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Abstract—The shaping of dispersion characteristics in a variant of
disc-loaded circular waveguide was studied through electromagnetic
analysis for assessing the structure for wideband coalescence of the
beam- and waveguide-mode dispersion characteristics that entails the
wideband gyro-travelling-wave tube (gyro-TWT) performance. In
this variant of disc-loaded circular waveguide, the alternate disc-
hole radii were varying, however, the structure was periodic. The
structure periodicity coupled with Floquet’s theorem and field-
matching technique resulted into the dispersion relation of the infinitely
long structure. A numerical code was developed to solve the dispersion
relation, and the dispersion characteristics of the structure were
analyzed for the azimuthally symmetric TE-modes. The effects of
structure parameters were studied for getting a straight-line portion
of the dispersion characteristics over a wide frequency range. The
dispersion shaping was projected for typically chosen TE01-mode. The
results were validated against those obtained for the conventional
and un-conventional known structures and those obtained using
commercially available simulation tool. The variation of azimuthal
electric field intensity over the radial coordinate was also studied to
examine the control of structure parameter for maxima-position, where
the gyrating electron beam would be positioned for optimum beam-
wave interaction in a gyro-TWT.

1. INTRODUCTION

The fantasy of periodic structures may be seen in antennas, antenna
feeds, electromagnetic filters, phase shifters, polarizers, photonic
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crystals for optical power dividers, multiplexers, switches, photonic
band gap structures for solid-state lasers [1–10], etc. and even in the
vacuum electronic devices, such as, linear/particle accelerators [11, 12],
backward-wave oscillators (BWOs) [13], magnetrons [14], coupled-
cavity and helix travelling-wave tubes (TWTs) [15–19], cyclotron
masers [20, 21], gyrotron sources [21–24] and amplifiers [24–39], etc..
In these devices, one may see the periodic beam-wave interaction
structures holding either azimuthal or axial periodicity [20–39]. The
azimuthal periodicity in interaction structure may be seen, for
example: in travelling-wave magnetrons [14] for π-mode operation,
in gyrotrons [21–24] for mode rarefaction, in conventional helix-
TWTs [17] for broadbanding, in gyro-travelling wave tubes (gyro-
TWTs) [25, 26] for higher interaction impedance and, in turn, for
higher device-gain. The axial periodicity in interaction structure
may be seen, for example, in conventional helix-TWT [17] for higher
device-gain, in coupled-cavity TWT [17] for getting fundamental-
mode backward-wave characteristics, and in gyro-TWT [27–39] for
broadbanding.

The axial-periodicity in the interaction structure of a gyro-
TWT promises the broadbanding through dispersion shaping that
allows wideband coalescence between the beam- and waveguide-mode
dispersion characteristics and, in turn, the broadband gain-frequency
response [27–37]. Choe and Uhm [36] analyzed the infinitesimally thin
disc-loaded circular waveguide ignoring the higher order stationary-
and propagating-wave modes in the field matching technique and
presented the dispersion shaping by changing the structure parameters.
Kesari et al. [27–30] improved the analysis of Choe and Uhm [26]
considering higher order stationary- and propagating-wave modes, first
for infinitesimally thin disc-loaded waveguide [27, 28] and then for
thick disc-loaded waveguide [28–30]. Kesari [31, 32] also proposed
the coaxial-disc-loaded circular waveguide interaction structure, such
that in one configuration metal discs radially projecting inward
from the metallic wall, and in second configuration metal discs
radially projecting outward from the coaxial insert, for the beam-
absent [31] and the beam-present [32] cases, and demonstrated the
second configuration a better interaction structure. Yue et al. [33] also
analyzed, in field matching technique, a coaxial circular waveguide with
arbitrary shaped grooves on the wall, by profiling the groove in a series
of rectangular steps [33].

A non-periodic continuous dielectric, in the form of wall-lining
or coaxial rod, loaded circular waveguide also promises broadbanding
of a gyro-TWT through dispersion shaping [40]. It holds the
attenuator effects for self and parasitic oscillations, and brings the
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Figure 1. Cut-view of a disc-loaded circular waveguide of varying
inner radii of alternate annular discs (structure under study).

problem of dielectric charging and associated heating, in case of
lossy dielectrics [40]. Kesari et al. [34] combined the two methods,
metal and dielectric loadings, of dispersion shaping to propose an
alternatively metal and dielectric discs-loaded circular waveguide with
same [34] and with different [35] metal and dielectric disc-hole radii.
The dispersion characteristics of a similar structure in absence and in
presence of annular electron beam were also analyzed in [13] including
the instability performance.

