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Abstract—In this paper, a new approach to build a dual-band
impedance transformer is presented. The transformer can handle
impedances that are complex and vary with frequency. This
transformer contains a Pi-section structure, which can be equivalent to
having two different electrical lengths at the two operating frequencies.
One of the electrical lengths serves as complementary angle of the
other. In this way, the conjugate impedances obtained through
previous process are transformed to real impedance concurrently. All
parameters are derived from closed-form equations. In addition,
several simulations as well as a fabricated power amplifier (PA) are
presented to verify the proposed transformer. The measured result
performs a good agreement with the simulated one in return loss and
gain. This transformer may find use in different stages of a transceiver
such as power amplifiers which operate at two independent frequencies.

1. INTRODUCTION

Wireless communication plays an important role in human life. With
the number of users increasing, new frequency bands are distributed for
wireless communication, such as the emergence of new bands in Global
System for Mobile communications (GSM) named GSM1800 and
GSM1900, as well as 3rd generation communication. In addition, many
wireless services present a characteristic of multi-band operation, the
Wireless Local Area Networks (WLAN), for example, operates at both
2.4GHz and 5.8 GHz. Furthermore, the coming long term evolution
(LTE), which will operate at multi-band, serves as a demonstration
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of the increasing prevalence of multi-band application. In fact, people
have developed a lot of dual-band microwave components [1–7]. To
cater the dual-band application, the impedance matching networks,
which are essential in different stages of a RF transceiver, should then
be transformed to multi-band impedance matching networks. To be
more precise, the multi-band impedance matching should be achieved
using only one set of matching networks.

In recent years, much attention was paid on the configuration of
dual-band matching networks. In 2002, Y. L. Chow and K. L. Wan
developed a two-section 1/3-wavelength transformer that operated
at the fundamental frequency and its first harmonic [8]. Then
Monzon enhanced the structure so that the two frequencies can be
independent [9]. Also, Chebyshev impedance transformer provided
a way to transform real impedance at dual-band [10, 11]. Besides,
a Pi-structure transformer was developed to match real impedance
at two arbitrary frequencies [12]. However, these can just find use
in real impedance case. In most cases, such as power amplifier,
the source impedances and the load impedances are usually complex
and vary with frequency. To meet the requirement, some methods
to match complex impedance are used [13–21]. In [13], impedances
at each frequency were transformed to be identical real impedance
using a transmission line and two stubs and then the two-section
transformer in [9] was employed. Composite right/left-handed (CRLH)
transmission lines were also used to match two frequency-dependent
impedances [14]. In [15], a three-section impedance transformer
was used to deal with the problem. Also, the structure of T-
section impedance transformer was proposed [16], in which, two serial
transmission lines with a stub in the junction transformed frequency-
dependent complex loads to real impedance. In addition, Rawat and
Ghannouchi employed the structure which acted as 90◦ transformers at
both frequencies while bearing different characteristic impedances [17].
In [18], a dual-band impedance transformer using two-section shunt
stubs was proposed, in which the high impedances were avoided by
assigning the characteristic impedances of transmission lines first. The
methodology of matching complex load impedance to complex source
impedance was also proposed in [19]. The authors used lumped
circuits to match frequency-dependent complex impedances according
to the locations of the impedances when symbolizing them in Smith
chart [20]. Even a hex-band power amplifier was developed using
specific numerical method to determine the parameters of the matching
networks [21].

In this paper, a transformer containing a Pi-section structure
is proposed to match frequency-dependent complex loads to real
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Figure 1. Topology of proposed dual-band impedance transformer.

impedance at both the operating frequencies concurrently. Closed
form equations are used to determine the parameters of each section.
To verify the design, a 900/2140 MHz dual-band power amplifier is
realized with input/output matching networks designed based on the
proposed methodology. A good agreement between simulation and
measurement is obtained.

2. DUAL-BAND IMPEDANCE TRANSFORMER

Figure 1 shows the topology of the proposed dual-band impedance
transformer. The proposed transformer is designed to match
frequency-dependent impedances to real impedance Z0 (mostly 50Ω
or 75 Ω in practice) at both frequencies.

