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Abstract—In this paper, the RII depressed core triple clad based
structure as Zero-dispersion Shifted optical fiber is optimized to obtain
small pulse broadening factor (small dispersion and its slope) and low
bending loss suitable for long haul communications. The proposed
structures allow reducing the dispersion, its slope and the bending
loss. The Genetic Algorithm (GA) and the Coordinate Descent
(CD) technique are used for the optimization. The suggested design
approach involves a special cost function which includes dispersion,
its slope, and bending loss impacts. The proposed algorithm and
structure have inherent potential to obtain large effective area and
extend tolerance of bending loss simultaneously. Meanwhile, an
analytical method is used to calculate the dispersion and its slope.
In the meantime, the thermal stabilities of the designed structures are
evaluated.

1. INTRODUCTION

For long distance transmission, small broadening factor (small
dispersion and its slope), small nonlinearity (large effective area), and
less bending loss are needed. Gathering all these properties in the
proposed fibers is so hard and usually there is a trade off between
nonlinearity and bending loss. Meanwhile, introducing a dispersion
shifted fiber including small dispersion slope is difficult to realize.
Owing to loss, the amplitude of the pulse is reduced so that the initial
information can not be restored in noisy conditions. So in fiber design,
one likes to shift the zero dispersion wavelength to the region that fiber
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has lowest level attenuation. The combination of natural attenuations
of silicon based optical fiber has a global minimum around 1.55µm and
that is why most optical communication systems are operated at this
wavelength.

We are going to review some interesting reported papers. As a first
and interesting work, we will discuss the paper presented by Savadi et
al. [1]. In that paper, the authors have introduced a design method to
control the chromatic dispersion and its slope simultaneously. For the
proposed MII fiber structures, the small dispersion and its slope have
been obtained thanks to a design method based on genetic algorithm.
But there is no any concentration on the bending loss characteristic
at the design process. A class of low nonlinearity dispersion shifted
fibers based on depressed core multi-step index profile was investigated
in [2, 3]. A systematic approach for designing these fibers is presented
in which a reference depressed inner clad called W-type fibers is used
to initiate the design. Transmission properties, including effective
area, mode field diameter, dispersion, dispersion slope, and cutoff
wavelength were evaluated for several design examples. The effects
of varying fiber dimensions and indices on effective area and mode
field diameter were assessed. Also, the bending loss is investigated in
this paper. Theoretical method to analyze three-layer large flattened
mode fibers was presented in [4]. The modal fields, including the
fundamental, higher order modes, and bending loss of the fiber are
analyzed. Recently, in [5], the authors have stabilized the analytical
approach to calculate the dispersion and dispersion slope. Due to
analytically based relationships, this strategy accurately covers all the
numerical method presented so far. For a case study, the given method
has been used to analyze the M-type fiber structure. A bending loss
formula for the optical fibers with an axially symmetric arbitrary-index
profile was derived by approximating the refractive index profile with
a staircase function [6]. The permissible bending radius R∗ defined
for a given value of bending loss was evaluated. That paper is a
basic publication in the bend loss calculation domain. The refractive
index thermal coefficient has been analyzed by Gosh [7], for three
optical fiber based glasses in a physically meaningful model for the
first time to compute refractive indexes at any operating temperature
and wavelength. He believes that the energy gap corresponding to the
peak position of the electronic absorption which lies in the vacuum
ultraviolet (VUV) spectral region is the major contributor to the
dispersion of thermo-optic coefficients of these glasses.

In this work, we present a novel design method to manage
dispersion and dispersion slope curves and control bending loss
property simultaneously. Our proposal is based on the Genetic



Progress In Electromagnetics Research M, Vol. 26, 2012 117

Figure 1. Index of refraction profile for RII structure.

Algorithm (GA) and Coordinate Descent (CD) with introducing
appropriate cost function for demanded targets. We use this strategy
to design a Zero Dispersion Shifted Fiber (ZDSF) based on the R
type depressed core triple clad single mode fiber. The results prove
efficiency of this method which could obtain small dispersion slope
and bending loss simultaneously. Meanwhile, the optical transmission
characteristics as a function of temperature are investigated.

2. MATHEMATICAL FORMULATION

The mathematical background to extract the properties of the
suggested structure is introduced in this section. The index refraction
profile of the RII fiber structure is shown in Figure 1. According to the
LP approximation to calculate the electrical field distribution, there is a
region of operation and the guided modes and propagating wave vectors
can be computed by using a determinant which is constructed by
boundary conditions [8]. It is well-known that in this approximation,
the modes are assumed to be nearly transverse and can have an
arbitrary state of polarization.

