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Abstract—The dynamics of a system of two bilaterally coupled
chaotically oscillating X-band Gunn oscillators (GOs) has been studied
by numerical simulation and by hardware experiment. The effect of
variation of the coupling strengths between two oscillators in two paths
has been explored. The chaotic oscillations in two GOs have become
synchronized in most of the cases when coupling factors (CFs) are
around 20% or more. However, the transformation of chaotic states
of the GOs to quasi-periodic ones has been observed for some values
of CFs. A detailed numerical analysis on the instantaneous error
parameters of the GO state variables is presented to identify different
steady state dynamical conditions of the system. Experimental
observations of the GO output frequency power spectra and the
averaged product of the two GO outputs in the coupled mode confirm
the occurrence of synchronization as well as quenching of chaotic
oscillations for different values of CF's.

1. INTRODUCTION

The coupled mode of oscillation of two or more periodic oscillators
has been extensively studied in the literature. In this respect the
oscillators considered are, electronic [1-4], optical [5], mechanical [6]
or biological [7, 8] in nature and the coupling mode taken into account
is unilateral (master-slave type) or bilateral (one influencing the
other) [9,10]. Since any real oscillator has inherent nonlinearity,
the coupled mode of operation of more than one oscillator leads
to several interesting dynamical phenomena like frequency locking,
quasi periodicity, chaos, intermittency etc. [10]. In practice,
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coupled electronic oscillators have important applications in spectrally
pure signal generation, power combining, coherent modulation and
detection, lock in amplification and filtering, frequency synthesis
etc. [11-13]. Recently, the dynamics of a system of bilaterally coupled
periodic Gunn oscillators (BCPGO) has been studied [14]. There it
has been shown that, depending on the magnitude of the coupling
factors (CF) between two oscillators, the system could operate in a
synchronized state, a quasi periodic state or a chaotic state.

In recent years, chaotic mode of oscillations of physical and
biological systems has attracted the interest of several researchers. As
such different techniques of chaos generation in physical systems have
been invented. Depending on the frequency band of operation, RC
oscillators, Colpitts oscillators, PLL based circuits, negative resistance
circuits are used in them [15-18]. Also rapid self de-correlation,
interference rejection, multipath fading tolerant properties of chaotic
signals have made it very useful in communication systems. Further,
the synchronization possibility of chaotic signals, first discussed by
Pecora and Caroll [19], has increased the interest of studies on
coupled chaotic oscillations. As a logical extension of the studies
on the BCPGO [14], one may question on the modification of the
dynamics of the system if the GOs become chaotic. Adopting the
simple method reported in [20] a BCPGO can be converted into a
BCCGO system. Here, the GOs would be operated in the under bias
condition and a weak external RF field would be injected in the cavities.
The motivation of the present study is to examine the effect of the
mutual interaction between two chaotic oscillators. It may result into
the synchronization between two CGOs or the quenching of chaotic
oscillations in one or both. The strength of coupling between the
oscillators would have a significant role in the steady state dynamics
of the system. We have explored the BCCGO system dynamics
through numerical simulation and experimental studies. In practice, a
BCCGO represents a model of a bidirectional chaos based microwave
communication systems having forward and feedback paths between
the transmitter and receiver.

The paper has been organised in the following way. In Section 2
after describing the structure of the BCGO system, its circuit theoretic
model is proposed and corresponding differential equations of the
system are derived. Section 3 systematically describes the steps of the
numerical simulation. The parameter values required for the periodic
and the chaotic mode of oscillations of single GO have been obtained.
Then the response of a coupled system for various values of CF's
is studied. The time evaluations of the error samples between the
equivalent state variables of two GOs are examined for verification of
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Figure 1. Simplified functional structure of BCCGO.

synchronization between two GOs in the coupled system. The range
of values of CF's leading to synchronization is obtained in this section.
The experimental study on the dynamics of a BCCGO system has
been reported in Section 4. It describes the way of design of the
coupled system, the method of variation of the coupling factors between
the GOs and procedure of studying the relation between the GOs in
frequency domain and also in time domain. The main observations
of the study and the potential application of the BCCGO system are
discussed in the concluding Section 5.