In Figure 1, ZL represents the load impedance. Usually it is
complex and varies with frequency. So we can just rewrite it as follow:

ZL =
{

ZL1 = RL1 + j ×XL1 at f1

ZL2 = RL2 + j ×XL2 at f2
(1)

Here in this paper, f1 and f2 represent the two operating
frequencies. Generally, there is no relationship between f1 and f2 (f2

is assumed to be larger than f1). Besides, ZL is frequency-dependent.
Therefore, RL1 and RL2 as well as XL1 and XL2 are not related,
respectively. TL1, TL2 and the Pi-section structure form the proposed
dual-band impedance transformer. Several procedures are done before
the whole matching process is achieved. Specifically, TL2 is not always
needed, so a different symbol is used to denote TL2.
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2.1. TL1

TL1 acts as a pre-transformer, which transforms the two independent
impedances to conjugate ones. The process can be done by properly
choosing TL1. The characteristic impedance and electrical length of
TL1 can be determined using the following formulas [15]:

Z1=
√

RL1×RL2+XL1×XL2+
XL1+XL2

RL2−RL1
×(RL1×XL2−RL2×XL1) (2)

θ1=arctan
[

Z1 × (RL1 −RL2)
RL1 ×XL2 −XL1 ×RL2

]
+ i× π i = 0, 1, 2 . . . (3)

Here, θ1 is defined at the frequency of f0 (= f1 + f2). Obviously,
“i” should be chosen properly so that θ1 > 0. Generally, “i”
is determined taking two factors into consideration, the dimension
of transmission line and the input impedance transformed (Zin1 in
Figure 1). A proper value of “i” should be selected so that the
transmission line is easy to fabricate and the impedance transformed
makes an advantageous prerequisite for the next processes.

Once TL1 is determined, the basic impedance transforming
formula can be employed to calculate the value of Zin1

Zin1 = Z1 × ZL + j × Z1 × tan θ

Z1 + j × ZL × tan θ
(4)

In (4), θ stands for the corresponding electrical length at a
frequency. Apply (4) at f1 and f2, the impedances transformed at
both frequencies can be determined.

Here, since the electrical length of a transmission line is
proportional to operating frequency, the value of Zin1 should be
obtained using the following two equations

Zin1 =





Z1 × ZL1 + j × Z1 × tan[p1 × θ1]
Z1 + j × ZL1 × tan[p1 × θ1]

at f1

Z1 × ZL2 + j × Z1 × tan[p2 × θ1]
Z1 + j × ZL2 × tan[p2 × θ1]

at f2

(5)

In the equations above, p1 and p2 are defined as the fractions of each
frequency to the sum frequency.




p1 =
f1

f1 + f2

p2 =
f2

f1 + f2

(6)

As discussed above, the values of Zin1 at the two frequencies are
conjugate. That is to say, after the transformation of TL1, the input
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impedances follow the following form:

Zin1 =
{

Rin1 + j ×Xin1 at f1

Rin1 − j ×Xin1 at f2
(7)

2.2. Analysis of the Possible Locations of Zin1

After the transformation of TL1, we get a pair of impedances.
When the impedances are symbolized in Smith chart, they should be
symmetrical with respect to the horizon axis standing for pure real
impedance.

Now, what is cared about in this paper is which section of the
Smith chart encloses the impedances. Considering the possible results
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Figure 2. The three possible locations of Zin1: (a) R̃ > 1; (b) G̃ > 1;
(c) R̃ ≤ 1 and G̃ ≤ 1.
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Smith chart can be divided into three sections. Figure 2 shows the
separation of Smith chart according to possible locations of Zin1.

Here, the Smith chart is divided into three sections. Using R̃ and
G̃ as the normalized (normalized by Z0) resistance and conductance,
respectively, the three sections can be described as R̃ > 1, G̃ > 1, and
the remnant (including the boundaries R̃ = 1 and G̃ = 1). Different
analysis should be performed in each situation.

2.2.1. Case 1

In this case, Zin1 is located inside the circle of R̃ = 1 (Figure 2(a)).
Now let’s take one of the impedances into consideration, for instance,
the impedance at f1 which is Rin1 + j × Xin1. We can always find a
transmission line bearing specific characteristic impedance ZT1 as well
as a special electrical length θT1 to transform the impedance to Z0.
This is shown in Figure 3.