To calculate the dispersion, its slope and bending loss
characteristics of the structure, the geometrical and optical parameters
are defined as follows.
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Furthermore, the transversal propagating constants are defined as
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follows.
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where βg is the longitudinal propagation wave vector of the guided
modes and k0 the wave number in vacuum. In the following, in order
to calculate the dispersion and its slope in the proposed structure, the
total dispersion (D) and the dispersion slope (S) are given.
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where N4 = n4 − λ(dn4/dλ) is the group index of the outer cladding
layer, andV and B are the normalized frequency and normalized
propagation constant defined by:

V = k0a
√

n2
2 − n2

4, B =
βg/k0 − n4

n2 − n4
. (6)

The Sellmeier formula is used to calculate the material dispersion. It
should be mentioned that the first, second and third order derivatives
of VB is computed analytically and used the approach which has been
outlined by Rostami et al. in [5].

The bending loss is one of the most important factors to evaluate
the overall fiber losses. It is manifestly clear that the optical fiber
loses the power by radiation if its axis is curved. Using the method
introduced and discussed by Sakai and Kimura [6], the radiation loss,
owing to the uniform bending, can be obtained. In this method,
it is supposed that the field near the inner layers in the curved
fiber is similar to that in the straight one. This approximation is
greatly accurate to evaluate the radiation losses in single mode optical
fiber. Then expansion coefficients of a field expansion are identified
in the terms of cylindrical waves. These coefficients can be gained by
matching the field expansion with the mode field of straight one. The
bending loss coefficient is written as:
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where c denotes the radius of the third boundary, by referring to
Figure 1. R is the radius of curvature of the bending, and w is given by
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γ4c. A4 and γ4 are respectively the constant component of the electrical
field of the outer layer and its transversal propagating constant, and V
is normalized frequency. Regarding to the LP mode order, s is defined
as:

s =
{

2 υ = 0
1 υ 6= 0 . (8)

According to the relation between the effective refractive index and
the layers refractive index, P is explained as P = ΣPi.
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Jυ, Yυ, Iυ, and Kυ are the Bessel and modified Bessel functions of
order υ, respectively. The related arguments of the Bessel and modified
Bessel functions are left out for brevity. ai indicates the radius of the
ith boundary. Ai and Bi (i = 1, 2, 3, 4) are constant and computed
by applying the electric and magnetic field continuities at boundaries.

It is apparent that the transmission performances are manipulated
and optimized by controlling the optical and geometrical parameters in
the fiber structures. As a result, any undesired alteration in the fiber
structure parameters, can distract the transference performances. The
refractive index variation as a function of temperature (dn/dT ) is the
critical feature in the optical fibers. The method used in this paper
has been introduced by Ghosh [7]. In this model, the Thermo-optic
coefficient dn/dT contains the contribution of electrons and optical
phonons. Consequently, it can be described in the optical transmission
range in terms of linear expansion coefficient α and the temperature
variation of energy gap (dEg/dT ) by the relation [9]
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· dEg
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g(
E2
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)
]

(11)

where χe, E, and Eg are the electronic susceptibility, photon energy,
and the suitable energy gap lying in the vacuum ultraviolet regio,
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Table 1. Interpolated coefficient in the relation 2n · dn/dT = GR +
HR2.

G (10−6/◦) H (10−6/◦) λg (µm) α (10−6/◦)
−1.6548 31.7794 0.109 0.45

respectively. The above equation can be rewritten in terms of a
normalized wavelength R = λ2/(λ2 − λ2

g) as

2n

(
dn

dT

)
= GR + HR2 (12)

where the constants G and H are related respectively to the thermal
expansion coefficient (α) and the energy gap temperature coefficient
(dEg/dT ) according to the relations presented in [7] and their values
are given in Table 1 for silica glasses.