2. DESCRIPTION OF THE BCCGO SYSTEM AND ITS
CIRCUIT THEORETIC MODEL

Figure 1 shows the functional block diagram of the coupled oscillator
system under study. As GO is itself a one port system so for their
bidirectional coupling, circulators and attenuators are required in the
hardware arrangement. At first consider both the GOs are identical
in their free running condition and are operating in chaotic mode.
Then output of CGO1 (CGO2) is suitably attenuated and coupled
with CGO2 (CGO1) through circulators.

Figure 2 shows the circuit theoretic model of the BCCGO System
under study. Here, a single periodic GO is modelled [14] as a series
network of the device impedance and the cavity impedance. The device
impedance comprises of a nonlinear voltage dependant resistance (r)
and a nonlinear voltage dependent capacitance (c). v, and v, represent
respectively the voltage drop across r and c¢. The cavity impedance
consists of a series combination of inductor L, capacitor C and the
resistor R. This R takes care of the cavity loss and the load resistor.
Applying Kirchhoff’s mesh law, the differential equation describing the
dynamics of the single GO can be obtained as follows [14]:

d*q 5 dg dg\’
a2 — 4o Al gy o
d

Here d—g = ¢ is the instantaneous circulating current in the equivalent
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Figure 2. Equivalent circuit theoretic model of the BCCGO system.

mesh, ¢ the instantaneous charge, and 7(w,t) the time normalized to

the cavity resonant frequency w, (= \/%) The coefficients a, b, ¢, d

are related with the device and the cavity parameters and implicitly
depend on the magnitude of the applied dc bias (Vp) across the Gunn
diode [20].

A periodic GO can be made to operate in the chaotic mode if the
applied dc bias be less than the threshold value necessary for negative
differential resistance (NDR) mode of operation and a weak RF field
of frequency w, be injected in the cavity. Mathematically it can be
taken into account by considering an additional voltage source in the
equivalent circuit and taking the value of ¢ suitable for under bias
of operation of the diode. In this condition, system equation will be
modified as:

d? d 5
dT'g = aq — bg® — cd—z —d <d7_> + ¢s cos(§27) (2)

Here ¢; and ) are respectively the charge equivalent to the
amplitude and the normalized angular frequency of the external field
present within the cavity.

When two such chaotically operated GOs are bidirectionally
coupled, the effect of coupling is taken into account by considering two
voltage sources, one in each oscillator of the BCCGO system. This
is shown in Figure 2. The additional voltage source is proportional
to the difference of current flowing through the two oscillators. The
constant of proportionality represents the coupling factor (CF) of
one oscillator with the other. Thus the differential equations of the
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bilaterally coupled chaotic oscillator system become

4 d g\ dg» d
o a1Q1—51Q?—01QI—d1< Q1> + k21 <€JT2_Q1>

dr? dr dr d dr
+qs cos(Q7) (3)
d?qs 3 dgo dga \* dg1  dgo
CD gy —bogd — ™2 g hy (21 202
dr? 202 =20 =g, 2\ar ) T\ T a
+qs cos(Q7) (4)
da dqo

Here ('), (37) represent the instantaneous circulating current
through the equivalent loop of CGO1 and CGO2 respectively. k12 and
ko1 are the CFs of the two paths by which two CGOs are connected.
ko1 (k12) gives effect of CGO2 (CGO1) to CGO1 (CGO2). Obviously,
putting one of the CFs equal to zero in (3) and (4) one can obtain the
system equations of the Unilaterally Coupled Chaotic Gunn Oscillator
(UCCGO).