Now let’s consider the process of transforming Rin1+j×Xin1 to Z0

by employing only one transmission line, which is shown in Figure 4.
Assume the conjugate matching is achieved. Z ′in1, which is

the input impedance when looking leftward in the right edge of the
transmission line should be conjugate with Rin1 + j ×Xin1. Thus the
following equation should be satisfied:

Z ′in1 = ZT1 × Z0 + j × ZT1 × tan θT1

ZT1 + j × Z0 × tan θT1
= Rin1 − j ×Xin1 (8)

Rearrange the equation above and separate the real part and
imaginary part in both sides. The following two independent equations
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can be obtained:{
ZT1 × Z0 = Rin1 × ZT1 + Xin1 × Z0 × tan θT1 from real part

Z2
T1×tanθT1=Rin1×Z0×tanθT1−ZT1×Xin1 from imaginary part

(9)

It is easy to obtain the solutions of the equations above:




ZT1 =

√
X2

in1 × Z0

Rin1 − Z0
+ Rin1 × Z0

θT1 = arctan
[
ZT1 × (Rin1 − Z0)

Xin1 × Z0

]
+ q × π

(10)

Here, “q” is an integer and should be chosen properly so that θT1

is involved in range (0, π). The other impedance Rin1−j×Xin1 can be
analyzed in the same way. We can easily get ZT2 and θT2 by replace
“Xin1” with “−Xin1” because of the conjugate relation between the
two impedances. Then we get the relations between ZT1 and ZT2 as
well as θT1 and θT2, respectively.

{
ZT2 = ZT1

θT1 + θT2 = π
(11)

2.2.2. Case 2

This time, Zin1 is located in the area G̃ > 1 (Figure 2(b)). We can still
use the methodology in case 1 to get the relations between ZT1 and
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ZT2 as well as θT1 and θT2. So (11) is still satisfied. In case 2 the value
of ZT1 (= ZT2) is smaller than Z0, while in case 1, it’s larger than Z0.
Figure 5 shows the sketch of the matching, where Gin1 stands for the
conductance of Zin1.

2.2.3. Case 3

If Zin1 is not located in area of R̃ > 1 nor G̃ > 1. (Figure 2(c)) There
won’t be a single transmission line that is able to transform Zin1 to Z0.
Then, an extra stub should be taken into use. As shown in Figure 1,
TL2 is added before the next process.

TL2 may be an open stub or a short stub. Here all impedances
are turned to admittances. As Figure 6 shows, with characteristic
admittance of Y2 and electrical length of θ2 (at frequency f = f1 +f2),
the input admittances of the stub are obtained:

open stub :
{

Yins1 = j × Y2 × tan[p1 × θ2] at frequency f1

Yins2 = j × Y2 × tan[p2 × θ2] at frequency f2
(12)

short stub :
{

Yins1 = −j × Y2 × cot[p1 × θ2] at frequency f1

Yins2 = −j × Y2 × cot[p2 × θ2] at frequency f2
(13)

Here, the footnote “ins1” and “ins2” denote the two frequencies.
By properly choosing an extra stub, Zin1 is transformed into Zin2, and
Zin2 should be inside the circle R̃ = 1 and keep conjugate at the two
frequencies, thus the analysis in case 1 is available. In (12) and (13),
“p1” and “p2” are defined in (6), so p1 + p2 = 1 is satisfied. Now if
we choose θ2 to be π, the input admittance at one frequency will be
opposite number of input admittance at the other frequency. Then
Yin2 can be determined.

Yins1 = −Yins2 (14)

Yin2 =
{

Gin1 + j ×Bin1 + Yins1 at f1

Gin1 − j ×Bin1 + Yins2 at f2
(15)

As a consequence, the two values of Yin2 at the two frequencies will
be conjugate. Here, Y2 is not fixed, but Zin2 will vary with the value
of Y2 and thus affects the coming process. Besides, the stub is chosen
open or short based on the locations of Zin1 at the two frequencies.
Figure 7 is an example in which an open stub is employed. Here, Zin1

at f1 is inductive while Zin1 at f2 is capacitive.
By resorting to TL2, Zin1 is transformed toZin2 and thus able to

be analyzed using the same methodology in case 1.
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2.3. Pi-section Structure

Once Zin2 meets the requirement of case 1 or case 2 (in case 1
and 2, TL2 doesn’t exist and Zin2 is equal to Zin1), We can always
find two transmission lines transforming Zin2 to Z0 at the two
frequencies, respectively. As illustrated above, the electrical length
of the transmission lines at the two frequencies (θT1 and θT2) should
sum to π and the characteristic impedances at the two frequencies
should be identical. The problem lies in that a single transmission line
which meets the requirements doesn’t exist, because θT1 and θT2 are
independent from frequencies. So an equivalent structure is needed.

In this paper, a Pi-section structure is designed to act as a
transmission line that bears the characteristics discussed above. The
Pi-section structure is shown in Figure 8.

The Pi-section structure consists of three transmission lines, a
serial transmission line and two identical stubs. The serial line has
a characteristic impedance of Zm and electrical length of θm. And
each stub contributes an input admittance of j ×Bn. Since Pi-section
structure is composed of three serial sections, ABCD matrix provides
a good way to analyze the structure. By equalizing the ABCD matrix
of the Pi-section structure and that of the single transmission line,
some equations may be constructed and solved.

