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Abstract—Our main objective in this article is to achieve minimum
side lobe levels for a specific first null beam-width and also a minimum
size of the circumference by an optimization-based design method for
non-uniform, planar, and circular antenna arrays. Our approach is
based on a new variant of Particle swarm Optimization technique.
This new technique is a hybrid of Local Neighborhood based PSO
with Hierarchical PSO Algorithms termed as Hierarchical Dynamic
Local Neighborhood Based PSO (HDLPSO) Algorithm. Three difficult
instances of the circular array design problem have been presented to
illustrate the effectiveness of the proposed HDLPSO algorithm. The
design results obtained with HDLPSO have been shown to comfortably
beat the results obtained with other state-of-the-art meta-heuristics
like Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Invasive Weed Optimization (IWO) and Differential Evolution (DE)
in a statistically significant manner.

1. INTRODUCTION

Antennas having very directive radiation characteristics are required
for the purpose of long distance communication. To meet this
requirement a single antenna may be impotent. Antenna array that
can be formed by combinations of many individual antenna elements
in certain electrical and geometrical configurations is a solution to this
problem. Antenna arrays have a plethora of applications including
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radar, sonar, radios, and third generation wireless communication
systems [1–3]. In technologies that involve high power transmission,
reduced power consumption and enhanced spectral efficiency, antenna
arrays are found to be very practical. To obtain an excellent directive
pattern it must be ensured that array elements add constructively in
some preferred directions and add destructively and cancel each other
in the remaining space.

Determination of the positions of array elements that jointly
produce a radiation pattern which matches the preferred pattern
as closely as possible is the primary design objective of antenna
array geometry. In present literature designs of uniform and non-
uniformly spaced linear arrays have already been reported. For the
design of arrays nowadays researchers prefers different meta-heuristic
algorithms. Many modern meta-heuristics were tried to accomplish
optimized Side Lobe Level (SLL) and null control from the designed
arrays [4–9] as because the classical derivative-based optimization
techniques are prone to getting trapped in local optima and are
strongly sensitive to initialization.

The popularity of circular arrays has also spread in mobile and
wireless communications [10–12]. Panduro et al. [13] traces the first
meta-heuristic approach towards the design of circular arrays. The
article proposes the application of the real-coded Genetic Algorithm
(GA) for designing circular arrays with maximal side lobe level
reduction coupled with the constraint of a fixed beam width. Shihab et
al. in [14] achieved better results as compared to those reported
in [13] by applying Particle Swarm Optimization (PSO) algorithm that
draws motivation from the smart collective behavior of a group of
social creatures, to the same problem. Recently, Panduro et al. [15]
worked on the design of scanned circular array by comparing three
authoritative population-based optimization algorithms — PSO, GA,
and Differential Evolution (DE). The three algorithms were compared
on a single instantiation of the design problem with an objective of
studying the behavior of array factor for the scanning range of 0◦
to 360◦ in angular steps of 30◦ and the number of antenna elements
were set to 12 and for a uniform separation of d = 0.5λ, optimizing
excitation current amplitudes and phase perturbations. Chen et al. [16]
presented a new way for finding an optimal solution of complex antenna
array design problem using a Crossed Particle Swarm Optimization
Algorithm. In [17], Khodier and Al-Aqeel provided a study of
Antenna Array design using Particle Swarm Optimization. There are
many other articles regarding circular antenna array design in various
journals and scientific magazines [18–23]. Most of the articles [8–23]
provide enough evidence of the fact that Swarm based optimization
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is far more effective that stochastic optimization method for antenna
array design problems. In general, the superiority of such swarm based
method for solving any kind of engineering optimization problems are
proved in terms of benchmark problems in different articles [24–31].