3. DESIGN ALGORITHM

As said earlier, we attempted to present an optimized RII triple-clad
optical fiber to obtain the wondering performance from dispersion,
its slope, and bending loss points of view. The design method is
based on the combination of the GA and CD approaches. It is well
known that the GA is the scatter-shot and the CD is the single-shot
searching technique. The single-shot search is very quick compared
to the scatter-shot type, but depends critically on the guessed initial
parameter values [10]. This description indicates that for the CD
search, there is a considerable emphasis on the initial search position.
On the other hand, the GA is useful in the domains that are not
understood well. In this method, it is possible to define a cost
function and evaluate every individuals of the population with it.
So we have combined the CD and GA methods to improve the
initial point selection with the help of generation elite and inherit the
quick convergence of coordinate descent. In other words, we cover
and evaluate the answer zone by initial population and deriving few
generations and use the elite of the latest generation as an initial search
position in the CD (Figure 2).

To derive the suggested design methodology, the following
weighted cost function is introduced. In fact, the weighting function is
necessary to describe the relative importance of each subset in the
cost function; in other words, we let the pulse broadening factor
have different coefficient in each wavelength. Meanwhile, we have
normalized the pulse broadening factor in the manner to be comparable
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Figure 2. The block diagram of the proposed method.

with bending loss. This normalization is essential to optimize the pulse
broadening factor and bending loss simultaneously. If not, the bending
loss impact will be imperceptible and be lost in the broadening factor
term.
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where ti, Z, λ, λ0, β2, β3, σ and BL are, respectively, initial full
width at half maximum of input pulse, distance, wavelength, central
wavelength, the second derivative of the guided wave vector, the third
derivative of the guided wave vector, Gaussian parameter and bending
loss quantity. The bending radius is set on 1 cm and kept still. The cost
function includes dispersion (β2), dispersion slope (β3), and bending
loss (BL) impacts. In the defined weighted cost function, internal
summation is proposed to include optimum broadening factor for each
length up to 200 km. One can adjust the zero-dispersion wavelength
at λ0 and dominate the dispersion slope by Gaussian parameter (σ).
The advantage of this design method is introducing two parameters (λ0

and σ) instead of multi-designing parameters (optical and geometrical),
which makes system design easy.

4. SIMULATION RESULTS

Based on the developed cost function, the simulation results are
presented in this section. All simulations are done at λ0 = 1.55 µm
with σ as parameter. To carry out the simulations, the weighted
cost function introduced in Section 3 is used. The wavelength and
distance durations for optimization are 1.5µm < λ < 1.6µm and
0 < Z < 200 km. In the simulations an unchirped initial pulse with
5 ps as full width at half maximum is used.
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Figure 3. Dispersion vs. wavelength at λ0 = 1.55µm.
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Figure 4. Dispersion slope vs. wavelength at λ0 = 1.55 µm.

First, the obtained dispersion behaviors of the structures are
illustrated in Figure 3 which obviously demonstrates the λ0 and σ
parameters influences. It is clear that the zero-dispersion wavelength
is successfully set on λ0 and the dispersion curve is become flatter in the
higher σ cases. In other words, by introducing two design parameters,
the dispersion behavior of the structures can be managed.

The dispersion slope is strongly affected by the presence of σ
in such a manner that its increase has a considerable influence on
dispersion slope and drops it obviously. This fact is easily visible
on Figure 4 which shows the dispersion slope versus wavelength with
variance of σ as parameter.
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Table 2. Dispersion, dispersion slope, bending loss, and affective area
at λ0 = 1.55 µm and three given Gaussian parameters.

type

D

(λ = 1.55 µm)

(ps/km/nm)

S

(λ = 1.55 µm)

(ps/km/nm2)

BL

(λ = 1.55 µm)

(dB/m)

Aeff

(λ = 1.55 µm)

(µm2)

σ = 0.00 1.38e-4 0.048 1.90e-2 86

σ = 1.12e-8 −6.15e-4 0.041 1.67e-1 82

σ = 3.69e-8 4.50e-2 0.035 4.66e-2 86

Table 3. The optimal values of optical and geometrical parameters
for three different designs.

type a (µm) p q R1 R2 ∆

σ = 0.00 2.2102 0.8934 0.3927 1.0602 −0.5743 8.791e-3

σ = 1.12e-8 2.5580 0.8328 0.4063 1.6255 −0.4491 8.993e-3

σ = 3.69e-8 2.4331 0.8513 0.3927 1.0962 −0.5743 8.949e-3

To show the capability of the proposed algorithm, Table 2
is presented to clarify the different characteristics of these three
structures. Also the optimal geometrical and optical parameters of the
designed fibers with different σ are listed in Table 3. By considering on
Figures 3, 4 and Table 2, it is clear that there is a trade-off between the
zero-dispersion wavelength tuning and the dispersion slope decreasing.
In other words, it is found out that the zero value for the σ parameter
can tune the zero-dispersion wavelength accurately (∼ 100 times better
than other cases).