In order to add an extra structure parameter in the promising disc-
loaded circular waveguide and to examine the control of new parameter
on the dispersion shaping, a new interaction structure is considered.
This new structure is similar to a disc-loaded circular waveguide,
in which the disc-hole radii of two consecutive discs are not same,
however, the disc-hole radii of every second discs are same (Fig. 1).
The paper consists of an analytical model and its analysis (Section 2),
discussing electromagnetic boundary conditions (Section 2.1), and
analytical steps to obtain the dispersion relation (Section 2.2) of the
structure. A numerical code is developed for solving the dispersion
relation and the roots are used to plot the dispersion characteristics
and to see the control of structure parameters on dispersion shaping
(Section 3).

2. ANALYTICAL MODEL AND ANALYSIS

The model of the structure considers a disc-loaded circular waveguide
of varying inner radii of alternate discs (structure under study). The
discs are organized in the circular waveguide such that the disc of the
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bigger hole-radius is symmetrically in the middle of two alternate discs
of the smaller hole-radii, and vice-versa. As the structure is periodic,
therefore one period of the structure coupled with Floquet’s theorem
is sufficient for the analysis of an infinitely long structure. In the
analytical model, one may divide the structure into three regions, such
as: i) region I: 0 ≤ r < rSH ; ii) region II: rSH ≤ r < rBH ; and
iii) region III: rBH ≤ r < rW , where rSH and rBH are, respectively,
the hole-radii of metal discs of smaller and bigger holes. rW is
the waveguide radius. One may take L as the axial periodicity of
the structure, and TSH and TBH as the thicknesses of metal discs
of smaller and bigger holes, respectively. Thus, one may calculate
the axial-gap between two consecutive discs (which is the distance
between discs of smaller and bigger hole-radii) as (L− TSH − TBH )/2.
Clearly, in the said model, one may consider, the region I (disc
free region) supporting propagating and the regions II and III (disc
occupied regions) supporting standing waves. The axial magnetic and
azimuthal electric field intensities in various considered regions are,
respectively [27–35]:
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kinds, respectively. Prime with a function represents its derivative with
respect to its argument. AI

n, AII
m , BII

m and AIII
p are the field constants,

superscript identifying its value, in different analytical regions. γI
n[=

(k2 − β2
n)1/2], γII

m [= (k2 − β2
m)1/2], and γIII

p [= (k2 − β2
p)1/2] are the

radial propagation constants in regions I, II, and III, respectively.
βn[= β0 + 2πn/L] is the axial phase propagation constant in disc
free region I; here, β0 is the axial phase propagation constant for
fundamental space harmonic, and n[= 0, ±1, ±2, ±3, . . .] is space
harmonic number. βm[= mπ/(L − TSH )] (where m = 1, 2, 3, . . .)
and βp[= 2pπ/(L− TSH − TBH )] (where p = 1, 2, 3, . . . ) are the axial
propagation constants in regions II and III, respectively; here m and
p are the modal harmonic numbers in regions II and III, respectively.

2.1. Electromagnetic Boundary Conditions

One may write the relevant boundary conditions, stating the continuity
of the tangential component of electric and the axial component of
magnetic field intensities at the interface, r = rBH , between the
regions II and III (Fig. 1), as:

EII
θ = EIII

θ (a)

HII
z = HIII

z (b)

}
0 < z < (L− TSH − TBH )/2 (r = rBH ), (7)

and stating the continuity of the tangential components of electric
and the axial component of magnetic field intensities at the interface,
r = rSH , between the regions I and II (Fig. 1) as well as the vanishing
tangential component of electric field intensity at the metal inner
circumferential surface of the discs of smaller hole radii, r = rSH ,
as:
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(r = rSH ), (8)

HI
z = HII
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2.2. Dispersion Relation

It is a usual practice in field matching technique to get the dispersion
relation by substituting the field intensity components into the relevant
boundary conditions and then eliminating the field constants. One may
substitute the field expressions from (3)–(6) into (7(a)) and (7(b)), here
for the sake of simplicity it is being considered that only one modal
harmonic is present (say, mth in region II and pth in region III) in
each of regions II and III, to represent BII

m in terms of AII
m while
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eliminating AIII
p from the resulting relations, as:
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one may express the field constants AII
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Similarly, one may obtain another series expression, similar to (11), for
AII

m (m = 1, 2, 3, . . .), but now with the help of the field expressions (2)
and (4), instead of (1) and (3), respectively, and the boundary
condition (8), instead of (9), and by changing the integration limits
to z = 0 and z = L, instead of z = 0 and z = (L− TSH ), as follows:
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The following relation results by equating the right hand sides of (11)
and (12):

∞∑
n=−∞

AI
n (Unm − Snm) = 0. (13)

