracted by a Sonnet [18] simulation with two half wavelength lines
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Figure 2. (a) Simulated and measured variation of the magnitude of
S21 using the frequency for equal arm length hair-pin resonator with
a via. The arm length is 29 mm. The centre frequency, fC is 1.0 GHz.
(b) Simulation broadband response of S21.

on both sides of the via and a port at the end of each half wavelength.
The inductance is given by

L = Im(Z11)/ω (12)

where Im (Z11) refers to the imaginary part of Z11. Over a range of
frequencies around 1.0 GHz, the value of the inductance is determined
to be approximately 0.39 nH.

Figure 2 shows the simulated [18] and measured magnitude of
S21 with the frequency for the hairpin resonator with a via. The
centre frequency is 1 GHz and the characteristic impedance, Z0 is
53.68 Ω. For L = 0.39 nH, the difference between the two resonant
frequencies is calculated as 8f2

0 L/Z0 = 0.06 GHz. The calculated
two resonant frequencies are 0.968 GHz and 1.030 GHz, respectively.
From simulation, the difference between the resonant frequencies is also
0.06 GHz. The measured value of 0.08 GHz is larger, as we are using
a soldered copper wire as a via, which can have a higher inductance.
Fig. 2(b) shows even harmonics suppression in its broadband response.
We note that the split frequencies of the hair-pin resonator with a via
can be used to measure the inductance of the via, just as it has been
done using ring resonators with vias [19].

3.2. Hair-pin Resonator with Unequal Arm Lengths

The separation between the resonant frequencies may be increased
using hairpin resonators with unequal arm lengths. Fig. 3(a) shows
the resonator with one arm of length λ0/4 + x and the other arm of
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length λ0/4 − x. Then by substituting (4) and (5) into (3) will give(
Z0

2ωL

)2

sin 2β�1 sin 2β�2+
(

Z0

2ωL

)
sin 2β(�1+�2)−sin2β(�1+�2)=0 (13)

For small x compared to λ0, consider the solutions to lie close to the
frequency f0, the approximated solution is

f = f0(1 + δ) (14)

δ = −4f0L

Z0

⎛
⎝1 ±

√
1 +

(
Z0

f0L

x

λ0

)2
⎞
⎠ (15)

As a result, none of the solutions is f0. The parameter x allows further
tuning of the resonator. It can be seen that if x = 0, (15) reduces to
the solutions for equal arm lengths.

Figure 3(b) shows the variation of the simulated [18] and measured
magnitude of S21 with frequency for the unequal arm hair-pin resonator
with a via. The centre frequency is at 1GHz, the characteristic
impedance of the microstrip line, Z0, is 53.68 Ω and the value of
inductor, L, is 0.39 nH. The calculated upper resonant frequency is
1.0456 GHz and the lower resonant frequency is 0.952 GHz. The
calculated separation value between the two resonant frequencies is
0.0936 GHz. The simulated result gives a higher resonant frequency of
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Figure 3. (a) Hair-pin resonator with a via and unequal arm
lengths, λ0/4 + x and λ0/4 − x. λ0 is the wavelength corresponding
to the fundamental resonant frequency, f0 of the equal arm length
resonator without a via. (b) Simulated and measured variation of the
magnitude of S21 using the frequency for an unequal arm length hair-
pin resonator with a via. The arm lengths measured from the via are
λ0/4 + x = 30 mm and λ0/4 − x = 28 mm. The center frequency is
1.0 GHz. (c) Simulated broadband response of S21. Inset is photograph
of the resonator with weak coupling.
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Figure 4. (a) Proposed compact resonator. (b) Photograph of the
proposed compact resonator with weak coupling. (c) Smith chart
illustrating the reduction in the length of the resonator.

1.046 GHz and a lower resonant frequency of 0.951 GHz; the separation
between the frequencies is 0.095 GHz. The measured result gives a
higher resonant frequency of 1.051 GHz and a lower resonant frequency
of 0.948 GHz; here the separation between the resonant frequencies is
0.103 GHz. The broadband response of S21 in Fig. 3(c) shows even
harmonic suppression.

4. MAKING A MORE COMPACT RESONATOR

The unequal arm length resonator can be made more compact if the
length of the smaller arm can be reduced and the longer arm is folded
around. This can be done by using lines of two different characteristic
impedances to replace the shorter arm. The structure is shown in
Figs. 4(a) and 4(b).

The principle is best explained by the use of Smith Impedance
Chart shown in Fig. 4(c). The normalized wavelength, λ0, corresponds
to the fundamental resonant frequency, f0 of the equal arm length
resonator without a via. Open circuit is represented by the point O on
the Smith Impedance chart. The normalized impedance of the open
circuited shorter arm is �0 = �0/4−x, and the characteristic impedance
Z0 is represented by point A; its electrical length is OA. Instead of
this, we use an open circuited line of characteristic impedance Z02

less than Z01. Its electrical length is OB, while B represents its
normalized impedance. On renormalization with respect to Z01, point
B is moved to point C because the impedance normalized to Z01 is
(Z02/Z01 < 1) times the impedance at B normalized to Z02. A line
of characteristic impedance Z01 and the electrical length CA are then
required to achieve the same impedance as the single line arm; the
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Figure 5. Equivalent circuit of the proposed compact resonator.
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Figure 6. (a) Simulated and measured variation of the magnitude
of S21 with the frequency for the weakly coupled compact resonator.
(b) Simulated broadband response of S21.

saving in length is BC. Another way of looking at this is to recall that a
step change in characteristic impedance is equivalent to a transformer.