As PSO is a stochastic search process hence it is not free from
false or untimely convergence, in particular over multimodal fitness
landscapes. To eradicate this problem PSO needs to be modified.
Our main objective in this article is to use an improved variant of
PSO named Hierarchical Dynamic Local Neighborhood Based PSO
(HDLPSO), which is a hybrid of Hierarchical PSO and LPSO, for
designing non-uniform circular arrays with optimized performance with
respect to SLL, directivity, and null control in a scanning range of
[0◦, 360◦]. The efficiency and effectiveness of our proposed method for
this particular design problem is shown and discussed through various
experimental results in the later part of this manuscript.

The rest of this paper is organized as follows: Section 2 discusses
the design problem; Section 3 presents a brief discussion of classical
PSO algorithm. Section 4 introduces our novel optimization algorithm
along with the discussions of the ancestors. Section 5 presents the
experimental data and Section 6 concludes this manuscript.

2. ARRAY FACTOR OF CIRCULAR ARRAY AND
DESIGN PROBLEM

We consider a non-uniform and planar circular antenna array as shown
in Figure 1. N elements are spaced non-uniformly on a circle of radius
r in the x-y plane. The elements of the array are considered to be
isotropic sources, so that its array factor can represent the radiation
pattern of the array.

Formulation of the array factor requires the following:

• Excitation current amplitude In,
• Phase βn,
• Angular position of the n-th element ϕn,
• Circular arc separation between any two adjacent elements (dn —

the distance between elements n and n− 1).

The expression for the array factor in the x-y plane can be represented
as:

AF (ϕ) =
N∑

n=1

In.ej.(kr. cos(ϕ−ϕn)+βn) (1)
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In the above expression kr and ϕn can be given as

kr =
2πr

λ
=

N∑

i=1

di,

ϕn =
2π

kr

n∑

i=1

di,





(2)

We can direct the peak of the main beam in the ϕ0 direction by
choosing excitation phase of the nth element as

βn = −kr · cos (ϕ0 − ϕn) (3)

The simplified array factor of the non-uniform circular array is

AF (ϕ) =
N∑

n=1

In exp (j · kr · (cos (ϕ− ϕn)− cos (ϕ0 − ϕn))) (4)

Parameters of this expression are In and ϕn (i.e., di) values of the
elements. The peak of the radiation pattern is directed along the x-
axis i.e., ϕ0 = 0.

For the evaluation of fitness (or cost) function different parameters
such as gain, side lobe level, radiation pattern, and size can be used.
Our goal is to design a circular antenna array with minimum side lobes
levels for a specific first null beam-width (FNBW) to ensure maximum
directivity of the antenna, and also to minimize the circumference of

Figure 1. Geometry of a non-uniform circular antenna array with N
isotropic radiators.
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the circular array which is of paramount importance in the modern
world where the focus is increasingly on miniaturization.

Along with the average side lobe level, the maximum side lobe
level has been incorporated in the fitness function and it serves
the directivity purpose. The objective function satisfying the above
requirements is given as follows

fNU =|AF (ϕNULL1)|+ |AF (ϕNULL2)| (5)

fSLA=
1

π+ϕNULL1

ϕNULL1∫

−π

|AF (ϕ)|dϕ+
1

π−ϕNULL2

π∫

ϕNULL2

|AF (ϕ)|dϕ (6)

fMSL=|AF (ϕMSLL1 |+ |AF (ϕMSLL2 | (7)

where ϕNULL1 and ϕNULL2 are the two angles at the null, and ϕMSLL1

is the angle where the maximum side lobe level is obtained in the lower
band [−π, ϕNULL1] and, ϕMSLL2 is the angle where the maximum side
lobe level is obtained in the upper band [ϕNULL2, π].

Another objective is the minimization of circumference. This
reduces the dimension of the designed array. The mathematical
expression is

fD =
N∑

i=1

di (8)

where, di’s have their usual meanings.
The final cost function is obtained by combining all the objectives

which is as follows,

F = a1 ∗ fNU + a2 ∗ fSLA + a3 ∗ fMSL + a4 ∗ fD, (9)

where ais represent the respective weights assigned to the sub-
functions. We have to consider Eq. (9) as the function used for
optimization.