One can form υ (say) number of simultaneous equations in the field
constants AI

n with the help of (13) while choosing υ number of the
stationary-wave modal number (m) as well as the space harmonic
number (n), such as n = 0, ±1, ±2, ±3, and m = 1, 2, 3, 4, 5, 6, 7, for
υ = 7 (typically). Further, one may equate the determinant formed by
the coefficients of the constants occurring in these equations to zero, as
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the condition for the non-trivial solution of these equations, that would
yield the following dispersion relation of the structure under study:
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3. RESULTS AND DISCUSSION

One may start validating the analytically obtained dispersion
relation (14) with reference to the special cases of the structure:
for the case, i) rSH → rW the dispersion relation (14) becomes the
same, as that for the disc-loaded circular waveguide of disc-hole radius
rBH , disc-thickness TBH , and periodicity L [28, 29]; ii) rBH → rW ,
(14) becomes the same as that for the disc-loaded circular waveguide
of disc-hole radius rSH , disc-thickness TSH , and periodicity L [28, 29];
iii) rSH = rBH and TSH = TBH , (14) becomes as that for disc-
loaded circular waveguide of disc-hole radius rBH (= rSH ), disc-
thickness TBH (= TSH ), and periodicity L/2 [28, 29]; iv) rSH = rBH

and TSH + TBH = L, (14) becomes J ′0{γI
nrSH } = J ′0{γI

nrBH } = 0,
which is dispersion relation of the smooth-wall circular waveguide
of radius rBH (= rSH ); and v) rSH = rBH → rW , (14) becomes
J ′0{γI

nrW } = 0, which is dispersion relation of the smooth-wall
circular waveguide of radius rW . Also, while considering infinitesimally

Figure 2. TE01-mode dispersion characteristics of the structure
under study obtained by present analysis (solid curve) in compari-
son/validation with that obtained using HFSS (asterisk symbols).



30 Kesari and Keshari

(a) (b)

Figure 3. Dispersion characteristics of the structure under study,
taking (a) bigger (rBH /rW ) and (b) smaller (rSH /rW ) hole-radii as
the parameter.

thin disc, (14) passes to that published for infinitesimally thin disc-
loaded circular waveguide [27, 28], and while ignoring the higher
order harmonics passes to that published in [36]. All these cases
are also validated with reference to the dispersion characteristics,
obtained using the numerical code developed for solving the dispersion
relation (14). In order to validate the dispersion characteristics
obtained using the numerical code, a structure model, for typically
chosen structure dimensions, is made in workspace of commercially
available simulation tool — high frequency structure simulator (HFSS).
The HFSS-model is analyzed using eigenmode solver and by observing
the field-intensity pattern, the solutions for azimuthally symmetric TE
modes are segregated and compared with the analytical results within
3% (Fig. 2). As expected, the structure due to its axial periodicity
shows a periodic dispersion characteristics showing alternate stop- and
pass-bands, pass-band lying between two consecutive frequency points
of zero group velocities (Figs. 2–6).

The dispersion relation (14) is true for any azimuthally symmetric
TE mode, however, one may choose the lowest order, i.e., TE01-mode
(typically), in order to show the potential of the structure under study
for a gyro-TWT. (Further, the results are discussed for the TE01-
mode.) Similar to the conventional disc-loaded circular waveguide,
both the hole-radii (bigger and smaller) of the structure under study
are responsive to dispersion shaping. In general, the lower- and the
upper-cutoff frequencies increase with decrease in hole-radii (Fig. 3),
however, in particular, the passband increases (Fig. 3(a)) and decreases
(Fig. 3(b)) with decrease of bigger and smaller hole-radii, respectively.
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The disc-thickness of bigger-hole-disc is neither very responsive for
dispersion shaping, nor for passband, however, the passband shifts
to higher frequency side (Fig. 4(a)). One may use this nature for
shifting the interaction band in order to achieve an optimum beam-
wave interaction while designing a gyro-TWT with the structure under
study. On the other hand, one may see an interesting phenomenon
with the change of disc-thickness of smaller-hole-disc. The passband
increases with increase as well as with decrease of disc-thickness of
smaller-hole-disc with reference to that of bigger-hole-disc, in addition,
the disc-thickness of smaller-hole-disc is also responsive for dispersion
shaping (Fig. 4(b)).

(a) (b)

Figure 4. Dispersion characteristics of the structure under study,
taking the disc-thickness of (a) bigger-hole-disc (TBH /rW ) and
(b) smaller-hole-disc (TSH /rW ), as the parameter.