3. NUMERICAL ANALYSIS

A complete analytical solution of (3) and (4) is difficult to obtain, if
not impossible. Here, these equations are studied numerically. To this
end, (3) and (4) are decomposed into two pairs of first order differential
equations as follows:

dq1 B

ar P (5)
dgo B

ar P (6)
d

% = a1q1 — bi1g} — c1py — dip? + ka1 (p2 — p1) + gs cos(Qr)  (7)
d

% = asqo — bags — copo — dopi + k1a(p1 — p2) + gs cos(Q7)  (8)

Then we modelled (5) to (8) using MATLAB based Simulink
Software as shown in Figure 3 and perform the numerical experiment.

Two GOs taken in the BCCGO system studied in the present
paper are identical in structure. This is ensured in the numerical
experiment by choosing identical values of a, b, ¢ and d in two
oscillators. The time series data of ¢’s and ¢’s are recorded in different
simulation runs. However, the steady state dynamics is observed by
disregarding sufficient number of values of state variables ¢ and p from
the initial stages of each run. The record of time development of ¢,
the estimation of the components present in the time series data of
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Figure 3. Simulink model of the BCCGO system for numerical
experiment.

q, the phase space representation of ¢ and corresponding p etc. are
used to study the dynamics of the system under different conditions of
oscillations and bilateral coupling of the GOs.

3.1. Free Running Dynamics of a GO in Periodic Mode

With k13 = k21 = 0 and g5 = 0 in the system equation, one gets the
situation of free running operation of the GO. In this condition, we
vary the parameter c, keeping a, b and d fixed at 1.0, 1.0 and 0.015
respectively. In a real system, this represents the variation of the dc
bias voltage from low value. The value of the parameter ¢ reduces
and becomes negative as the Gunn diode enters into the negative
differential resistance region from a normal positive condition. When
the value of ¢ is —0.05, the time series data of g indicates a steady
periodic oscillation with a steady state amplitude ¢g = 2.0 and a
normalized frequency of oscillation, wg = 1.27. The time domain curve
of ¢, the frequency spectrum of time series data of ¢ and the phase
space representation of ¢-p data are shown in Figure 4. To operate
the GO in an under bias condition [20], the value of ¢ should be less
negative compared to —0.06, while other parameters are kept fixed at
aforementioned values.
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Figure 4. Numerically obtained results of BCCGO system for k1o = 0
and ko1 =0,a=1,b=1,c=—0.05,d = 0.015, ¢s = 0, Qs = 1.27. (a)
Time domain plot of ¢, (b) frequency spectrum of ¢, (¢) phase space
plot of ¢ and p.
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Figure 5. Numerically obtained results of BCCGO system for k15 = 0
andkyy =0,a=1,b=1, c = +0.002, d = 0.015, gs = 0.15, Q, = 1.27.
(a) Frequency spectrum of ¢, (b) phase space plot of ¢ and p.

3.2. Generation of Chaotic Oscillations in GOs

The value of ¢ is taken as 0.002 with @ = 1, b = 1 and d = 0.015
to ensure the under bias operation of the GO. The effect of injected
RF field in the cavity is taken in the numerical experiment by putting
qs = 0.15 and Qg = 1.27. The oscillators are kept in the isolated
condition by putting the values of k19 and ko1 as zero. In this condition,
we obtain the frequency spectrum of the time series data of ¢ and the
phase space plot of ¢-p as shown in Figures 5(a) and 5(b). It indicates
that the GOs are in chaotic mode of oscillation. The estimation of the
maximum Lyapunov exponent (MLE) and the correlation dimension
(CD) of the time series data ¢(t) obtained in this situation has been
done using the commercial Chaos Data Analyser (CDA) software [21].
The obtained values of MLE and CD are 0.02 and 1.795 respectively
and this confirms the chaotic state of the GO.
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3.3. Studies of the Coupled Dynamics of the BCCGO
System