The ABCD matrix of the Pi-section is presented when multiplying
the three individual ABCD matrices

Aπ =A1×A2×A3=
[

1 0
j×Bn 1

]
×

[
cos θm j×Zm×sin θm

j× sin θm
Zm

cos θm

]
×

[
1 0

j×Bn 1

]
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=
[

cos θm −Bn × Zm × sin θm

j × sin θm
Zm

× (
1− Z2

m ×B2
n + 2× Zm ×Bn × cot θm

)

j × Zm × sin θm

cos θm −Bn × Zm × sin θm

]
(16)

Here, “A2” represents the ABCD matrix of serial transmission line
of the Pi-section structure. “A1” and “A3” are the ABCD matrices of
the two stubs.

Meanwhile, a single transmission line has ABCD matrix as follow:

AT =
[

cos θT j × ZT × sin θT

j × sin θT
ZT

cos θT

]
(17)

Here, ZT and θT stand for the characteristic impedance and the
electrical length of a transmission line, respectively. Equalize every
element in Aπ and AT , respectively. Three equations are obtained:

cos θm −Bn × Zm × sin θm = cos θT (18)
j × Zm × sin θm = j × ZT × sin θT (19)

j × sin θm

Zm
×(

1−Z2
m ×B2

n+2×Zm×Bn×cot θm

)
=j× sin θT

ZT
(20)

It seems that we have to solve three equations, however, (20) is not
an independent equation. Once (18) and (19) are obtained, (20) will
always be exact. Here is the demonstration.

From (18), we get the following equation:

Bn × Zm =
cos θm − cos θT

sin θm
(21)

Substitute (21) into (20) and the left side of the equal sign is
transformed to:

j×sin θm

Zm
×

[
1−

(
cos θm−cos θT

sin θm

)2

+2× cos θm−cos θT

sin θm
×cot θm

]
(22)

After been simplified, (22) becomes the following formula:

j × sin2 θT

Zm × sin θm
(23)

Then, use (19), the equation above is transformed to be j ×
sin θT /ZT , which happens to be the right side of the equal sign in (20).
As a consequence, we have only two independent Equations (18)
and (19).

Now equations should be applied at the two operating frequencies.



Progress In Electromagnetics Research C, Vol. 32, 2012 21

From Equation (19), the electrical lengths at the two frequencies
satisfy the following formula:

sin θm1 =
ZT × sin θT1

Zm
(24)

sin θm2 =
ZT × sin θT2

Zm
(25)

The footnotes “m1” and “m2” denotes the frequencies f1 and f2,
respectively. And we have known that θT1 + θT2 = π. Then, sin θm1 is
always equal to sin θm2, that means

θm1 + θm2 = k × π k = 1, 3, 5 . . . (case a)
or
θm2 − θm1 = l × π l = 2, 4, 6 . . . (case b)

(26)

To obtain a smaller dimension, case a should be chosen. What’s
more, k should be the smallest available value, k = 1. That means, the
electrical length at frequency f0(= f1 + f2) is π. Hence, θm1 = p1×π,
and θm2 = p2×π.

Then Zm can be determined following equation derived from (19):

Zm =
ZT × sin θT1

sin θm1
(27)

Now rewrite Equation (18) at each frequency.

cos θm1 −Bn1 × Zm × sin θm1 = cos θT1 (28)
cos θm2 −Bn2 × Zm × sin θm2 = cos θT2 (29)

The footnotes “n1” and “n2” denote the two frequencies f1 and
f2. Here, cos θT1 is the opposite number of cos θT2, so the following
equation should always be satisfied:

cos θm1−Bn1×Zm× sin θm1 = −(cos θm2−Bn2×Zm× sin θm2) (30)

Consider the following relations:

cos θm1 = − cos θm2 (31)
sin θm1 = sin θm2 (32)

If only Bn1 is the opposite number of Bn2, (30) can always be
satisfied. As the input admittances of the stubs can be described as:

open stub :
{

Bn1 = Yn × tan θn1 at frequency f1

Bn2 = Yn × tan θn2 at frequency f2
(33)

short stub :
{

Bn1 = −Yn × cot θn1 at frequency f1

Bn2 = −Yn × cot θn2 at frequency f2
(34)
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In order to makeBn1 opposite to Bn2, the following relation should
be satisfied:

tan θn1 = − tan θn2 or cot θn1 = − cot θn2 (35)

From which we can get the following:

θn1 + θn2 = r × π r = 1, 2, 3 . . . (36)

Usually, “r” is chosen to be 1 for miniaturization’s sake. That means
the electrical length of the stub is π at frequency f0(= f1 +f2). Hence,
θn1 = p1 × π, and θn2 = p2 × π.

