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Abstract—Circular synthetic aperture radar (CSAR) imaging based
on compressive sensing with random step frequency (RSF) as
transmitted signal is introduced. CSAR is capable of obtaining
both two-dimensional high resolution image and three-dimensional
image due to a circular collection trajectory. RSF signal shares good
characteristics of noise signals including “thumbtack-shape” ambiguity
function, low probability of interception, and strong anti-jamming
capability. As a result, CSAR adopting RSF signal can make use
of advantages of both CSAR and RSF signal. Compressive sensing
is a new data acquisition and reconstruction theorem for sparse
or compressible signals, which needs fewer samples to reconstruct
signals than traditional Nyquist theorem. Simulation results show
that both two-dimensional and three-dimensional targets can be well
reconstructed from few samples by applying compressive sensing to
RSF CSAR imaging.

1. INTRODUCTION

In circular synthetic aperture radar (CSAR), both two-dimensional
(2D) high resolution image and three-dimensional (3D) image of targets
can be obtained because of the complete 360 degree synthetic aperture.
At present, CSAR has been widely used in automatic target recognition
(ATR) system for tank or vehicles [1–3], high resolution imaging of
building or urban area [4–7], detection of targets in the foliage or under
the ground [8], and detection of concealed objects in airport security
systems [9, 10].
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It is known that the random step frequency (RSF) signal, as one
of random noise signals, has “thumbtack-shape” ambiguity function
of low sidelobe and high resolution in range-Doppler domain, low
probability of interception, and strong anti-jamming capability [11, 12].
Axelsson analyzed that transmitting randomly changed frequencies
could suppress range ambiguity, improve covert detection, and reduce
signal interference between adjacent sensors [12]. It is obvious that if
RSF signal is used as the transmitting signal in CSAR system, one can
combine the advantage of CSAR with that of random signals.

Compressive sensing (CS), which is different from the traditional
Nyquist theorem, has been presented for sparse or compressible signals
recently [13–15]. So far, CS theorem has been widely used in the
signal processing of SAR [16–20]. Lin et al. applied CS to CSAR
imaging, aiming to reduce the number of samples and provide high
image quality [21]. In this paper, we apply CS to RSF CSAR imaging
of both 2D and 3D targets.

The rest of this paper is organized as follows. The echo model of
random step frequency CSAR is discussed in Section 2. The important
content about compressive sensing is briefly introduced in Section 3.
The principle of random step frequency CSAR imaging based on CS
is illustrated in Section 4, and simulation results of 2D and 3D targets
are given in Section 5. Finally, Section 6 contains conclusions.

2. THE ECHO MODEL OF RANDOM STEP
FREQUENCY CSAR

The CSAR imaging geometry is shown in Fig. 1(a). Its top view and
side view are shown in Figs. 1(b) and (c), respectively. Let’s denote
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Figure 1. (a) Geometry of CSAR imaging system. (b) Top view.
(c) Side view.
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the radar height as zc, and the flight radius as Rg. Then the slant
range can be expressed as,

R0 =
√

R2
g + z2

c (1)

and the slant depression angle can be calculated by

θ = arctan
(

zc

Rg

)
(2)

In linear step frequency radar, the center frequency is fc, and the
frequency is stepped linearly with frequency step of ∆f , i.e., the signal
can be expressed as,

fi = fc + i×∆f (3)

where i = −Nr/2, −Nr/2 + 1, . . . Nr/2, Nr is even, and Nr + 1 is the
total frequency number.

In RSF radar, frequencies are not linearly increased, but are
subjected to some random distribution. In order to simplify the model,
uniform distribution is adopted. Assume i is subjected to uniform
distribution over [−Nr/2, Nr/2], and then the frequency is denoted as
f ′i . If the discrete i is sorted by i′, i′ = 1, 2 . . . Nr, Nr + 1, then the
corresponding frequencies can be denoted as f ′1, f ′2, . . . f

′
Nr

, f ′Nr+1.
If there are P discrete 3D targets, the received echo signal of RSF

CSAR shall be,

S
(
k′, φ

)
=

P∑

p=1

σp exp
{−jk′Rp(φ)

}
(4)

where k′ = 2πf ′/c is wave number, c is light speed, p = 1, 2, . . . P is
the index number of point targets, σp is radar cross section, and Rp (φ)
is the slant range, which can be expressed as,

Rp (φ) =
√

(xp −Rg cosφ)2 + (yp −Rg sinφ)2 + (zp − Zc)2 (5)

where (xp, yp, zp) is the 3D coordinates of the p-th target.
For 2D targets, the echo model can also expressed by Equation (4),

and the target height is set to be zero, i.e., zp = 0 in Equation (5).