The effective area or nonlinear behavior of the suggested structures
is listed in Table 2. These values are high enough for the optical
transmission applications. Owing to the special structure of the RII
type fiber, the field distribution peak has fallen in the first cladding
layer. As such most of the field distribution displaces to the cladding
region. This is the origin of large effective area in the designed
structures. The normalized field distribution of the RII based designed
structures is illustrated in Figure 5.

Bending loss represents an important role in the single mode
optical fiber design. The suggested structures bending loss behavior is
illustrated in Figure 6. The bending losses on 1.55µm with 1 cm radius
of the curvature are less than 1 dB/m and given in Table 2. These
results are outstanding compared to the bending loss response of the
structure which is reported by Varshney et al. in [11]. In that paper,
the bend loss reported value at 1.55 µm for 5 cm radius of curvature



124 Makouei and Koozeh Kanani

a

b

c

0 2 4 6 8 10 12 14
r (µm)

a: σ = 0.0

b: σ = 1.12e-8

c: σ = 3.69e-8

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

N
o
rm

a
li

z
e
d
 F

ie
ld

 D
is

tr
ib

u
ti

o
n

Figure 5. Normalized field distribution versus the radius of the
fiber at λ = 1.55µm with σ as parameter (dashed, solid line, dotted,
and dashed-dotted curve represent the core and three cladding layers,
respectively).
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Figure 6. Bending loss (dB/m) Vs wavelength (µm) with 1 cm radius
of the curvature.

is near 2.5 dB/m which is extremely larger than the results presented
Table 2. The permissible bending radius R∗, where the loss value
reaches 0.1 dB/km are 1.32 cm, 1.56 cm and 1.41 cm for σ = 0.0, 1.12e-
8, and 3.69e-8 respectively.

Due to the refractive index thermo-optic coefficient and thermal
expansion coefficient, the optical and geometrical parameters are
altered. Consequently, the optical transmission characteristics of
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Table 4. Dispersion, dispersion slope, and bending loss thermal
coefficients at λ0 = 1.55µm and three given Gaussian parameters.

Type
dD/dT

(ps/km/nm/◦C)

dS/dT

(ps/km/nm2/◦C)

dλ0/dT

(nm/◦C)

dBL/dT

(dBL/m/◦C)

σ = 0.0 −1.22× 10−3 +2.83× 10−6 +2.5× 10−2 +3.97× 10−6

σ = 1.12e-8 −1.21× 10−3 +2.93× 10−6 +3.33× 10−2 +2.70× 10−5

σ = 3.69e-8 −1.21× 10−3 +2.93× 10−6 +2.5× 10−2 +8.79× 10−6

the optical fiber such as dispersion, its slope and bending loss are
confronted to change. In order to evaluate the thermal stability of the
designed structures, the following results are extracted and presented
in Table 4. The dD/dT , dS/dT , dλ0/dT , and dBL/dT expressions
are respectively the chromatic dispersion, its slope, zero dispersion
wavelength, and bending loss thermal coefficients at 1.55µm. It is
found out that this environmental factor must be considered in the
desired optical fiber design. For example, in the worst case, the zero
dispersion wavelength can be shifted more than 3 nm with 100◦C.

5. CONCLUSION

In this paper, we have focused on RII depressed core triple clad
single mode optical fiber and presented a combined optimization
approach to obtain desirable design goals. This design proposal is
a mixture of Evolutionary Genetic Algorithm and Coordinate descent
method. Furthermore, we have used the special cost function including
dispersion, its slope and bending loss impacts simultaneously. With
application of this cost function in the case of higher σ, we could
obtain the dispersion and dispersion slope in [1.5–1.6]µm interval to be
[(−1.77)–(+1.77)] ps/km/nm and [(0.037)–(0.033)] ps/km/nm2. Also
the amount of bending loss at 1.55µm with 1 cm radius of curvature
and effective area are 4.66e-2 dB/m and 86µm2, respectively. The
advantages of the proposed strategy are its capability to extend to
all fiber structures and introducing a couple of parameters instead of
multi-designing parameters. In the meantime, the thermal stabilities
of the designed structures are evaluated. Also it is mentionable that
the dispersion and its slope are calculated analytically.
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