3. CLASSICAL PSO ALGORITHM

The PSO algorithm is an evolutionary algorithm capable of solving
difficult multidimensional optimization problems in various fields
introduced in 1995 by Kennedy and Eberhart [24, 25]. Random
initialization of a population of candidate solutions (particles) over
the fitness landscape is the starting point of classical PSO. However,
during the search PSO does not uses direct recombination of genetic
material between individuals unlike other evolutionary computing
techniques but instead works by depending on the social behavior
of the particles in the swarm. Therefore, by merely adjusting the
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trajectory of each individual towards its own best position and toward
the best particle of the entire swarm at each time-step (generation),
it detects and finds the global best solution. In a search space of
D-dimension, the position vector and velocity of the i-th particle are
given by ~Xi = (x1

i , x
2
i , . . . , x

D
i ) and ~Vi = (v1

i , v
2
i , . . . , v

D
i ) respectively.

Adjustment of position vector and velocity were made and at each time
steps the objective function to be optimized f( ~Xi) is evaluated with
the new coordinates. The representation for the d-th dimension of the
i-th particle in the swarm of velocity and position is given below:

vd
i =ω∗ vd

i+c1∗rand1d
i ∗

(
pbestdi −xd

i

)
+c2∗rand2d

i ∗
(
gbestdi −xd

i

)
,

xd
i=xd−1

i + vd
i

(10)

where c1 and c2 are the acceleration constants with c1 controlling
the consequence of the personal best position and c2 determining the
effect of the best position found so far by any of the particles, rand1d

i

and rand2d
i are two uniformly distributed random numbers in the

range [0, 1], ω is the inertia weight that takes care of the influence
of the previous velocity vector and balances between the global and
local search abilities, pbesti = (pbest1i , pbest2i , . . . , pbestDi ) is the best
earlier position giving the best fitness value pbest i for the ith particle
and gbest = (gbest1, gbest2, . . . , gbestD) is the best position discovered
by the whole population.

4. HIERARCHICAL D-LPSO ALGORITHM

4.1. A Brief Overview of the Ancestor Algorithms

4.1.1. Local Neighborhood Based PSO

Global PSO and local PSO are the two main variants of PSO. The
variants may limit the velocity of a particle by a maximal value
Vmax, while some variant linearly varies ω. In the local version of
PSO, instead of learning from the personal best and the best position
achieved so far by the whole population in the global version, the
particle’s personal best modifies its velocity and the best performance
achieved so far within its neighborhood. Thus the velocity updating
equation can be represented as:

vd
i =ω∗vd

i+c1∗rand1d
i ∗

(
pbestdi − xd

i

)
+c2∗rand2d

i ∗
(
lbestdi −xd

i

)
, (11)

where lbesti = (lbest1i , lbest
2
i , . . . , lbest

D
i ) is the best position achieved

within its neighborhood.
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Various mechanisms have been designed in order to increase the
variety among the particles of a swarm. Different neighborhood
topologies have been investigated for PSO as the topology of the
neighborhood plays a substantial role in PSO. A ring topology is
used to define the neighborhood through the particle’s index in the
lbest model of PSO. Different neighborhood structures are proposed
and discussed for the enhancement of this lbest model of PSO. Multi-
swarm [26] and subpopulation [26] are used by some variants. Sub-
groups may be treated as special neighborhood structures. The swarms
are predefined or dynamically attuned in order to the distance in the
existing local versions of PSO with different neighborhood structures
and the multi-swarm PSOs. A dynamic or randomly assigned topology
is used by the dynamic multi-swarm optimizer.