Keeping the individual GO in the chaotic state, we choose non zero
values of k15 and ko1 to obtain the bilaterally coupled system. In
the numerical experiment, the initial values of state variables ¢ and
p of the two GOs are taken independently and the time evolutions
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Figure 6. Numerically obtained results of BCCGO system for ko =
0.15 and ko = 0.06, a = 1, b = 1, ¢ = +0.002, d = 0.015, g; = 0.15,
Qs = 1.27. For CGO1, (a) phase space plot of ¢; and p1, (b) frequency
spectrum of ¢;. For CGO2, (c) phase space plot of go and ps, (d)
frequency spectrum of ¢2. (e) Phase space plot of ¢; and ¢s.
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of these variables are examined in the steady state. Our interest
here is to find the relation between the outputs of the two GO for
different values of the coupling strengths (kj2 and kop). Intuitively
it is anticipated that the coupled dynamics of the GOs could lead to
any of the following states: (i) uncorrelated chaotic states (UCS), (ii)
completely synchronized chaotic states (CSCS), (iii) uncorrelated quasi
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Figure 7. Numerically obtained results of BCCGO system for kis =
0.15 and ko = 0.4, a =1, b =1, ¢ = +0.002, d = 0.015, ¢; = 0.15,
Qs = 1.27. For CGO1, (a) phase space plot of ¢; and p1, (b) frequency
spectrum of ¢;. For CGO2, (c¢) phase space plot of g2 and po, (d)
frequency spectrum of ¢o. (e) Phase space plot of ¢; and g¢s.
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periodic states (UQPS), (iv) synchronized quasi periodic states (SQPS)
of two CGOs in the coupled system. Occurrences of these states are
identified in the simulation experiment by noting the time evolution
of state variables ¢; and ¢o in two dimensional plane. The numerical
solution of the system equations has been obtained with device and
system parameters a = 1, b = 1, ¢ = 0.002, d = 0.015. For these
values, the GOs operate in chaotic modes. The values of CFs have
been chosen accordingly in each simulation run.

Some results have been shown in Figures 6, 7. The apparent
similarity in the spectral characteristics of ¢ and ¢ as well as a
linear curve having a slope of approximately 45° in the gi-g2 plane
give a strong indication of synchronization between the two CGOs
for certain values of kjo and kg; (Case-CSCS). Two CGOs, when
bilaterally coupled for certain small values of CFs, remain chaotic
in nature but their outputs have no correlation (Case-UCS). This is
observed in the structure-less curve in the ¢;-g2 plane. Interestingly
it is also observed that in the coupled condition the CGO outputs
become quasi-periodic having multiple discrete components. For some
values of k19 and ko) these outputs are synchronized (Case-SQPS) and
for some other values they are uncorrelated (Case-UQPS). Figure 8
shows exhaustive results of simulation experiments finding the effects
of CFs on the BCCGO dynamics. Here aforementioned four states are
indicated by different colours in the two-dimensional plane, where x
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Figure 8. Numerically obtained results finding the effects of CF's
on the BCCGO dynamics. Here four states are indicated by different
colours in the two-dimensional plane: (i) uncorrelated chaotic states
(0), (ii) completely synchronized chaotic states (1), (iii) uncorrelated
quasi periodic states (2), (iv) synchronized quasi periodic states (3).
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and y represent values of ko1 and kis respectively. A general remark
regarding the results obtained from the simulation is as follows:

1. For small values of CFs (< 0.2) the oscillators behave
predominantly in uncorrelated manner even in the coupled
condition. The states of the oscillators could be both chaotic and
quasi-periodic in this situation (UCS and UQPS).

2. With the increase in the value of one of the CFs (> 0.2) or both
chaotic oscillations are synchronized in most of the cases (CSCS).

3. However for some values of CF's in this region, chaotic oscillations
are modified to quasi-periodic nature, but the output of the GOs
still remain in the synchronized state (SQPS).