3. COMPRESSIVE SENSING

CS is a new signal sampling and reconstructing theorem. It mainly
includes three parts of sparse representation, incoherent measurement,
and signal recovery. CS theory states that if a signal has a sparse
representation in some basis, it can be approximately reconstructed
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with acceptable accuracy by using only few measurements. In the
following, one dimensional signal processing with CS will be described
in detail.

Let’s denote a real discrete signal of length N as x, which is sparse
in basis ΨT = [ψ1,ψ2 . . . ψN] where ψn (n = 1, 2, . . . N) is a vector of
same length N . It can be written as,

xN×1 = ΨN×N αN×1 (6)

where α are the corresponding coefficients of basis Ψ and have only
K ¿ N nonzero values.

Assume the signal is projected to measurement basis Φ =
[φ1, φ2 . . . φM ], where φm (m = 1, 2, . . . M) is a vector of length N ,
and the measurements can be written as,

yM×1 = ΦM×N xN×1 (7)

By substituting Equation (6) into (7), we obtain,

y = Φx = ΦΨα = Θα (8)

where Θ = ΦΨ and K < M .
If Θ satisfies the restricted isometry property (RIP), or Φ and Ψ

are incoherent, α can be recovered through (8). This recovery can be
implemented by solving an optimization problem with the minimum
l0-norm,

min
α
‖α‖l0

such that y = ΦΨα (9)

Echo data of RSF CSAR 
S[i, j]

Random measurement with noise
y

Reconstruction with BPDN 
(SPG algorithm)
Sparse basis Ψ 

Reconstructed 2D or 3Dtargets  

Compressive
sensing

'

σ

Figure 2. The procedure of RSF CSAR imaging based on CS.
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Table 1. The system parameters.

Frequency range [8GHz, 12GHz]
Radius of the flight track 200 m

Height locations of the radar 200 m
Radius of imaging area 0.2m

Table 2. The original 2D point targets.

Scatter

No.
(x, y) (m) Amplitude

Scatter

No.
(x, y) (m) Amplitude

1 (−0.1, −0.1) 1 6 (0, 0.1) 1

2 (−0.1, 0) 1 7 (0.1, −0.1) 1

3 (−0.1, 0.1) 1 8 (0.1, 0) 1

4 (0, −0.1) 1 9 (0.1, 0.1) 1

5 (0, 0) 1

Solving Equation (9) is NP-hard (non-deterministic polynomial-
time hard). However, it can be equivalent to the minimum l1-norm
reconstruction,

min
α
‖α‖l1

such that y = ΦΨα (10)

There are many ways to solve (10). After obtaining α, signal x is
also recovered through (6).

4. RANDOM STEP FREQUENCY CSAR IMAGING
BASED ON CS

Because of the random waveform, the traditional back projection
algorithm implemented by fast Fourier transform can not be used any
more. In Section 2, the echo model of RSF CSAR is built up, and the
frame of CS is introduced in Section 3. In this section, CS is applied
to the imaging processing.

By dividing the 3D target scene into M×N×L pixels, the received
echo expressed by (4) can then be rewritten as,

S[i′, j] =
L∑

l=1

N∑

n=1

M∑

m=1

σmnl exp {−jki′Rmnl(φj)} (11)

where Rmnl(φj)=
√

(xmnl−Rgcosφj)2+(ymnl−Rgsinφj)2+(zmnl−Zc)2,
j = 1, 2 . . . Na and i′ = 1, 2 . . . Nr, Nr +1. If no target falls in the pixel,
then let σ = 0.
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Figure 3. Nine 2D point targets (SNR = 20 dB). (a) Echo. (b) 2D
imaging result. (c) x profile (y = 0). (d) y profile (x = 0). (e) 3D plot.

If the number of target is limited, coefficients σ will be sparse. We
can further define the sparse basis as,

ψi′j(xmnl, ymnl, zmnl) = exp {−jki′Rmnl(φj)} (12)
In practice, noise is unavoidable in measurements, so the measured
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model should be modified as,

y = ΦS + n = ΦΨσ + n = Θσ + n (13)
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Figure 4. Nine 2D point targets (SNR = 15 dB). (a) Echo. (b) 2D
imaging result. (c) x profile (y =0). (d) y profile (x = 0). (e) 3D plot.
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where y is the measurement, Φ is the measured matrix, and n is the
noise.