4.1.2. Hierarchical PSO

The particles are arranged in a hierarchy which defines the
neighborhood structure in the hierarchical version of PSO. Each
of the particles is neighbored both to itself and its parent in the
hierarchy. The hierarchy is a regular tree-like structure. The hierarchy
is defined by the height, branching degree [27], i.e., the maximum
number of children of the inner nodes, and total number of nodes of
the corresponding tree. In this hierarchy, all inner nodes, except the
inner nodes on the deepest level which might have a smaller number
of children, have the same number of children. Hence, the maximum
difference is at most one between the numbers of children of inner
nodes on the deepest level. The upward and downward movement of
the particles in the hierarchy highly influences the best particle of the
swarm. The evaluation of the objective function and velocity update
in each iteration determines the new positions of the particles. The
best solution obtained by the particles in the child nodes is compared
to the best solution of jth particle in a node of the tree. This is done
for the entire particle in that node. Particles i and j swap their places
if best solution obtained by any particle (say ith particle) in the child
node is better than that of jth particle. The starting point of this
comparison is from the top of the hierarchy and then proceeds in a
breadth-first manner down the tree. At each iteration, the particle
which has the global best position of the hierarchy moves up one level
of the hierarchy. A particle’s best position so far and the best position
of the individual that is directly on the top of the considered particles
in the hierarchy moulds its velocity.

In case of H-PSO [27] depending on the fitness growth of the
individuals, the neighborhood of a particle changes continuously. This
changing arrangement of the particles can help to preserve the diversity
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in the search. Different influence for the particles at different positions
is led because of the continuous change in neighborhood of a particle.
When the particle with the current best found solution can (indirectly)
manipulate all the other particles after it has reached the top of the
hierarchy.

Optimization behavior of H-PSO is influenced by the structure
of the hierarchy and the branching degree d. For example, the
performance might be better initially if the branching degree is higher,
on the other hand because of a smaller value of d the performance
may be worse in the beginning of optimization process in finding the
best solution but in the end it might further improve the objective
function value. There is a dynamic change in the branching degree for
this reason. The hierarchy is traversed starting at the root node when
the branching degree is decreased from d to d − 1. This is done so
that if there is an excess of the number of children compared to new
required branching degree always one of the direct sub trees below
the considered node is removed. Based on the quality of the particles
in the topmost nodes of all sub trees of the considered nodes, i.e.,
all children of the considered node, the sub tree is removed. For the
entire tree this procedure is repeated. This removal of sub tree causes
the remaining tree to have a branching degree d− 1 with fewer nodes
than before. At the bottom of the hierarchy the removed nodes are
then evenly inserted. So that the number of children of all the nodes
on the second last level differs at most by one the removed nodes are
appended one by one so. A new level is added to the hierarchy and
the procedure is sustained until all removed nodes are reinserted if all
of these nodes have d− 1 children. The branching degree reduction is
done in every fadaptth iteration, this fadapt is called decrease frequency.
Branching degree is decreased by kadapt known as decrease step size.
For kadapt > 1 the reduction procedure is applied consecutively (i.e.,
the branching degree is always reduced in steps of 1) until the hierarchy
has the required branching degree. Until a certain minimum is reached
this is continued. For choosing the sub-tree which is to be removed two
strategies are employed — removing the sub-tree with the worst root
node or removing the sub-tree with the best root node.

4.2. Our Proposed Algorithms

4.2.1. D-LPSO

The Dynamic Local Neighborhood based Particle Swarm Optimization
(DLPSO) [28] is a variant of PSO constructed based on the local
version of PSO employing a new neighborhood topology. In case
of PSO, it has been found that satisfactory results can be obtained
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using smaller population size. PSO with smaller neighborhoods has
better performance on complex problems also. In case of DLPSO
smaller neighborhoods are used. As a result the convergence velocity
of the population decreases, diversity increases and better solutions
are achieved for multi-modal problems. The population is divided
into small sized swarms. Size of each swarm varies randomly within a
certain limit (max limit value = 5). So a sub-swarm may contain any
number of particles between 1 and 5. This is done to get the maximum
benefit of the sub-swarms of different sizes. Also we have included
a check after a certain no of iterations to verify the convergence
rate of the swarms of different size. According to the outcome the
program is assigned a greater probability for the most converging size
of sub-swarm while sub swarms of other sizes have a lesser probability.
Each sub-swarm uses its own members to search for better area in
the search space. Since the small sized swarms are searching using
their own best historical information, they are easy to converge to
a local optimum because of PSO’s convergence property. In order
to avoid it we must allow information exchange among the swarms.
So every sub swarm needs to be aware of the position of the best
particle in other sub-swarm. We have incorporated an information
exchange schedule according to which in every iteration all the sub-
swarm’s best particle exchange information. We want to keep more
information including the good ones and the not so good ones to
add the varieties of the particles and achieve larger diversity. So a
randomized regrouping schedule is introduced to make the particles
have a dynamic changing neighborhood structures. That means we
haven’t included any parameter for this selection. Each sub-swarm
containing at most five particles search for better location and they
may converge to near a local optimum.