The results in the numerical experiment [shown in Figure 8] are
consistent with the dynamics of coupled chaotic systems reported
elsewhere [22-26]. The CFs between two CGOs are the bifurcation
parameters for the transition of the system state from isolated chaos to
synchronized chaos or non chaotic state. It is observed that for higher
values of CFs (> 0.2), the chaotic oscillations of two GOs become
synchronized in about 90% of the simulation runs. The transition of
chaotic states to non chaotic quasi-periodic states due to interaction of
two CGOs is observed for some simulation runs (about 10%) with large
values of CFs. Similar dynamics has been reported for several other
coupled chaotic systems (like Rossler system [22], Lorenz system [24],
semiconductor laser [23,25], one dimensional map [26] etc.).

3.4. Studies on Error Samples of State Variables of Two
GOs

The difference of corresponding state variables (¢ or p) of the two
CGOs at a particular instant of time can be a good indicator of
synchronization between two CGOs [27,28]. We define e; and es as
(g2 — q1) and (p2 — p1) respectively. Then the evolution of e; and e
in time can be obtained from the time-derivatives of e; and es. Using
Equations (5) to (8) one gets:
él = €9 (9)
€y = aey — cez — (k1a + ka1 )ea — bel — de3 — 3deapa(pa — €2)
—3berqi(q1 + e1) (10)
Performing the numerical solution of these equations using fourth
order Runge-Kutta technique in Matlab platform one gets the error
variables as functions of time. The device and system parameters

are chosen as before for operating the GOs in chaotic mode. For a
particular simulation run with fixed values of ki3 and ko; one finds
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e1 and ez. The quantity /(e + e3) obtained at each time instant
represents the distance between the phase-space trajectories of the
two systems described by state-variable pairs (g1, p1) and (g2, p2).
We obtain the time-series data of \/(e? + e3) and find the Maximum
Lyapunov exponent Ay of the samples. It is observed that for small
values of ko and ko1 (< 0.1) in most cases the values of Ay is
positive, indicating the increase of separation between the state-space
trajectories of two GOs. This means that the CGOs are in the UCS

-0.4
300 320 340 360 380 400 420 440 460 480 500
time

(©

_SDD 320 340 380 380 400 420 440 480 480 500
time

Figure 9. Time evolution of the error dynamics of e; and ey of the
BCCGO System with k12 = 0.15. (a) ]621 = 0.06, (b) k‘21 = 0.1, (C)
ko1 = 0.3.
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Figure 10. Variation of A\; with CFs of the BCCGO system. (a) Ay
VS k:gl for klg = 0.15, (b) >\d VS ]{:12 for kgl = 0.15.

state for lower values of CFs. However for higher values of CFs (> 0.1)
in most simulation runs the values of A4 is obtained negative. This
means that the CGOs are in the CSCS state. Figures 9, 10 show some
results of the variation of e; and ey with time as well as the variation
of Ay with CFs.

4. EXPERIMENTAL STUDIES

The experimental study on the BCCGO dynamics is done using a
hardware circuit comprising of two wave guide based GOs (VJU,
Model No. X2152, Serial Nos. 1031 and 1288), two X-band attenuators
(ECIL, Model No. X321, Serial Nos. 0815 and 0818) and two X-band
circulators (SICO, Model Nos. XC621 and XC622, Serial Nos. 439
and 440). The hardware arrangement is shown in Figure 11.
The coupling coefficients (CFs) are determined by measuring the
ratio of the output power to input power at an attenuator for a
particular micrometer screw (attached to the attenuator) reading. For
convenience of the experiment, the calibration curves showing the
attenuation factor as a function of micrometer screw reading of an
attenuator is obtained beforehand.