Here (13) is solved by basis pursuit denoise (BPDN) [22],

min
σ
‖σ‖l1

such that ‖y −ΦΨσ‖2 ≤ ε (14)

where ε ≥ 0 is an estimate of the noise level.
If we choose Φ to be a random matrix in (13), then the spectral

projected gradient (SPG) algorithm [23] can be used to recover sparse
coefficients σ through Equation (14). Because both sparse basis and
measured matrix are random matrixes, it is easy to confine RIP
condition. For 2D targets, we can just let L = 1, zmnl = 0 in (11)
and (12), respectively.

For both 3D and 2D targets, the above procedure of RSF CSAR
imaging based on CS can be shown in Fig. 2.
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Figure 5. Imaging results of eight 3D point targets (SNR = 20 dB).
(a) 3D imaging result. (b) Projection on xy plane. (c) Projection on
xz plane. (d) Projection on yz plane.
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5. SIMULATION RESULTS

In order to observe the imaging results of RSF CSAR based on
CS, reconstructions of 2D and 3D point targets are simulated and
presented, respectively. The system parameters are listed in Table 1.

5.1. 2D Point Targets

The original target coordinates and amplitude of nine 2D point targets
are listed in Table 2. In simulation, zero-mean white Gaussian random
noise is added to echo, and signal-to-noise ratio (SNR) is about 20 dB.
Fig. 3(a) shows the amplitude of received echo. From Fig. 3(a) one
can see that the echo is almost like noise, so it is hard to obtain any
information without prior knowledge about the signal.
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profile (x = 0.08m, y = 0.08m).
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The 2D imaging result with 10% random echo samples is shown
in Fig. 3(b). The x (y = 0) and y (x = 0) profiles of Fig. 3(b)
are shown in Figs. 3(c)–(d). The 3D plot of Fig. 3(b) is shown in
Fig. 3(e). Figs. 3(b)–(e) clearly show that nine point targets are all
well reconstructed.

In the following, we shall conduct another simulation for SNR
= 15 dB. The corresponding results are shown in Figs. 4(a)–(e), from
which one can see nine targets can also be reconstructed from few
samples. After comparing Fig. 4 with Fig. 3, we can see that the
sidelobes of reconstructed targets are increased when SNR is decreased.

5.2. 3D Point Targets

The original target coordinates and amplitude of eight 3D point targets
are listed in Table 3. Zero-mean white Gaussian random noise is also
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Figure 7. Imaging results of eight 3D point targets (SNR = 15 dB).
(a) 3D imaging result. (b) Projection on xy plane. (c) Projection on
xz plane. (d) Projection on yz plane.
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added to the echo as above done, and SNR is about 20 dB.
The 3D imaging result with 10% random echo samples is shown

in Fig. 5(a), and the projections on xy, xz, and yz planes are shown
in Figs. 5(b)–(d), respectively. The x (y = 0.08m, z = 0.08m), y
(x = 0.08m, z = 0.08 m), and z (x = 0.08m, y = 0.08m) profiles of
Fig. 5(a) are shown in Figs. 6(a)–(c), respectively.

All these figures are −6 dB contoured after amplitude normalized.
The same as 2D point targets case, 3D point targets are also very well
reconstructed from few samples.

Once again, simulations for SNR = 15 dB are conducted. The
corresponding results are shown in Fig. 7 and Fig. 8, respectively, which
also indicate that 3D point targets can be reconstructed. Comparing
Fig. 7 with Fig. 5, −6 dB contoured figures are almost the same. But
comparing Fig. 8 with Fig. 6, the sidelobes of one-dimensional profiles
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Table 3. The original 3D point targets.

Scatter No. (x, y, z) (m)  Amplitude Scatter No. Amplitude 

1 (−0.08, −0.08, −0.08) 1 5 (0.08, −0.08, −0.08) 1 

2 (−0.08, −0.08, 0.08) 1 6 (0.08, −0.08, 0.08) 1 

3 (−0.08, 0.08, −0.08) 1 7 (0.08, 0.08, −0.08) 1 

4 (−0.08, 0.08, 0.08) 1 8 (0.08, 0.08, 0.08) 1 

(x, y, z) (m)  

are increased when SNR is decreased.
From Fig. 3(a) and Fig. 4(a), one can see that the echo data of

RSF CSAR are almost like noise, so this will lead to low probability of
interception. At the same time, simulation results show that both 2D
and 3D targets are well reconstructed, but they are affected by noise
level. Therefore, the robustness of CS needs to be improved.

6. CONCLUSION

In this paper, RSF CSAR imaging based on CS is presented. The
echo generated by point-target model show that CSAR system is
with low probability of interception; the simulation imaging results
show that both 2D and 3D point targets are well reconstructed from
few samples. Further works on improving the robustness of CS,
investigating anti-jamming capability and using other random signal
models are underway.
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