After regrouping, the particles previously belonging to a common
sub-swarm now belong to different sub-swarms and get the opportunity
to modify their velocity and position learning from the new swarm
members. In every k generation, the population is regrouped randomly
and starts searching using a new configuration of small swarms. The
value of k is kept between 5 and 10. In this way, the information
obtained by each swarm is exchanged among the swarms as a particle
belongs to different swarms during the search process and it carries the
information obtained in the previous swarm and uses this information
to influence other particles’ movement in the new swarm. With the
randomly regrouping schedule, particles from different swarms are
grouped in a new configuration so that each small swarm’s search space
is enlarged and better solutions are possible to be found by the new
small swarms. The procedure is shown in Figure 2.
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Figure 2. DLPSO’s search process.

4.2.2. Hierarchical D-LPSO Algorithm

In this algorithm Hierarchical PSO is combined with DLPSO. The
steps of our proposed PSO algorithm is

Step 1. The Initialized population is divided into stages. First
stage contains 1 particle; next stage contains maximum n elements
(Initially n = 2). N -th stage can contain maximum nN particles.

Step 2. Each particle is assigned randomly a parent from the
previous stage except the particle on 1st stage.

Step 3. Evaluate each particles Fitness.
Step 4. Now DLPSO is applied along each stage except 1st stage.
Step 5. Now each particle compares its fitness with its assigned

parent. If its position is better than its parent’s position, they are
swapped.

Step 6. Step 2 to Step 5 continues until next 1/15th of the total
FEs is completed. Now n = n + 1, if n < 5 and Step 1 takes place
again. If n = 5, n is reinitialized to 1 i.e., n = 1. (N.B. n maybe
reinitialized to 2, but our idea is to provide each particle some time to
search slowly and locally without modification of its lbest position by
neighborhood particles. Also if we reinitialize n = 1 instead of n = 2,
the result obtained is much better.) Repeating step 1 performs the
regrouping of hierarchy.
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Figure 3. HDLPSO’s search process.

Step 7. When maximum no of FEs is reached all the processes
are stopped and the result is shown.

In the velocity update equation, we have used a constriction factor
to avoid the unlimited growth of the particles’ velocity. Also using this
factor, a better result is obtained, which was proposed by Clerc and
Kennedy [29]. Eq. (11) becomes

V d
i =χ∗(ω∗V d

i +c1∗rand1d
i ∗(pbestdi−Xd

i )+c2∗rand2d
i ∗(lbestdi−Xd

i )) (12)
where χ is the constriction factor given by

χ = 2/
∣∣∣2− c−

√
c2 − 4c

∣∣∣ (13)

where c =
∑

i ci.
Another feature is added to this algorithm for better result. If

the minimum fitness value obtained remains constant for 1000FEs, we
reinitialize some particle to its pbest position and other to a position
in between their pbest and lbest position.