The GOs are operated in the under biased condition with a
weak injected RF field in the oscillator cavities to produce chaotic
oscillations. The wave guide cavities of the GOs are so adjusted that
the GOs oscillate at a frequency 10.000 GHz in the periodic mode with
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Figure 11. Simplified block diagram of the hardware arrangement of
BCCGO system.

the dc bias 9.5 Volts. The output power of the GOs is found to be
14.5dBm. The frequency and the power of the GOs are measured using
a spectrum analyzer (Rhode and Schwarz, FSL SA, 9kHz-18 GHz).
For chaotic oscillations, the dc bias of the GOs are fixed at 5.08 Volts
and injected external RF field to the GO cavities is taken from a
microwave signal generator (Agilent N5183A, 100 kHz—20 GHz). The
frequency (frr) and the power (Prp) of the injected field are fixed at
10.025 GHz and 0dBm respectively. These insures the requirements
for chaotic oscillation of the GOs, namely, an injected weak RF field of
frequency close to the cavity resonant frequency with the dc bias below
the threshold dc voltage [20]. The choice of identical cavity dimensions
and equal dc bias voltages ensures the coupling between two identical
CGOs in our experiment.

The output spectra of two GOs in the coupled condition are
recorded to study the dynamics of the system. The influence of
the CFs in the dynamics is examined by repeating the experimental
observations for several sets of kio and ko;. Some representative
observations are given in Figure 12. Here the value of ko; is kept at 0.18
and that of k1o is varied. It is observed that for low value of k1o, the
GO outputs remains chaotic, but their spectral nature are different
as observed in the SA. However for some relatively higher values of
k12 (~ 0.18 or more), the spectral nature of the outputs of the GOs
are almost similar as observed in the SA record. Qualitatively, these
observations may be interpreted as the synchronization of two CGOs in
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Figure 12. Experimentally obtained output spectra of two GOs in the
BCCGO system for different CFs, frr = 10.025 GHz, Prr = 0dBm,

VBl =— UB2 = 5.08Volts, k‘gl = 0.18. (a) k‘12 = 0.17, (b) k‘lg = 0.07,
(C) k‘12 = 0.56.

the bilaterally coupled mode. For still higher values of k12 one gets the
modification of chaotic output of the GOs. Specifically, the continuous
broadband spectrum of the CGOs output is converted into a spectrum
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Figure 13. Simplified structure of the phase comparator circuit.

having discrete lines. The frequencies of the component signals are
incommensurately related. As such we get quasi-periodic output from
the CGOs. Thus the nature of coupling between two CGOs changes
the dynamics of the system from chaotic to quasi-periodic type.

However, the frequency domain measurement is not able
to convincingly prove the synchronization between two chaotic
oscillations. Also to compare the nature of two chaotic signals at
10 GHz frequency region in the time domain, one requires real time
oscilloscope in the X-band. In the absence of such infrastructure,
we derived an indirect method of comparing the time domain nature
of two CGOs outputs. A microwave frequency phase comparator
circuit (PCC) is realized using a magic tee (SICO, Model No. XE-
350, Serial No. 764), two diode detectors (SICO, Model No. XD451,
Serial Nos. 2723 and 2724), a difference amplifier [29]. The structure of
the PCC is shown in Figure 13. Some elementary experimental works
have been reported in this regard [30].

First we operate the GOs of the bilaterally coupled system in
periodic mode (applying proper dc bias) and adjust their frequencies at
slightly different values (about 20 MHz off tuned). The outputs of the
GOs are applied to the input ports of the magic tee in the PCC circuit.
Keeping ko1 (= 0.1) fixed and varying k12 we note in the SA that GOs
become synchronized for k1o around 0.2. At that condition, the dc
voltage obtained at the output of the difference amplifier of the PCC
gives a reduced value compared to the value obtained for lower k1o with
GOs in the not synchronized condition. A further increased in k1o gives
further reduction in the dc value. Taking the other value of ko1 (0.17
and 0.26) and repeating the experiment by changing k12, we observed
similar nature in the value of output dc voltage. The reason for these
observations is as follows: the dc voltage at the PCC is proportional
to the phase difference (PD) between two signals applied at the PCC
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Figure 14. (a) Variation of dc voltage as obtained experimentally
from the PCC with k12 when two GOs are periodic and of different
frequencies (GO1 10.0 GHz, GO2 9.98 GHz), (b) variation of dc voltage
as obtained experimentally from the PCC with the coupling factor kis
when both the GOs are in chaotic state.