Figure 5. Dispersion characteristics of the structure under study,
taking the structure periodicity (L/rW ), as the parameter.
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The structure periodicity plays same way as that in case of
conventional disc-loaded circular waveguide [28–30]. The structure
periodicity is the most responsive for the passband as well as
for dispersion shaping (Fig. 5), therefore, one may look forward
to the periodicity of the structure under study for achieving a
broadband coalescence between beam- and waveguide-mode dispersion
characteristics while designing the device. While finding the straight-
line portion of the dispersion characteristics of the structure, which is
required for broadband coalescence with beam-mode dispersion line,
one may plot the slope of the dispersion (ω− β) characteristics, which
generally gives the group-velocity (vg/c), verses frequency (Fig. 6). In
the plot, for the broadband performance, one may look for region of
constant group-velocity, which is basically reflection of straight-line
portion of the dispersion characteristics. The peak of the curve thus
generated would typically correspond to axial beam velocity required
for beam-wave synchronism. While examining Fig. 6, one may find
the results for the disc-loaded circular waveguides of constant disc-
hole radii at two extreme ends. Here, it is necessary to point out
that the disc-loaded circular waveguides presented at two extreme
ends differs in periodicity. However, leaving the right-most broken
curve apart, all other curves correspond to same periodicity. One
may observe the increase in region of constant group-velocity with
decrease in bigger hole-radius, however, with shift of the frequency
band (Fig. 6). The corresponding shift of the frequency band may be
compensated with change in either waveguide radius or disc-thickness
of bigger-hole-disc or both. Therefore, as expected, the structure under
study adds an extra structure parameter in the promising disc-loaded
circular waveguide, and also the new parameter helps in dispersion
shaping.

In addition to assess the structure for broadbanding a gyro-
TWT, it is also important to examine the radial position of maximum
azimuthal electric field intensity where the gyrating electron beam is
located for optimum beam-wave interaction. For this examination, one
has to first substitute the solutions of the dispersion relation (14) into
the azimuthal electric field intensity component (2) for 0 ≤ r < rSH ,
(4) for rSH ≤ r < rBH , and (6) rBH ≤ r < rW , respectively, in
regions I, II and III; and, secondly, while selecting the solution of
the dispersion relation, one has to choose β0 ≈ 0, that correspond
to the cut-off frequency of interaction structure where a gyro-TWT
operates, in order to reduce the effect of beam-velocity spread and
pulse distortion. It is interesting to note that the change in structure
parameters not only shapes the dispersion characteristics and controls
the passband, but also controls the position of maximum azimuthal
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Figure 6. Normalized group-
velocity verses normalized
frequency characteristics of the
structure under study, taking
bigger hole-radius (rBH /rW ) as
the parameter. Special cases
leading to disc-loaded circular
waveguide of constant disc-hole
radius (broken curve).

Figure 7. Azimuthal electric
field intensity variation over the
radial coordinate in the structure
under study, taking the structure
periodicity (L/rW ), as the param-
eter.

electric field intensity for positioning of the gyrating electron beam
(Fig. 7). It has been observed that with increase of structure-
periodicity the position of maximum azimuthal electric field intensity
shifts away from the axis (Fig. 7). It is obvious that as the discs come
closer, the electric field available between the discs decreases and the
field strength increases in the disc free region radialy away from disc,
and in turn accordingly the shift of azimuthal electric field maxima
occur.

In an overview, the approximation used while eliminating the field
constants, in particular, while calculating ξ (= BII

m /AII
m ) makes the

analysis as well as the numerical program simple. (Here, m and p
are considered as 1 for lowest order modal harmonics.) However, in
addition, a rigorous analysis is tried considering numbers of m and p
values in boundary condition (7) and averaging the field values over
the axial limit between the two consecutive discs of smaller hole-radii.
The rigor of the analysis for BII

m /AII
m converges to the value very close

to that obtained using (10), and also the results obtained by presented
analysis (Section 2) are validated against those obtained using HFSS.
Therefore, instead of rigorous analysis, which makes the dispersion
relation bulky and takes the computational time ∼ 10 to 15 times
more than that of simple analysis, the simple analysis is presented.
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4. CONCLUSION

The authors have proposed a novel interaction structure, which is
a disc-loaded circular waveguide of varying inner radii of alternate
discs, for a wideband gyro-TWT. The structure periodicity and the
disc-thickness of bigger-hole-disc are, respectively, the most and the
least responsive for the passband as well as for dispersion shaping.
In addition to dispersion shaping, which is required for designing
a broadband gyro-TWT, the structure also holds a fascinating
characteristic of increase in passband with increase as well as with
decrease of disc-thickness of smaller-hole-disc with reference to that
of bigger-hole-disc. The passband improvement can be achieved by
varying the disc radii for a given beam-mode dispersion characteristic.
In the present manuscript, only the dispersion analysis has been
presented in absence of gyrating electron-beam, however, the authors
are aware that the broadbanding may be better seen in gain-frequency
response obtained in the beam present small signal analysis, as has
been done earlier by authors.
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