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Abstract—A new method to find the Geometrical Optics/Uniform
Theory of Diffraction reflection points over Non Uniform Rational B-
Splines surfaces is presented. The approach is based on the Particle
Swarm Optimization (PSO) technique, and the cost function used to
find the reflection points is based on Snell’s law. The technique can
be used as an alternative to classic minimization techniques in cases
where convergence problems arise.

1. INTRODUCTION

Geometrical Optics (GO) combined with the Uniform Theory of
Diffraction (UTD) is one of the most extensive deterministic techniques
for high frequency electromagnetic analysis [1–3] in a number of
applications, such as propagation in mobile communications, radiation
of on board antennas, and others [4–6]. The main difficulty in
GO/UTD is the ray-tracing calculation, especially when analyzing a
complex environment [7, 8]. Ray tracing involves searching for the
critical points (reflection and diffraction points). If the surfaces used to
model the environment are planar, analytical expressions can be used
to obtain these critical points [9, 10]. However, for arbitrarily curved
surfaces, analytical expressions cannot be applied [11, 12]. Instead,
minimization techniques such as the Conjugate Gradient Method
(CGM) must be used [6, 13, 14]. If the surface is convex, no local
minimal are present and minimization techniques generally provide
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the point position with good accuracy. In contrast, in the analysis of
concave surfaces, convergence problems can appear due to the presence
of local minimal [15, 16]. This is an especially important problem in
the analysis of systems with multiple interactions (combinations of
reflections and diffractions) that consist of both convex and concave
surfaces.

In this paper, we present an alternative method based on Particle
Swarm Optimization (PSO) [17] that avoids convergence problems,
even in complex systems. The PSO technique has been widely used
for several applications that require the optimization of different
problems [18–20] and can also be applied to minimization problems
such as the ones presented in this work. A key advantage of PSO is
that it avoids the problems seen in classic minimization techniques
that arise due to local minimal [21, 22]. This approach, therefore,
allows for the analysis of both convex and concave surfaces (and their
combination) with the same accuracy. The approach has been applied
only for the multiple reflection case, but could be easily generalized
to the diffraction case by simply modifying the Fitness function. To
prove the validity of the approach, cases are studied where the CGM
cannot find a solution because of the presence of local minimal.

2. STATEMENT OF THE PROBLEM

The problem of obtaining reflection or diffraction points in the
application of ray-tracing techniques over bodies that are modeled
using parametric surfaces is typically addressed using minimization
techniques [6, 8, 11]. Based on the Generalized Fermat’s Principle [23],
it can be stated that the path followed by a ray between two points
(the source and the observer) is such that the geometrical path length
is an extreme (maximum or minimum). This principle can be applied
to complex bodies modeled by parametric surfaces. If one considers
that the body is modeled by n surfaces, with each surface defined by
two parametric coordinates, ui and vi, it follows that, in the case of an
n-order reflection (Fig. 1) the reflection points can be obtained after
the minimization of the following function:

dn(u1, v1, u2, v2, . . . , un−1, vn−1, un, vn) = d0(u1, v1) + d1(u1, v1, u2, v2)
+d2(u2, v2, u3, v3) + . . . + dn−1(un−1, vn−1, un, vn) + dn(un, vn) (1)

where dn is the total distance of the ray path followed by the nth-
reflection, and di the different stretches in which dn can be divided
(Fig. 1).

This minimization cannot be solved analytically and, therefore,
iterative minimization techniques such as the Conjugate Gradient
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Figure 1. Ray-tracing for an n-order reflection.

Figure 2. Reflection on a parabolic reflector.

Method (CGM) are often used [6, 13]. For most cases, these techniques
provide a reliable solution. However, there are certain cases where
minimization techniques do not find the correct solution. This
situation occurs when the distance function presents local minimal,
which occurs frequently in concave surfaces. Fig. 2 shows a case
where the reflection on a parabolic surface must be calculated. The
distance function is a two variable function depending on the two
parametric coordinates of the surface. The distance as a function of
both coordinates for a certain position of the source and the observer
can be seen in Fig. 3, which clearly reveals the presence of a local
minimum.

3. PARTICLE SWARM OPTIMIZATION

PSO is based on an evolutionary model used to solve engineering
problems [17]: the behavior of a swarm of bees in search of the biggest
concentration of flowers. The algorithm defines a number of particles,
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Figure 3. Isometric and plant view of the distance function.

or agents, inside the solution space as starting solutions. Each particle
then moves randomly over the space, and its best position (pbest) for
each iteration of the algorithm is recorded. The best position of all
the particles (gbest) is stored as well. In the next iteration, this best
position information is used by every particle when deciding where to
move. The velocity is updated according to the following expression:

Vk = wVk−1 + c1r1 (pbestk−1 −Xk−1) + c2r2 (gbestk−1 −Xk−1) (2)

where Vk is the particle velocity at the kth iteration, which is an n-
dimensional vector with n being the dimension of the solution space;
Xk is the particle position with the same dimension of the velocity;
c1 and c2 are scalars that define the influence of the personal and the
group experiences, respectively; w is the inertia value; and finally, r1

and r2 are random values.
According to this expression, the particle moves to the position

given by:
Xk = Xk−1 + ∆kVk (3)