input. The decrease in the values of the steady state PD with the
increase of k12 reduces the value of the dc voltage. Figure 14(a) shows
the results of one such experiment. Thus, the increase of the CFs
between the two GOs brings them phase synchronized condition and
this is evident from the reduced value of the PCC output. Next we
operate the GOs in the chaotic mode by applying under biased dc
voltage and injecting weak RF signal in the cavity. The experiment is
then repeated by varying ki keeping ko1 fixed. The recorded values
of the PCC output dc are shown in Figure 14(b) for different cases.
Qualitatively, one can interpret the observations as synchronization of
chaotic outputs of the GOs for a range of values of k15 and koy.
However one has to remember the broad band spectral nature of
the chaotic signal in interpreting the above mentioned experimental
observations. The output of PCC circuit is time averaged version
the product of Ej(t) and Eq(t), where E1(t) and E(t) are the inputs
to the magic tee of PCC. When these input signals are periodic and
are synchronized, the PCC output is a dc voltage, proportional to
PD between F;(t) and Fy(t). But when F;(t) and Fs(t) are chaotic,
they would have large number of component signals. Thus, even the
corresponding component signals of same frequencies of Ej(t) and
E5(t) are at constant PD, the low pass version of the product of
Eq(t) and Es(t) would be a sum of a dc and ac component. The
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ac voltage part is due to the cross product of different components
having unequal frequencies. So, one could not get only a pure dc
output even in the synchronized state of the GO outputs. However the
bandwidth of the chaotic signals at GO outputs is 100 MHz to 120 MHz.
This is only about one to two percent of the centre frequency (about
10 GHz). Hence, the ac part of PCC output would be averaged by the
tuned detectors used in the experiment. Our experimental observations
confirmed the synchronization of CGOs for a range of CFs and these
are consistent with the observations made with the SA in the frequency
domain.

5. CONCLUSION

In the paper, we report a detailed investigation on the dynamics of the
BCCGO system through numerical simulation as well as experimental
studies. It is observed that two chaotically oscillating GOs when
bilaterally coupled can enter into different states depending on the
values of the coupling strengths. When both the CFs are small, i.e.,
when two CGOs interact weakly, their dynamics although affected but
remains uncorrelated. However, the interaction of CGOs for higher
values of CFs (one or both) leads to qualitative synchronization of
the chaotic oscillations of the GOs. Numerical simulation of the
mathematical model of the BCCGO system reveals the influence of the
CFs on the dynamics of the system. The synchronization of chaotic
GOs is established by showing the stability of the error dynamics
of the state variables of the two oscillators. Experimental evidence
of chaos synchronization is obtained through the observation of the
structural similarity between the frequency-power spectra of two CGO
outputs. Further, we have examined the time domain average of the
product (dc voltage) of GO outputs using a phase comparator circuit,
first with periodically oscillating GOs and then with chaotic GOs in
coupled condition. The dc value is found to decrease with increasing
CF when periodic GOs are in the synchronized state. With chaotic
GOs, similar type of decreasing dc value is obtained with increasing
CFs, which qualitatively proves the occurrence of synchronization
between two GOs. Realisation of mutually synchronized chaotic GOs
in the bilaterally coupled condition is very useful in the direction
of implementing chaos based microwave communication system. By
varying the CFs between two CGOs in the synchronized state, it
would be possible to get deterministically phase shifted versions of
chaotic oscillations, capable of carrying information bits. Further, it
is observed that the chaotic oscillations of the GOs may be modified
in the bilateral coupling mode and quasi periodic state of the GOs
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may result for some values of the CFs. Hence, it is concluded that
by properly designing the bilateral coupling structure, the chaotic
oscillations of two oscillators could be controlled.
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