With the electrical length of the stubs determined, Bn1 can be
calculated by applying (18) at frequencyf1.

Bn1 =
cos θm1 − cos θT1

Zm × sin θm1
(37)

If Bn1 > 0, the subs should be open, the characteristic admittance is
determined by:

Yn =
cos θm1 − cos θT1

tan θn1 × Zm × sin θm1
(38)

If Bn1 < 0, the stubs are short, then Yn is calculated from:

Yn = − cos θm1 − cos θT1

cot θn1 × Zm × sin θm1
(39)

In special case, Bn1=0, that means the following equation is satisfied:
θT1

θT2
=

f1

f2
(40)

In this case, the stubs of Pi-section are no longer needed, and a single
transmission line is able to transform Zin2 to Z0 at both the frequencies.

3. NUMERICAL EXAMPLES

To verify the proposed impedance transformer, several examples for
dual-band matching are presented. All of the impedances are derived
from simulation based on GaN HEMT CGH40010. The impedances
may be used in input matching or output matching.

The parameters of the proposed impedance transformer in
different situations are tabulated in Table 1.

Here, case 1 and case 3 are for input matching networks. Case 2
and case 4 are for output matching networks. θ1 is determined at
frequency f0(= f1 + f2). θ2, θm, and θn which are not mentioned in
the table are all 180◦ at frequency f0. Z2 = 1/Y2, and “/” means TL2
is not necessary, which indicates that case 1 and case 2 in Section 2.2
is obtained when evaluating the value of Zin1. Z0 is 50 Ω in all cases.
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Table 1. Numerical examples of the transformer.
HHHHH

case 1 case 2 case 3 case 4

f1/GHz 0.9 0.9 1.96 1.96

f2/GHz 2.14 2.14 3.5 3.5

RL1/Ω 47.088 9.734 4.699 18.993

XL1/Ω −55.200 4.230 −3.248 −8.247

RL2/Ω 11.063 8.385 7.131 16.315

XL2/Ω −10.289 −0.575 −33.9008 1.503

Z1/Ω 36.3082 22.2133 47.1479 26.612

θ1/angle 84.4895 102.188 40.1085 23.6035

Z2/Ω

(O/S)
26 (S) / / /

Zm/Ω 57.429 29.1497 11.2026 30.3126

Zn/Ω

(O/S)
49.0735 (O) 31.626 (O) 27.9839 (S) 79.1106 (O)

1 2 3 4
-30

-20

-10

0

S
  
  
(d

B
)

Freq (GHz)

 case 1
 case 2
 case 3
 case 4

11

Figure 9. Simulated return loss
of the examples.

Figure 10. Photograph of the
0.9/2.14GHz power amplifier.

The symbol “O” and “S” in the bracket following some
characteristic impedances denote open stubs and short stubs,
respectively. Simulation is performed based on the parameters in
Table 1. Figure 9 shows the simulated return loss of the numerical
examples.

4. EXPERIMENT

In this paper, a 0.9/2.14 GHz dual-band power amplifier is designed
based on the dual-band impedance transformer proposed. The
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Figure 11. Simulated and
measured return loss of the
0.9/2.14GHz power.
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Figure 12. Simulated and
measured small signal gain of the
0.9/2.14GHz power amplifier.

input/output matching networks are fabricated using the parameters
in Table 1. In addition, extra circuits for DC bias, stability and
DC block are employed. Here, the short end of TL2 is realized
through two parallel capacities bearing two resonance frequencies those
happen to be the operating frequencies. The photograph of the
amplifier is shown in Figure 10. The PA is fabricated using RO4350B
(εr = 3.48, thickness = 20 mil, 1 oz. copper). The proposed PA
was measured using Agilent Network Analyzer. Figures 11 and 12
show the reflection coefficient (S11) and the small signal gain (S21),
respectively. In each figure, a comparison between simulation and
measurement is performed. From the comparison, a good accordance
between simulation and measurement is obtained.

5. CONCLUSION

In this paper, a new methodology for dual-band frequency-dependent
complex impedance matching is proposed. Closed-form equations
are obtained after analyzing the structure in detail. In addition,
a 900/2140 MHz power amplifier was realized using the proposed
methodology. A good agreement between simulation and measurement
is obtained, which substantiates the validity of the dual-band
impedance transformer.
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