This procedure is graphically shown in Figure 3.
The pseudo codes of Step 1 to Step 5 are given below. Step 6 and

Step 7 can be easily coded.
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--------------------------------------------------------------------------------------------------------------------- 
Step 1 

N = total no of particles. 
FEs = No of FEs covered; 
Max_FEs = Max No of FEs 
Count = Max no of particles in second stage. 
Icount = Max no of particles in any stage Stage (1,1) = Any particle from the population. 
Stagecount = 2; 
Icount = Count; 
While 1 

For i = 1: Icount 
Stage (Stagecount, i)  = any particle from the rest of the population 
If All the particles Covered 

Break; 
End 
End 
If all the particles are covered 

Break; 
End 
Icount = Icount*Count; 
 Stagecount = Stagecount + 1; 

End 
--------------------------------------------------------------------------------------------------------------------- 

Step 2 
 Parent (Stage (1,1)) = Stage (1,1); 
Icount = Count; 
For  j = 1: Stagecount 

For i = 1: Icount 
Parent (Stage (Stagecount, i)) = any particle from the previous stage. 

End
Icount = Icount*Count; 

End 

Step 3 

For i = 1 : N  
 Evaluate Each particle's Fitness; 
End 

Step 4 
For j = 1: Stagecount 

Apply DLPSO; 
End 

Step 5 
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For i = 1: Icount 
If Fitness (Parent (Stage (Stagecount, i))) < Fitness (Stage (Stagecount, i)) 

Swap the particles. 
End 

End 
Icount = Icount*Count; 

End 
 

For j = 1: Stagecount 

In the above algorithm, we are repeating steps 2 to 5 for 1/15th of the
total FEs, and after that we start the process again. It has been found
empirically that good results are obtained by regrouping the hierarchy
after 1/15th of the total FEs. Steps 2 to 5 yield sufficiently good result
within this nos. of FEs and more nos. of FEs are not required. When
applying DLPSO in step 4 we create sub-swarms containing at most
4 particles within each level of hierarchy, the nos. of sub-swarms in a
level of hierarchy depends on the nos. of particles in that particular
level. Details of this algorithm can also be found in [28].

5. EXPERIMENTAL DATA

In this paper, three instantiations of the circular antenna array design
problem are solved by using the HDLPSO algorithm with four other
state-of-the-art metaheuristics, namely, PSO [14], real coded GA [15],
DE and IWO [30]. This DE variant is called DE/rand/1/bin and is the
most widely used one in DE literature [31]. In [28], it is proved that the
combination of HPSO and DLPSO, significantly improves the results
over the results obtained using each of the algorithms separately. So,
we have not included the results obtained using HPSO and DLPSO in
case of this problem.

5.1. Problem Description

The three instantiations of the design problem are

Table 1. Design problems.

Problem No. Nos. of Array Elements FNBW
1 8 70.27
2 10 55.85
3 12 46.26
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The FNBW is assumed to be a constant, corresponding to a
uniform circular array with a uniform 0.5λ spacing between the
elements. To meet the requirements of practical considerations,
normalization is done for the current amplitudes, with maximum value
of the amplitude being set equal to 1.

5.2. Parametric Setup

At first, we need to choose proper values of the ais for successful use of
optimization algorithms. According to [14], it is preferable to select the
weights ai for i = 1, 2, 3 the first three as 1, 1, and 1 respectively. a4

was not considered in [14]. However, a higher weight to the component
fSLA which deals with the minimization of the average side-lobe level
may be advantageous for the overall design purpose. This should not
affect the attainment of null at the null points. A uniform circular
array with the same number of elements is shown to have poorer value
of SLL in comparison in [13, 14]. However, using F4 and taking the
values of ais as 1.5, 3, 2 and 1 for i = 1, 2, 3 and 4 respectively,
we have achieved best results. Those values are chosen based on
empirical observation and knowledge of radiation pattern. In this cost
function, the independent parameters are the current amplitudes and
the distances between the elements.

Table 2. Parametric setup for the contestant algorithms (rd is the
difference between the maximum and minimum values of the d-th
decision variable).

HDLPSO Modified IWO DE PSO GA 
Param. Val. Param. Val. Param. Val. Param. Val. Param. 
swarm 

size 50
 

swarm size 50
 

Np
 10* 

dim 
swarm 

size 50
 Pop_size  

1
  

1
   

1
  Crossover

Probability cP
 

2
  

2
    

2
  Mutation  

Probability Pm

 

Inertial 
Weight 

w 
0.60

 
Inertial Weight 

w
 0.60

   Inertial 

Weight 
w 

0.60
  

0.9*rd  0.6*rd   d,maxv  0.9*rd   

 Maximum 
standard 

deviation sd min

0.001       

  pow 2       

d,maxvd,maxv

C 2.0 C 2.0 CR 0.90 C 2.0

C 2.0 C 2.0 F 0.50 C 2.0

Val.