The typical value for ∆k is 1.
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4. PSO APPLIED TO THE SEARCH OF REFLECTION
POINTS

According to the GO theory, when a ray is reflected in a surface, the
angle between the incident ray and the normal vector, and the angle
between the reflected ray and the normal vector, must be the same
(Fig. 4). In other words, the following expression must be satisfied:

θi = θr (4)

with θi = − cos−1(n̂· ŝi) and θr = − cos−1(n̂· ŝr), where n̂ is the normal
vector to the surface at the reflection point, ŝi the direction of the
incident ray, and ŝr the direction of the reflected ray. As another
condition, the incident and reflected rays must be coplanar with the
normal vector, thus defining the reflection plane. Taking into account
these two conditions, the Fitness function used for the PSO algorithm
is as follows:

Fitness =
∣∣θi − θr

∣∣ +
∣∣cos−1(v1· v2)

∣∣ (5)

where v1 = ŝi×n̂ and v2 = ŝr×n̂ are the normal vectors of the incident
and reflected planes. If the direction of the incident and reflected rays
are coplanar and the reflection point follows Snell’s Law, then the
Fitness function is zero.

At the beginning of the algorithm, each particle takes a random
position over the surface. From this position, the Fitness function is
determined from expression (5). For multiple reflections, each particle
is described by the position of the points over each of the surfaces
considered. In order to evaluate the Fitness function, the incident and
reflected directions at each surface must be calculated. The generalized

θi θr
^s i^

s r^

n^

Figure 4. The reflection case: incident and reflection directions,
angles and planes.
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expression of the Fitness function for n reflections is:

Fitness =
n∑

j=1

∣∣θi
j − θr

j

∣∣ +
∣∣cos−1(v1j · v2j)

∣∣ (6)

where θi
j and θr

j are the incident and reflected angles on the surface j,
and v1j and v2j are the normal vectors to the incident and reflected
planes, respectively.

5. RESULTS

Here, we analyze two different cases in order to demonstrate the
feasibility of the method. It is important to notice that in the cases
presented, the CGM was not able to find a proper solution for the
reflection points due to the presence of local minimal in the distance
function, as discussed in Section 2.

The first case analyzed was the parabolic surface in Fig. 2. In
this case the function to minimize is shown in Fig. 3. Because of the
random component of PSO, different simulations reach results with the
same accuracy after a different number of iterations. By taking the
average of the results, we can obtain the most information about the
convergence for a particular case. We computed average values using
different numbers of particles in order to study the relationship between
particle number and convergence. As seen in Fig. 5, the convergence
appears to be independent of the number of particles, with almost no
difference in the result when particle number was changed from 10 to
500. Overall, for this case the method converges quickly, after only 100
iterations in the best solution.

Figure 5. Fitness function values for a simple reflection case using 10
and 500 particles.
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The next scenario analyzed consisted of a combination of three
cylindrical surfaces: two concave and one convex. This geometry is
shown in Fig. 6, with source and observation points indicated.

As in the previous case, the average Fitness function was obtained
with different numbers of particles, with results given in Fig. 7. We can
see that for this case, the convergence strongly depends on the number
of particles. The number of particles becomes more important in the
triple reflection case because the number of parameters to minimize
has tripled, compared to the simple reflection case. When only ten
particles are used, the Fitness function is approximately 0.2 after 350
iterations. When the particle number is increased to 500, the Fitness
function is reduced to below 1.0e-4 after the same number of iterations.

Figure 6. The triple reflection case.

Figure 7. Fitness function values for a triple reflection case using
different numbers of particles.
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Table 1. Computational time (in seconds) for different numbers of
particles and iterations.

Fitness function values
0.1 0.01 0.001 0.0001

Particles

10 0.46
50 0.66 1.95
100 0.69 2.32 3.46
200 0.62 2.79 3.78 4.31
500 0.77 3.99 5.45 5.96

It is worth noting that with the increase in the number of particles
comes an increase in the computational time.

Table 1 shows the average computational time used to reach
different values of the Fitness function using a Pentium IV at 3 GHz
with 2GBytes of RAM. In this table, a blank cell means that the
corresponding fitness was not reached after 500 iterations. Depending
on the desired precision, the number of particles can be increased or
decreased. In this triple reflection case, to obtain a Fitness value of
1e-2, 50 particles are sufficient, whereas almost 200 particles must be
used to obtain a Fitness value of 1e-4. The user must take into account
the balance between computational time and precision when choosing
the number of particles.

6. CONCLUSIONS

In this work, a new method to calculate the GO/UTD reflection points
based on the Particle Swarm Optimization is presented. The method
is an alternative to other minimization methods such as CGM and is
especially useful when the CGM does not converge. We analyze a case
that combines convex and concave surfaces and show that PSO finds
the correct solution while CGM does not, thus proving the validity of
the method for these problematic situations.
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