Although the explanation above is correct, the lengths obtained
this way will not give the same frequency separation; this is because
the ABCD parameters of the line pair and a single line are different.
The equivalent circuit for the improved resonator structure is shown
in Fig. 5. The following is the simplified equation from the ABCD
parameters for the equivalent circuit to obtain the two resonant
frequencies.(

1
Z0

tan β0�0 − 1
ωL

)(
1 − Z01

Z02
tan β01�01 tan β02�02

)

+
1

Z01
tan β01�01 +

1
Z02

tan β02�02 = 0 (16)

where �0 is λ0/4 + x. β is the propagation constant of each microstrip
line.

Figure 4(b) shows the folded compact resonator, whose lengths
have been adjusted to achieve a simulated frequency separation of
0.0954 GHz in Fig. 6. The high impedance line has a characteristic
impedance value Z01 of 70.44 Ω; its length, �01, is 15.85 mm. The low
impedance line has a characteristic impedance Z02 of 32.32 Ω with �02

equal to 6.00 mm.
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The calculated resonant frequencies from (16) are 0.9340 GHz
and 1.0360 GHz; their separation is 0.1020 GHz. The simulated
higher and lower resonant frequencies are 1.0458 GHz and 0.9504 GHz,
respectively; their separation is 0.0954 GHz. The measured upper and
lower resonant frequencies are 1.055 GHz and 0.9406 GHz, respectively,
with a separation of 0.1144 GHz, are plotted in Fig. 6(a) as a
comparison to for comparison with the simulated frequencies. Fig. 6(b)
shows the even harmonics suppression in the broadband response of the
weakly coupled resonator.

5. DEMONSTRATION OF A FOUR POLE BANDPASS
FILTER USING THE IMPROVED COMPACT
RESONATOR

A 4-pole bandpass filter was designed using the proposed compact
resonator as discussed in Section 4. The filter has a centre frequency
of 1.0 GHz, a passband ripple of 0.5 dB and a fractional bandwidth of
8.5%. Given the filter specification, the required coupling coefficients
and external quality factor computed using lowpass prototype g-
parameter [17] are k12 = k34 = 0.0602, k23 = 0.0506 and Qe1 = 19.65,
respectively. For this filter, two identical resonators are used, because
k12 and k34 are the same. The filter is designed and fabricated on
a RT/Duroid 6010.2 substrate with a thickness of 1.27 mm and a
dielectric constant of 10.2.

Knowing the center frequency of the passband is 1.0 GHz and the
coupling coefficient value of k12, the two resonant frequencies calculated
from coupling coefficient formula (9) are 0.970 GHz and 1.030 GHz.
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Figure 7. (a) Design curve for the coupling coefficients, k12 and k23.
The layout of the resonators to obtain the design curve for (b) the
coupling coefficient value of k12 varies with length t1 and (c) the
coupling coefficient value of k23 varies with length t2.
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(a) (b)

Figure 8. (a) Layout of the 4-pole bandpass filter designed using the
proposed compact resonator. (b) Photograph of the fabricated 4-pole
bandpass filter.

These resonant frequencies are then substituted separately into (16) to
obtain the length of �0 and �01. The calculated �0 and �01 are 16.95 mm
and 27.8 mm, respectively. The parameters of the stepped impedance
line: Z01, Z02, and �02 are the same as in Section 4. They are 70.44 Ω,
32.32 Ω and 6.00 mm, respectively. Another way to obtain the coupling
coefficient value of k12 is to use the filter design curve in Fig. 7(a). This
design curve is obtained by varying the length t2 of the resonators as
shown in Fig. 7(b). Then the coupling coefficient of k23 is determined
by the separation of the two stepped impedance resonators (layout as
shown in Fig. 7(c)), t2, and the design curve for the coupling coefficient
value of k23 [17] is plotted in Fig. 7(a). The narrow gap coupling of
the input and output signal feed structures are then used to obtain the
required bandwidth of the passband.

The layout of the complete finalized 4-pole bandpass filter
designed using the proposed compact resonator is shown in Fig. 8(a).
The whole fabricated filter in Fig. 8(b) covers an area of 39.35mm ×
25.00 mm. Fig. 9(a) shows the simulated and measured results of the
4-pole bandpass filter. The measured bandpass has a center frequency
of 1.0 GHz with a 3-dB fractional bandwidth of 9.1%. The measured
in-band has an insertion loss is 2.54 dB and a return loss about 15 dB.
The insertion loss is attributed to the copper and dielectric losses. The
difference between the simulated and the measured filter’s bandwidth
is due to the tolerance in fabrication. The broadband response of this
filter is shown in Fig. 9(b) as evident; the filter exhibits even harmonics
suppression.
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Figure 9. (a) Simulated and measured results of the 4-pole bandpass
filter. (b) Measured broadband response of the 4-pole band pass filter.

6. CONCLUSION

A new design consideration has been proposed for a hairpin resonator.
With a grounding via at the mid-point of the resonator, the hair-pin
resonator can have two resonant frequencies at the fundamental mode
of the conventional hair-pin resonator. The new hairpin resonator
was investigated using ABCD parameter for its resonant frequencies.
To make the resonator more compact, one side of the uniform line
on the hair-pin resonator is replaced with a stepped impedance
line. Analytical results showed good agreement with simulated and
measured ones. A four-pole bandpass filter was designed using the
modified compact hair-pin resonator and measured to prove the design
theories. This filter is more compact than those filters reported earlier,
and it suppresses all even harmonics. The higher order even harmonics
show reduced response.
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