150

1.0

0.1
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The control parameters for modified HDLPSO [28], IWO [30],
PSO [14], real coded GA [15], and DE [31] were set after performing a
series of hand tuning experiments. The parameters for PSO, and GA
were set following the guidelines provided in [14, 15]. The parametric
setups for all the algorithms are shown in Table 2.

5.3. Results

A comparison of the final values of optimizing function along with
standard deviations for HDLPSO, IWO, PSO, GA and DE based
approaches is presented in Table 3. Table 4 presents the optimized
values of di in terms of wavelength and normalized Ii.

It is a well known fact that a stochastic optimization algorithm
does not yield same results over repeated runs on the same problem.
So, we report the mean and the standard deviation of the best-of-
run values for 50 independent runs of each of the five algorithms.
A non-parametric statistical test called Wilcoxon’s rank sum test for

Table 3. Final cost function values obtained with the five algorithms
over three design instances.

Number
of

Elements
Algorithm

Mean Cost
Function Value

Standard
Deviation

8

HDLPSO 3.1810 0.0098
IWO 3.3682 0.0167
DE 3.2459 0.1181
PSO 3.3571 0.6470
GA 4.3922 0.8941

10

HDLPSO 3.5619 0.0121
IWO 3.7698 0.0294
DE 3.8511 0.2688
PSO 3.8825 0.8990
GA 5.7319 0.9633

12

HDLPSO 4.1109 0.0490
IWO 4.3357 0.0925
DE 4.5431 0.3758
PSO 4.5590 0.8883
GA 6.0938 0.9847
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Table 4. Design variables obtained with modified IWO algorithm.

Number

of

Elements

FNBW
di in terms

of wavelength

Normalized

In

8 70.27

0.3248 0.6236

0.1967 0.7779

0.5759 0.8195

0.8066 0.3012

0.9184 0.2643

0.5304 0.9895

0.9895 0.5475

0.9739 0.2272

10 55.85

0.3654 0.7322

0.7595 0.6574

0.3192 0.4231

0.7499 0.7492

0.7666 0.3181

0.8215 0.9039

0.8394 0.6266

0.9626 0.9951

0.8803 0.9140

0.8554 0.8374

12 46.26

0.2913 0.8620

0.6753 0.5792

0.9391 0.2230

0.3665 0.8261

0.7115 0.5989

0.9201 0.2888

0.9257 0.6177

0.9675 0.5981

0.6487 0.9294

0.9197 0.5394

1.0181 0.6251

0.9154 0.8622

Table 5. P -values obtained with Wilcoxon’s rank sum test comparing
the best-performing algorithm with all other contestants on three
design instances.

Number of Elements Algorithm P -Value

8

HDLPSO/IWO 1.7563e-005

HDLPSO/DE 2.4196e-009

HDLPSO/PSO 9.8523e-006

HDLPSO/GA 9.8523e-008

10

HDLPSO/IWO 3.2431e-006

HDLPSO/DE 8.4211e-007

HDLPSO/PSO 1.1129e-012

HDLPSO/GA 1.0971e-011

12

HDLPSO/IWO 4.4152e-004

HDLPSO/DE 7.9821e-009

HDLPSO/PSO 9.7536e-007

HDLPSO/GA 1.8262e-006
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(a)

(b)

(c)

Figure 4. Normalized radiation patterns for circular arrays of
different number of elements obtained using five different optimization
techniques. (a) For number of elements N = 8. (b) For number of
elements N = 10. (c) For number of elements N = 12.
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independent samples [32, 33] is conducted at the 5% significance level
in order to judge the results in a statistically significant way. P
values obtained through the rank sum test between the best algorithm
and each of the other algorithms over the three design instances are
presented in Table 5. In this table, N/A stands for Not Applicable and
occurs for the best performing algorithm itself in each case.

In Table 6, the best results obtained (out of 50 independent runs)
for the aforesaid three problem instances are judged in terms of —
the average SLL (in decibels), the directivity (in decibels), and the
circumference of the circular array (in terms of wavelength) for all
the five algorithms based approaches. Figure 4 depicts the radiation
patterns of the circular antenna arrays (corresponding to best of the
50 runs in each case) obtained with all five algorithms for 8, 10, and
12 element arrays.

From Tables 3, 4, 5 and 6, we can clearly state that HDLPSO
is much better in a statistically significant way than the other four
population-based meta-heuristics namely IWO, GA, PSO, and DE on
this specific problem of circular array design. From Table 3, it can be
clearly noted that for all three instances of design problem HDLPSO
maintains smallest standard deviation of the results indicating its

Table 6. Design figures of merit obtained in the best (out of 50) run
of the four algorithms on three design instances.

Number

of

Elements

Algorithm
SLL in

decibels

Directivity

in decibels

Circumference

(in terms of

wavelength)

8

HDLPSO −20.313 9.915 4.4262

IWO −18.860 9.761 4.4499

DE −19.045 9.752 4.4509

PSO −18.151 9.744 4.4931

GA −14.754 8.299 4.5244

10

HDLPSO −19.861 11.102 5.8406

IWO −19.772 10.782 5.8951

DE −19.732 10.755 5.8993

PSO −19.582 10.744 5.9029

GA −10.412 8.062 6.0886

12

HDLPSO −19.813 12.212 7.2825

IWO −19.776 11.308 7.1480

DE −18.608 11.300 7.1495

PSO −18.658 11.298 7.1501

GA −11.628 9.223 7.7700
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greatest effectiveness on the problem at hand.
In Figure 4, it can be clearly observed that the normalized

array factor for values of the independent parameters obtained with
HDLPSO has better side-lobe suppression than those of IWO, DE,
PSO, and GA. Although the magnitude of the array factor at certain
points of the azimuth angle range for PSO, DE or IWO is lower than the
corresponding values for the case of HDLPSO as observed in Figure 4,
the average side-lobe level is much lower for the latter as demonstrated
in Table 6. A scrutiny of Table 6 indicates that the HDLPSO yields
better values of three important factors — the SLL, directivity and
the circumference in comparison to IWO, GA, PSO, and DE for all
the cases.

6. CONCLUSION

Designing circular antenna arrays with minimum SLL, maximum
directivity, and also minimum size of the circumference is one of the
most challenging optimization problems in electromagnetism. In this
article, we proposed an improved variant of a recently developed,
ecologically inspired meta-heuristic algorithm called HDLPSO and
the superiority of the proposed technique over four other state-
of-the-art stochastic optimizers is demonstrated through simulation
experiments in the context of three instances of the circular antenna
array design problem. We formulated the design problem as an
optimization task on the basis of a cost function that takes care of
the average side lobe levels, the null control, and the circumference of
the array. Our simulation experiments, shown in Table 3 to Table 6
and Figure 4, clearly indicated that the HDLPSO outperforms PSO,
IWO, DE, and GA over 8, 10, and 12 element array design problems
based on metrics such as average final accuracy, best obtained design
figures of merit (like SLL, directivity, circumference size in terms
of wavelength), convergence speed, and robustness, in a statistically
significant manner. All these factors together have been considered
for optimal results in our design problem and these accounts for the
significance of this work.

Our future research will be focused upon exploration of the
design problems of other array geometries and concentric circular
arrays with PSO and its variants. Also, if we treat all four different
components of the cost function given in (9) as separate objective
functions, a multi-objective optimization, after incorporating some
problem-specific expert’s for pointing out the best solution from the
Pareto-optimal set, may prove to be a significant avenue of future
investigation.
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